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Tempo a disposizione: 3 ore

N.B.Fare tutti gli esercizi 1 (a), (b), (c) e 2 (i), (ii), (iii), (iv).
N.B.Scegliere uno solo degli esercizi tra 1 (d) e 2 (v).

Problema 1
Un sistema “a tre stati” è descritto dall’Hamiltoniana:

H = E0





1 0 0
0 1 0
0 0 1



− λ√
2





0 1 0
1 0 1
0 1 0



 , λ > 0 .

(a) Determinare gli autovalori e gli autostati diH, |a〉, |b〉, |c〉, corrispondenti rispettiva-
mente allo stato fondamentale, al primo e al secondo stato eccitato, esprimendoli in
termini di stati

|1〉 =





1
0
0



 ; |2〉 =





0
1
0



 ; |3〉 =





0
0
1



 .

(b) Dire se l’Hamiltoniana commuta con l’operatore,

Π =





0 0 1
0 1 0
1 0 0



 ; Π2 = 1 .

Discutere la rilevanza di questa questione (i.e., seΠ commuta conH o meno) per i
risultati del punto (i).

(c) Invertendo le relazioni trovate nel punto (i), esprimere gli stati|1〉, |2〉, |3〉 in termini
degli autostati dell’energia,|a〉, |b〉, |c〉.

(d) Supponiamo che il sistema si trovi nello stato|1〉 a t = 0. Trovare lo stato|ψ(t)〉
del sistema all’istantet, in termini degli stati|1〉, |2〉, |3〉. Calcolare le probabilità
Pi(t), i = 1,2,3 per trovare il sistema nello stato|i〉 all’istantet, e fare uno schizzo di
Pi(t) come funzione dit.

Problema 2.
Un atomo di idrogeno in uno stato interno eccitato (livello di Bohr) n, è legato ad un

centro di forza armonica; l’Hamiltoniana del sistema è

H =
P2

2M
+

MΩ2R2

2
+

p2

2m
− e2

r
, (1)

doveM è la massa dell’atomo,m la massa ridotta che è circa uguale alla massa dell’elet-
trone,P,R sono operatori dell’impulso e della posizione del (centro di massa dell’) ato-
mo; p,r l’impulso e la posizione dell’elettrone. L’atomo si trova nello stato fondamentale
dell’oscillatore, con l’energia

E0 =
3
2

Ωh̄. (2)
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(i) Qual’è l’energia totale del sistema (senza tenere conto della massa di riposo dell’atomo:
essa rimane invariata durante tutto il processo).

Ad un tratto l’atomo decade allo stato fondamentale di Bohr,emettendo un fotone; si
vuole trovare la frequenzaν del fotone emesso.

(ii) Considerando l’atomo infinitamente pesante (M = ∞) e assumendo che l’atomo rimane
nello stato fondamentale dell’oscillatore, determinare la frequenza del fotone.

(iii) Se invece l’atomo non fosse legato (Ω = 0), quale sarebbe la frequenzaν del fotone
emesso (approssimativamente)?

(iv) Nel caso del problema,M < ∞, Ω 6= 0, scrivere le equazioni che esprimono la con-
servazione dell’energia totale, supponendo che dopo l’emissione del fotone (nella
direzione diẑ), l’atomo si trovi nello stato(0,0,N) dell’oscillatore,N = 0,1,2, . . ., e
trovare lo spettro (i possibili valori) dell’energia del fotoneEν = hν.

(v) Trovare le probabilitàPN che l’atomo si trovi in vari stati eccitati(0,0,N) dell’oscil-
latore dopo l’emissione del fotone, assumendo che l’operatore effettivo che causa la
transizione del centro di massa dell’atomo sia

V = e−ip·R/h̄ = e−i 2πν
c Z, p = (0,0,

h
λ
) = (0,0,

hν
c

) . (3)

In altre parole, calcolare
PN ∝ |〈N|V|0〉|2 . (4)

(N.B. V è un operatore che trasla l’impulso dell’atomo di−p: è un modo ragione-
vole di tenere conto dell’effetto di rinculo quantisticamente. )

Formulario: oscillatore armonico lineare in direzione Z e operatori di creazione e di
annichilazione

Z =

√

h̄
2MΩ

(a+a†), Pz = −i

√

MΩh̄
2

(a−a†); (5)

H = Ωh̄(a†a+
1
2
); (6)

|N〉 =
(a†)N
√

N!
|0〉, (7)

e−i f (a+a†) = e−
f 2
2 e−i f a†

e−i f a. (8)

[a,(a†)n] = n(a†)n−1 . (9)
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Figura 1:

Soluzione

Problema 1.

(i) Gli autovalori sonoEa = E0−λ, Eb = E0, Ec = E0 + λ, con rispettivi autostati

|a〉=
1
2
(|1〉+

√
2|2〉+ |3〉); |b〉=

1√
2
(|1〉−|3〉); |c〉=

1
2
(|1〉−

√
2|2〉+ |3〉).

(ii) Π commuta conH:
[Π,H] = 0,

e ha autovalori±1. Visto che gli autovalori diH sono singoli (non degeneri), ognuno
di stati stazionari debbono essere autostato anche diΠ, come si vede da

H|a〉 = Ea|a〉, H(Π|a〉) = ΠH|a〉= Ea (Π|a〉), ...Π|a〉 ∼ |a〉;

e analogamente per|b〉, |c〉 Infatti, |a〉 e |c〉 sono pari, mentre|b〉 sono dispari rispetto
alla transformazioneΠ.

(iii)

|1〉=
1
2
(|a〉+

√
2|b〉+ |c〉); |2〉=

1√
2
(|a〉−|c〉); |3〉=

1
2
(|a〉−

√
2|b〉+ |c〉).

(iv)

|ψ(t)〉 =
e−iE0t/h̄

2
(eiλt/h̄|a〉+

√
2|b〉+e−iλt/h̄|c〉)

=
e−iE0t/h̄

2

[

eiλt/h̄ 1
2
(|1〉+

√
2|2〉+ |3〉)+ (|1〉− |3〉)+e−iλt/h̄1

2
(|1〉−

√
2|2〉+ |3〉)

]

=
e−iE0t/h̄

2

[

(cosλt/h̄+1)|1〉+(cosλt/h̄−1)|3〉+
√

2i sinλt/h̄|2〉
]

; (10)

per cui (vedi la Figura)

P1 =
(cosλt/h̄+1)2

4
; P2 =

sin2 λt/h̄
2

; P3 =
(1−cosλt/h̄)2

4
;
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Problema 2.

(i)

Etot =
3
2

Ωh̄− e2

2n2rB
.

(ii)

Eγ = − e2

2n2rB
+

e2

2rB
=

e2

2rB
(1− 1

n2 ) ≡ G . (11)

(iii) In questo caso (atomo libero), l’atomo acquista un moto libero, dovuto al rinculo con
l’impulso−p = −(0,0,

Eγ
c ), per cui la conservazione dell’energia è

G≡ e2

2rB
(1− 1

n2 ) = Eγ +
E2

γ

2Mc2 .

Risolvendo approssimativamente,

Eγ = hν ≃ G− G2

2Mc2 :

dovuto al rinculo, il fotone ha la frequenza leggermente inferiore rispetto a quanto ci
si aspetta in maniera naı̈va.

(iv) Nel caso l’atomo è legato all’oscillatore, lo spettro dell’atomo è discreto; non può
essere eccitato in modo continuo. I possibili valori dell’energia del fotone sono dati
da:

G≡ e2

2rB
(1− 1

n2 ) = Eγ +NΩh̄, N = 0,1,2, . . . , N ≤ e2

2rBΩh̄
(1− 1

n2 )

In particolare, l’atomo ha una probabilità non nulla di nonricevere nessun rinculo
(N = 0); il fotone avrà in quel caso porterà l’energia corrispondente alla differenza
dei livelli di Bohr, (11). Questo effetto è noto comeeffetto M̈ossbauer.

(v)

|〈N|V|0〉|2 = |〈N|e−i f (a+a†)|0〉|2, f =
2πν

c

√

h̄
2MΩ

.

Utilizzando le formule date, si ha

|〈N|V|0〉|2 = e− f 2|〈N|e−i f a†|0〉|2 = e− f 2| (−i f )N

N!
〈N|(a†)N|0〉|2 = e− f 2| (−i f )N

√
N!

|2

= e− f 2 f 2N

N!
. (12)

Si noti che f dipende daN, attraversoν, perciò non si tratta di una distribuzione
Poissoniana.
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