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Tempo a disposizione 3 ore

Problema 1

Si consideri un potenziale armonico tridimensionale

U(r) =
1

2
k r2 ≡ 1

2
k(x2 + y2 + z2) (1)

Una particella di massa m e spin 1/2 (elettrone)è intrappolata in questo poten-
ziale:

1) Scrivere le energie, il momento angolare orbitale e la degenerazione (te-
nendo conto anche dello spin) dello stato fondamentale e del primo stato
eccitato.

2) Si scrivano le funzioni d’onda radiali, normalizzate, per i primi due livelli.

Nel potenziale (1) sono ora immesse, in tutto, 4 particelle dello stesso tipo.

3) Trascurando l’interazione fra le particelle si scriva la configurazione elet-
tronica del livello fondamentale, l’energia e la degenerazione. Si ricordi
che le particelle sono identiche ed hanno spin 1/2.

4) Ci si aspetta che l’interazione fra gli elettroni rimuova parte della degene-
razione trovata al punto precedente: scrivere i termini spettrali possibili
e controllare che la somma delle degenerazioni in questa nuova situazione
sia uguale alla precedente. Si usi la solita notazione 2S+1L per indicare i
termini spettrali.

5) Per semplificare i calcoli si supponga che l’interazione sia della forma

V (r1, r2) = g δ3(r1 − r2) ; g > 0 (2)

e si consideri solo l’interazione fra gli elettroni dei gusci non completi.

a) Esiste qualche termine spettrale su cui la perturbazione (2) non ha
effetto? Cioè in cui non si produce spostamento nel livello di energia?

b) Usando teoria delle perturbazioni al primo ordine si può decidere qual
è il termine spettrale con energia minore? (Si tenga conto che g > 0).

c) Si provi a calcolare l’effetto sul termine spettrale con L massimo, fra
quelli individuati al punto 3). Si suggerisce di considerare lo stato
con Lz massimo.
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Problema 2

Una particella di massa m e carica e si muove in un potenziale armonico
unidimensionale con frequenza ω:

U(x) =
1

2
mω2x2 (3)

Il sistema viene investito da un’onda elettromagnetica e si vuole studiare cosa
può succedere. Il problema è schematizzato come segue: al tempo t → −∞ la
particella è nello stato fondamentale. La perturbazione è descritta da un campo
elettrico variabile nel tempo

E(t) = E0 e−|t|/τ cosω0t (4)

diretto lungo x. Si usi l’approssimazione di dipolo e la teoria delle perturbazioni
al primo ordine.

1) In quali stati può trovarsi la particella a t→ +∞?

2) Qual è l’ampiezza di probabilità per effettuare una transizione e la proba-
blità di trovare la particella nello stato fondamentale per t → ∞? Ci si
può limitare a scrivere l’espressione esplicita nel caso ω = ω0.

Formule utili

Funzioni d’onda stazionarie per un oscillatore unidimensionale

ψn(x) =
1

π1/4

1√
`

1√
2nn!

Hn(x/`) exp(− x2

2`2
) ; ` ≡

√
~
mω

H0(ξ) = 1 ; H1(ξ) = 2ξ ; H2(ξ) = 4ξ2 − 2 .∫ ∞
0

e−x
2/`2x2dx =

√
π

4
`3 ;

∫ ∞
0

e−x
2/`2x4dx =

3

8

√
π `5 ;∫ ∞

0

dxx6 exp(−2x2

`2
) =

15

128
`7
√
π

2
.

Armoniche sferiche

Y00 =
1√
4π

; Y10(θ, ϕ) =
√

3
4π cos θ, Y1,±1(θ, ϕ) = ∓

√
3
8π sin θ e±iφ

∫
sin4 θ dΩ =

32

15
π
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Soluzioni

Problema 1

1) L’energia del fondamentale e del primo eccitato sono

E0 =
3

2
~ω ; E1 =

5

2
~ω ; con: ω =

√
k

m
. (5)

Per la degenerazione, notando che il sistema è identico a quello di tre oscillatori
unidimensionali si ha una degenerazione orbitale (1, 3) e, tenendo conto dello
spin: g0 = 2 ; g1 = 2× 3 = 6, gi indica la degenerazione.

Siccome la funzione d’onda dello stato fondamentale è invariante sotto ro-
tazioni e le funzioni d’onda del livello eccitato sono polinomi di grado 1 per
esponenziali in r2 il momento angolare è rispettivamente 0, 1.

2) Dalla forma delle autofunzioni dell’oscillatore unidimensionale

R1s(r) = A1s e
−r2/2`2 ; R1p = A1p r e

−r2/2`2

La condizione di normalizzazione∫ ∞
0

r2drR2(r) = 1

fissa le costanti (vedi elenco integrali):

A1s = 2π−1/4 `−3/2 ; A1p =

√
8

3
π−1/4 `−5/2

3) Usiamo per gli orbitali la notazione n` dove n = 1, 2 . . . elenca per ogni
` la presenza della corrispondente controparte radiale (cioè n − 1 è il numero
quantico radiale). Gli orbitali descritti al punto precedente sono quindi in questa
notazione 1s e 1p. La configurazione elettronica fondamentale che non viola il
principio di Pauli è quindi

1s21p2 .

L’energia è la somma delle energie degli orbitali, avendo trascurato l’interazione
elettrone-elettrone, quindi

Eorb = 2× E0 + 2× E1 = 8 ~ω

Il guscio s è completo, nel guscio p possono trovare posto 6 elettroni e ne sono
presenti 2 quindi la degenerazione è

deg. =

(
6

2

)
= 15 .
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4) Occorre vedere le configurazioni possibili per due elettroni p equivalenti,
è un caso identico a quello dell’atomo di carbonio. Lo spin totale può essere
S = 0, 1, rispettivamente antisimmetrico e simmetrico. La composizione dei due
momenti orbitali può dar luogo a L = 0, 1, 2, le funzioni d’onda con L = 1 sono
antisimmetriche orbitalmente, negli altri due casi simmetriche. Quindi tenendo
conto del principio di Pauli i termini spettrali possibili sono

3P ; 1S ; 1D

La degenerazione totale è (viene scritto (2S + 1)(2L + 1) per ogni termine
spettrale):

3× 3 + 1× 1 + 1× 5 = 15

in accordo con quanto trovato prima.

5a) L’interazione agisce solo sulle variabili orbitali, commuta con L,S quindi
la classificazione precedente dà dei buoni numeri quantici per la classificazione
dei livelli. Per una data funzione d’onda ψ(r1, r2) l’effetto della perturbazione
provoca uno shift del livello pari a

∆E =

∫
d3r1

∫
d3r2ψ

∗(r1, r2) g δ(r1 − r2)ψ(r1, r2) = g

∫
d3r|ψ(r, r)|2 (6)

L’effetto della perturbazione è quindi nullo sui livelli orbitalmente antisimme-
trici, cioè sul termine spettrale 3P .

5b) Dalla (6), siccome g > 0, segue che gli spostamenti in energia per gli stati
orbitalmente simmetrici sono positivi, quindi il termine spettrale fondamentale
è il 3P .

5c) Per Lz = 2 si ha una funzione d’onda

ψ(r1, r2) = R1p(ry1)R1p(r2)Y11(Ω1)Y11(Ω2)

quindi

∆E = g

∫ ∞
0

r2drR4
1p(r)

∫
dΩ|Y11(θϕ)|4 = g

∫ ∞
0

r2drR4
1p(r)

3

8π
sin4 θdΩ

= g
5

6

1√
2π
`−3

(
3

8π

)2
32

15
π =

g

`3
1

2(2π)3/2
. (7)

Problema 2

1) Le regole di transizione per il dipolo in un oscillatore armonico implicano
che la particella può trovarsi, se la transizione ha effetto, solo nello stato n = 1.
Quindi gli stati finali possibili sono |0〉, se la transizione non avviene, e |1〉 se la
transizione avviene.
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2) Per quanto detto al punto precedente la probabilità di ritrovare la particella
nello stato fondamentale è, all’ordine perturbativo più basso:

P0→0 = 1− P0→1 (8)

L’ampiezza di probabilità per la transizione 0→ 1 è data dalla formula generale

A =
1

i~

∫ ∞
−∞

ei(Ef−Ei)t/~Vfi(t)dt =
1

~

∫ ∞
−∞

eiωtVfi(t)dt (9)

L’interazione è
V = −ex E(t)

ed usando

〈1|x|0〉 =
`√
2

; ` =

√
~
mω

segue

Vfi(t) = −e` 1√
2
E(t)

e sostituendo nella (9)

A = − e`

i~
√

2
E0
∫ ∞
−∞

eiωt cos(ω0t) e
−|t|/τdt (10)

L’integrale si esegue immediatamente dividendo l’intervallo in −∞, 0 e 0,∞
dando luogo a

A = − e`τ

i~
√

2
E0
[

1

1 + (ω + ω0)2τ2
+

1

1 + (ω − ω0)2τ2

]
(11)

Per ω = ω0 l’espressione si semplifica in

A = i
e`

~
E0
√

2 τ
1 + 2τ2ω2

0

1 + 4τ2ω2
0

(12)

Si ha perciò

P0→1 =
e2`2

~2
2E20 τ2

(
1 + 2τ2ω2

0

1 + 4τ2ω2
0

)2

(13)

5


