
Prova Scritta di Meccanica Quantistica I

Facoltà di Scienze, M.F.N., Università degli Studi di Pisa
15 febbraio 2011 (A.A. 10/11)

Tempo a disposizione: 3 ore.

(i) Per il compitino II, risolvere Problema 2 e Problema 3;

(ii) Per la prova scritta completa, risolvere Prob. 1, Prob. 2 (i), (ii), e Prob. 3 (i), (ii), (iii).

Problema 1.

Una particella di massa m si muove in un potenziale unidimensionale di forma,

V (x) =





+∞ x < 0,

−V0 0 ≤ x ≤ a,
0 x > a .

(1)

Si vuole studiare le proprietà degli stati legati in questo sistema.

(i) Scrivere la forma delle funzioni d’onda nella regione 0 ≤ x ≤ a (tenendo conto della condizione di
raccordo a x = 0), e nella regione esterna alla buca x > a (tenendo conto della normalizzabilità
della funzione d’onda).

(ii) Imponendo la condizione di raccordo a x = a trovare l’equazione che determina implicitamente
le energie dei livelli discreti.

(iii) Determinare il numero degli stati legati per la buca, con m = 940 MeV /c2, V0 = 200
MeV, a = 3 fm). Potete usare ~c ' 200 MeV fm.

(iv) Fare uno schizzo delle funzioni d’onda di questi stati legati.

Problema 2.

Si consideri un oscillatore armonico forzato, i.e.,

H =
p2

2m
+
mω2

2
x2 −Gx . (2)

(G è una costante.)

(i) Scrivere le equazione di Heisenberg per xH(t) e pH(t).

(ii) Risolvere le equazione di Heisenberg per xH(t) e pH(t).
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(iii) Utilizzando il risultato del punto (ii), trovare il valore d’aspettazione

〈ψ(t)|x2|ψ(t)〉, (3)

sapendo che il sistema si trova a t = 0 in uno stato descritto da

ψ(x, 0) =
(

2γ
π

)1/4

e−γ x
2

(4)

(γ è una costante, γ > 0).

Dire come il risultato si semplifica nel caso particolare, γ = mω
2~ .

Problema 3.

Un nucleo di spin-parità JP = 1
2

+
, si trova inizialmente in uno stato di Jz = 1

2 . Ad un tratto
esso spontaneamente decade, nel suo sistema di riposo, in due nuclei A,B, di spin-parità:

SPA = 0− (A) e SPB = 1
2

+ (B).

(i) Scrivere la funzione d’onda dello stato finale in termini delle armoniche sferiche, delle funzioni
d’onda di spin e delle funzioni radiali (incognite), senza assumere che la parità sia conservata.

(ii) Calcolare la distribuzione angolare del nucleo A. Nel calcolo, sostituire le funzioni d’onda radiali
in (i) con delle costanti complesse a, b, ... incognite.

(iii) Discutere qual’è il segnale della violazione della parità nella distribuzione angolare di A.

(iv) È possibile determinare se la parità è conservata o meno nel decadimento, misurando soltanto
la componente SB z del nucleo B con l’apparato di Stern-Gerlach, posto nella direzione di
( 1√

2
, 0, 1√

2
)? Se la risposta è affermativa, spiegare come.

Discutere se la prova sperimentale della violazione della parità è più facile utilizzando l’apparecchio
di Stern-Gerlach (posto sempre nella direzione di ( 1√

2
, 0, 1√

2
)) con il campo magnetico in di-

rezione di x̂, i.e., misurando SB x anziché SB z.
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SOLUZIONE

Problema 1.

(i) Prendendo E < 0 per la considerazione degli stati legati,

ψ(in)(x) = A sin kx, k =

√
2m(E + V0)

~
, (5)

ψ(out)(x) = B e−κx, κ =
√
−2mE

~
, (6)

(ii) Uguagliando la derivata logaritmica ψ′/ψ attraverso la discontinuità del potenziale x = a, si ha

κ = −k cot ka. (7)

Introducendo ξ = ka, η = κa, l’equazione sopra diventa

η = −ξ cot ξ, (8)

con il vincolo

ξ2 + η2 =
2mV0a

2

~2
. (9)

I livelli dell’energia corrispondono alle soluzioni del sistema (8), (9) per ξ > 0, η > 0.

(iii) Per i valori dei parametri dati, √
2mV0a2

~2
' 9.2 (10)

Visto che
5π
2
<

√
2mV0a2

~2
<

7π
2

(11)

ci sono tre stati legati. Vedi Fig. 2

Problema 2.

(i) Cambiando la variabile

x→ X ≡ x− G

mω2
, p→ P = p, (12)

il commutatore canonico è conservato. L’Hamiltoniana diventa l’oscillatore standard,

H =
P 2

2m
+
mω2X2

2
− G

2mω2
. (13)

Gli operatori di Heisenberg per le variabili originali e quelle nuove sono semplicemente collegate
da

XH(t) = xH(t)− G

mω2
, PH(t) = pH(t), (14)
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visto che un operatore costante rimane uguale nei due schemi. Le equazioni di Heisenberg per
XH(t), PH(t) sono

ẊH(t) =
1
i~

[XH , H] =
1
m
PH , ṖH(t) =

1
i~

[PH , H] = −mω2XH , (15)

Le equazioni di Heisenberg per xH(t), pH(t) sono perciò

ẋH(t) =
1
m
pH , ṗH(t) = −mω2(xH −

G

mω2
) . (16)

Naturalmente queste equazioni seguono anche direttamente dallHamiltoniana originale. Le
soluzioni si possono ottenere o risolvendo la (15) e utilizzando la (14), o risolvendo la (16)
direttamente; il risultato è uguale.

XH(t) = X cosωt+
P

mω
sinωt ; PH(t) = P cosωt−Xmω sinωt ; (17)

perciò

xH(t) = (x− G

mω2
) cosωt+

p

mω
sinωt+

G

mω2
; pH(t) = p cosωt− (x− G

mω2
)mω sinωt ;

(18)

(ii)

〈ψ(t)|x2|ψ(t)〉 = H〈ψ|xH(t)2|ψ〉H = cos2 ωt 〈ψ|x2|ψ〉+ 1
m2ω2

sin2 ωt 〈ψ|p2|ψ〉+ G2

m2ω2
(1−cosωt)2

(19)
2 dove i valori medii nell’ultimo membro sono definiti in termini dello stato a t = 0, Eq.(4). Si
noti che i termini misti si annullano tutti nello stato (4), mentre

〈ψ|x2|ψ〉 =
1

4γ
; 〈ψ|p2|ψ〉 = (2γ~)2〈ψ|x2|ψ〉 = γ~2 . (20)

Il risultato finale è

〈ψ(t)|x2|ψ(t)〉 =
1

4γ
cos2 ωt+

γ~2

m2ω2
sin2 ωt+

G2

m2ω2
(1− cosωt)2 . (21)

(iii) Per γ = mω
2~ , il risultato diventa:

〈ψ(t)|x2|ψ(t)〉 =
~

2mω
+

G2

m2ω2
(1− cosωt)2 . (22)

Problema 3.

(i) Lo spin totale dello stato finale è Stot = 1
2 . ... L = 0, 1. Visto che la parità può essere violata, ci

saranno in generale ambedue i termini, L = 0 e L = 1. Se la parità fosse conservata, soltanto
L = 1 sarebbe possibile.

ψ = R0(r)Y0,0(θ, φ)|↑〉+R1(r)[

√
2
3
Y1,1(θ, φ) |↓〉 −

√
1
3
Y1,0(θ, φ) |↑〉

= a Y0,0(θ, φ)|↑〉+ b [

√
2
3
Y1,1(θ, φ) |↓〉 −

√
1
3
Y1,0(θ, φ) |↑〉 ] (23)
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(ii) Nella distribuzione angolare di A (che non ha spin), gli spin sono sommati nello stato finale,
per cui

dP = PdΩ ∝ |a− b cos θ|2 + |b|2 sin2 θ = |a|2 + |b|2 − 2Re(ab∗) cos θ. (24)

(iii) La violazione della parità significa che ci sono sia il termine L = 0 che il termine L = 1, perciò
da una dipendenza non banale da θ. Una distribuzione angolare non isotropa di A significa
che a 6= 0, b 6= 0, ed è un chiaro segnale della violazione della parità. (Condizione sufficiente.)
Infatti la distribuzione non è invariante per r→ −r in tal caso: le distribuzioni angolari di A
e di B non sono uguali.

In generale non ci si aspetta nessuna relazione particolare nelle fasi delle due ampiezze a e b
in presenza della violazione di parità. Logicamente, tuttavia, una distribuzione isotropa non
può escludere una violazione di parità, i.e., a 6= 0, b 6= 0, e

Re(ab∗) = 0, (25)

(le fasi relative di ±π2 ), quindi un’anisotropia della distribuzione non è condizione necessaria
per la violazione della parità.

La misura dello spin (il punto successivo) potrebbe essere un metodo per osservare la violazione,
che non dipende dalle fasi delle ampiezze.

(iv) Nella direzione di ( 1√
2
, 0, 1√

2
), φ = 0, θ = π/4. La funzione d’onda è

1√
4π

a |↑〉+ b [

√
2
3
Y1,1(θ, φ) |↓〉 −

√
1
3
Y1,0(θ, φ) |↑〉 ]

=
1√
4π

[ (a− b√
2

) |↑〉 − b√
2
|↓〉 ] (26)

In assenza della violazione della parità, a = 0, per cui la misura di S2 z darebbe i risultati ± 1
2

con probabilità 1
2 per ciascuno (o le uguali frequenze, per esperimenti ripetuti).

La deviazione significativa da tale statistica P↑ 6= P↓ segnala la violazione della parità (con-
dizione sufficiente).

Assumendo che non ci sia una particolare relazione tra le due ampiezze, a e b, sembrerebbe
che si possa concludere che P↑ 6= P↓ è anche necessaria. Questo argomento è errato, tuttavia.
Infatti, non è cos̀ı eccezionale avere due numeri complessi a 6= 0, b 6= 0 tale che

∣∣∣∣a−
b√
2

∣∣∣∣
2

'
∣∣∣∣
b√
2

∣∣∣∣
2

. (27)

In questi casi la violazione della parità non si manifesta come un effetto P↑ 6= P↓.

D’altronde le due condizioni (25) e (27) non sono compatibili. Vuol dire che una delle
condizioni, un’anisotropia della distribuzione angoare di A, o la disparità delle probabilità,
P↑ 6= P↓, è condizione necessaria per la violazione della parità.

Consideriamo ora la misura di SB x invece. Se la parità fosse conservata (a = 0) la funzione
d’onda (26) sarebbe

|ψ〉 =
1√
2

[ |↑〉+ |↓〉 ] : (28)
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un autostato di SB x con autovalore, SB x = + 1
2 . Perciò, in questo caso, l’osservazione di un

singolo evento con SB x = − 1
2 è sufficiente per concludere che la parità è violata.
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34. Clebsch-Gordan coefficients 010001-1

34. CLEBSCH-GORDAN COEFFICIENTS, SPHERICAL HARMONICS,

AND d FUNCTIONS

Note: A square-root sign is to be understood over every coefficient, e.g., for −8/15 read −
√

8/15.

Y 0
1 =

√
3
4π

cos θ

Y 1
1 = −

√
3
8π

sin θ eiφ

Y 0
2 =

√
5
4π

(3
2

cos2 θ − 1
2

)

Y 1
2 = −

√
15
8π

sin θ cos θ eiφ

Y 2
2 =

1
4

√
15
2π

sin2 θ e2iφ

Y −m
ℓ = (−1)mY m∗

ℓ 〈j1j2m1m2|j1j2JM〉
= (−1)J−j1−j2〈j2j1m2m1|j2j1JM〉d ℓ

m,0 =
√

4π

2ℓ + 1
Y m

ℓ e−imφ

d
j
m′,m = (−1)m−m′

d
j
m,m′ = d

j
−m,−m′ d 1

0,0 = cos θ d
1/2
1/2,1/2

= cos
θ

2

d
1/2
1/2,−1/2

= − sin
θ

2

d 1
1,1 =

1 + cos θ

2

d 1
1,0 = − sin θ√

2

d 1
1,−1 =

1 − cos θ

2

d
3/2
3/2,3/2

=
1 + cos θ

2
cos

θ

2

d
3/2
3/2,1/2

= −
√

3
1 + cos θ

2
sin

θ

2

d
3/2
3/2,−1/2

=
√

3
1 − cos θ

2
cos

θ

2

d
3/2
3/2,−3/2

= −1 − cos θ

2
sin

θ

2

d
3/2
1/2,1/2

=
3 cos θ − 1

2
cos

θ

2

d
3/2
1/2,−1/2

= −3 cos θ + 1
2

sin
θ

2

d 2
2,2 =

(1 + cos θ

2

)2

d 2
2,1 = −1 + cos θ

2
sin θ

d 2
2,0 =

√
6

4
sin2 θ

d 2
2,−1 = −1− cos θ

2
sin θ

d 2
2,−2 =

(1 − cos θ

2

)2

d 2
1,1 =

1 + cos θ

2
(2 cos θ − 1)

d 2
1,0 = −

√
3
2

sin θ cos θ

d 2
1,−1 =

1 − cos θ

2
(2 cos θ + 1) d 2

0,0 =
(3

2
cos2 θ − 1

2

)

+1

5/2
5/2

+3/2
3/2

+3/2

1/5
4/5

4/5
−1/5

5/2

5/2
−1/2
3/5
2/5

−1
−2

3/2
−1/2
2/5 5/2 3/2

−3/2−3/2
4/5
1/5 −4/5

1/5

−1/2−2 1

−5/2
5/2

−3/5
−1/2
+1/2

+1−1/2 2/5 3/5
−2/5
−1/2

2
+2

+3/2
+3/2

5/2
+5/2 5/2

5/2 3/2 1/2

1/2
−1/3

−1

+1
0

1/6

+1/2

+1/2
−1/2
−3/2

+1/2
2/5

1/15
−8/15

+1/2
1/10

3/10
3/5 5/2 3/2 1/2

−1/2
1/6

−1/3 5/2

5/2
−5/2

1

3/2
−3/2

−3/5
2/5

−3/2

−3/2

3/5
2/5

1/2

−1

−1

0

−1/2
8/15

−1/15
−2/5

−1/2
−3/2

−1/2
3/10
3/5

1/10

+3/2

+3/2
+1/2
−1/2

+3/2
+1/2

+2 +1
+2
+1

0
+1

2/5
3/5

3/2

3/5
−2/5

−1

+1
0

+3/21+1
+3

+1

1

0

3

1/3

+2

2/3

2

3/2
3/2

1/3
2/3

+1/2

0
−1

1/2
+1/2
2/3

−1/3

−1/2
+1/2

1

+1 1

0

1/2
1/2

−1/2

0

0

1/2

−1/2

1

1

−1−1/2

1

1

−1/2
+1/2

+1/2 +1/2
+1/2
−1/2

−1/2
+1/2 −1/2

−1

3/2

2/3 3/2
−3/2

1

1/3

−1/2

−1/2

1/2

1/3
−2/3

+1 +1/2
+1
0

+3/2

2/3 3

3

3

3

3

1−1−2
−3

2/3
1/3

−2
2

1/3
−2/3

−2

0
−1
−2

−1
0

+1

−1

2/5
8/15
1/15

2
−1

−1
−2

−1
0

1/2
−1/6
−1/3

1
−1

1/10
−3/10

3/5

0
2
0

1
0

3/10
−2/5
3/10

0
1/2

−1/2

1/5

1/5
3/5

+1

+1

−1
0 0

−1

+1

1/15
8/15
2/5

2

+2 2
+1

1/2
1/2

1

1/2 2
0

1/6

1/6
2/3

1

1/2

−1/2

0

0 2

2
−2
1−1−1

1
−1
1/2

−1/2

−1
1/2
1/2

0
0

0
−1

1/3

1/3
−1/3

−1/2

+1

−1

−1
0

+1
00

+1−1

2

1

0
0 +1

+1+1

+1
1/3
1/6

−1/2

1
+1
3/5

−3/10
1/10

−1/3
−1
0+1

0

+2

+1

+2

3

+3/2

+1/2 +1
1/4 2

2

−1
1

2

−2
1

−1
1/4

−1/2

1/2

1/2

−1/2 −1/2
+1/2−3/2

−3/2

1/2

1
003/4

+1/2
−1/2 −1/2

2
+1
3/4

3/4

−3/41/4

−1/2
+1/2

−1/4

1

+1/2
−1/2
+1/2

1

+1/2

3/5

0
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+1/20

+1/2
3/2

+1/2
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+2 −1/2
+1/2+2

+1 +1/2
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2×1/2
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3/2×12×1

1×1/2

1/2×1/2

1×1

Notation:
J J

M M
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Figure 34.1: The sign convention is that of Wigner (Group Theory, Academic Press, New York, 1959), also used by Condon and Shortley (The
Theory of Atomic Spectra, Cambridge Univ. Press, New York, 1953), Rose (Elementary Theory of Angular Momentum, Wiley, New York, 1957),
and Cohen (Tables of the Clebsch-Gordan Coefficients, North American Rockwell Science Center, Thousand Oaks, Calif., 1974). The coefficients
here have been calculated using computer programs written independently by Cohen and at LBNL.

Figure 1: Coefficienti di Clebsch-Gordan e alcune armoniche sferiche
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