
Esame Scritto di Meccanica Quantistica
14 giugno 2016 (A.A. 15/16)

Tempo a disposizione: 3 ore

Problema 1

Una particella di massamsi muove in tre dimensione, in un potenziale di forma1,

U(r) = −gδ(r − r0) , g > 0 , r0 > 0 . (1)

dover è il raggio dir.

(i) Limitandosi agli stati di ondaS, scrivere l’equazione che determina l’energia di (un
eventuale) stato legato. Trovare la condizione perr0 perché il sistema possieda tale
stato legato.

(ii) Discutere, perr0 grande, i livelli discreti con il momento angolareℓ, e la loro dipen-
denza daℓ, in maniera approssimativa.

Problema 2

Le interazioni iperfini nell’atomo di idrogeno sono descritte da:

V = ggN |µ|µp

(

8π
3

sN · sδ3(r)− sN · s−3(sN · r̂)(s · r̂)
r3 +

sN ·L
r3

)

, (2)

dove
g≃ 2.002; gp ≃ 5.586 (3)

sono i fattori giromagnetici per l’elettrone e per il protone,

µ= − |e|h̄
2mc

; µp =
|e|h̄

2mpc
, (4)

sono rispettivamente il magnetone di Bohr, e il magnetone nucleare.s e sN sono gli opera-
tori di spin dell’elettrone e del nucleo (il protone) rispettivamente;L è il momento angolare
orbitale.

(1) Dimostrare che il secondo termine nella parentesi rappresenta un tensore di rango 2
rispetto alle coordinate orbitali.

(2) Calcolare la correzione all’energia dello stato fondamentale dovuto aV, ∆Eh f .

(3) Elencare tutti gli operatori che commutano conV.

(4) Tenendo conto delle interazioni fini (le prime correzioni relativistiche) e iperfini (V),
quali sono i numeri quantici che determinano ciascun livello iperfine, e qual’e’ la
degenerazione di quest’ultimo?

(5) Come si paragona, in ordine di grandezza, la correzione di cui al punto (2), con la tipica
grandezza delle correzioni di struttura fine?

Formulario:

ψ100(r) =
2r−3/2

B√
4π

e−r/rB . (5)

1N.B. U non è−gδ3(r− r0) .
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Soluzione

Problema 1

(i) Discutere l’energia e la funzione d’onda dello stato legato, assumendo che sia in onde
S.

Nelle coordinate sferiche, e introducendo la funzione radiale ridotta,

χ(r) = rR(r) , (6)

l’equazioine di Scrödinger radiale ha la forma dell’equazione unidimensionale,

− h̄2

2m
d2

dr2 χ(r)−gδ(r − r0)χ(r) = Eχ(r) ; (7)

questa equazione va risolta con la condizione al contorno

χ(0) = 0 χ(∞) = 0 . (8)

e con la condizione di discontinuità attraveso la delta,

χ
′
(r = r0 + ε)−χ

′
(r = r0− ε) = −2mg

h̄2 χ(r0) . (9)

Le soluzioni fuori e dentro la sfera hanno la forma,

χ(r) = e−κ(r−r0) , R(r) =
e−κ(r−r0)

r
, r > r0 ; (10)

χ(r) = Aeκ(r−r0) +Be−κ(r−r0) , R(r) =
Aeκ(r−r0) +Be−κ(r−r0)

r
, r < r0 . (11)

Impongo la condizione all’orgine,

Ae−κr0 +Beκr0 = 0 . (12)

e ar = r0,
1 = A+B , (13)

−κ−κ(A−B)= −2mg

h̄2 . (14)

Risolvendo perA eB da (13), (14), si trova

A =
mg

κh̄2 ; B = 1− mg

κh̄2 : (15)

sostituendo questi in (13) si ha

1

κh̄2/mg−1
= −e2κr0 . (16)

Questa è la relazione richiesta.

Facendo un’analisi grafici si trova che per

r0 >
h̄2

mg
(17)

c’è uno stato legato; per

r0 ≤
h̄2

mg
(18)

non ci sono stati legati. Perr0 → ∞, la soluzione si avvicina a

κ =
mg

h̄2 : E = −mg2

2h̄2 , (19)

la nota energia di una buca delta unidimensionale.
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(ii) Discutere, perr0 grande, i livelli discreti con il momento angolareℓ, e la loro dipen-
denza daℓ, in maniera approssimativa.

In termini di funzione d’onda radiale ridottaχℓ(r), l’equazione è

− h̄2

2m
d2

dr2 χℓ(r)−gδ(r − r0)χℓ(r)+
ℓ(ℓ+1)h̄2

2mr2
χℓ(r) = Eχℓ(r) . (20)

Per grande valore dir0, la condizioneχ(0) = 0 non giocherà un ruolo importante, e
il problema si riduce alla buca delta unidimensionale, con la funzione d’onda con-
centrata attorno ar ≃ r0. Per di più, il termine centrifugo può essere trattato come
un potenziale perturbativo. Ci si aspetta dunque uno spettro di energia,

Eℓ ≃−mg2

2h̄2 +
ℓ(ℓ+1)h̄2

2m
〈 1
r2 〉 ≃ −mg2

2h̄2 +
ℓ(ℓ+1)h̄2

2mr20
, ℓ = 0,1,2, . . . (21)

per ℓ non troppo grande. Perℓ ≥ mgr0
h̄2 , invece, ci si aspetta che non esista nessun

stato legato.

Tale idea può essere confermata dalle soluzioni numerichedel problema.

Problema 2

(1) Scrivendo come
(sN)isj (δi j −3r̂ i r̂ j) (22)

vediamo che esso rappresenta in tensore di rango 2.

(2) Calcolare la correzione all’energia dello stato fondamentale dovuto aV, ∆Eh f . Lo
stato fondamentaleψ100 haL = 0. Risulta che sia il secondo che il terzo termine non
contribuisce. Il primo termine dà:

〈ggN |µ|µp
8π
3

sN · sδ3(r)〉100 = ggN |µ|µp
8π
3

sN · s|ψ(0)|2

= ggN |µ|µp
8π
3

S(S+1)− 3
2

2
1

πr3
B

, (23)

doveS= 1 oS= 0.

(3) Elencare tutti gli operatori che commutano conV. Definendo

S = sN + s ; J = L+ s ; F = J + sN = L+ s+ sN , (24)

doveF rappresenta il momento angolare totale,V commuta con

S2 , J2 , L2 , F2 , (25)

e con
Fi (26)

e con parità.s2
N = s2 = 3

4 naturalmente commuta con tutti gli operatori.

(4) I numeri quantici (che determinano lo stato) sono

S, L, J ,F , (27)

con degenerazione 2F +1.
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(5) Come si paragona, in ordine di grandezza, la correzione di cui al punto (2), con la tipica
grandezza delle corresioni di struttura fine?

Le correzioni al punto (ii) sono di ordine

m
mP

α2 e2

rB
: (28)

essi sono circa m
mP

∼ 10−3 (29)

volte più piccolo rispetto alla tipica correzione di struttura fine.
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