Appello di Meccanica Quantistica 11

Facolta di Scienze, M.F.N., Universita degli Studi di Pisa,
20 luglio 2009 (A.A. 08/09)

Tempo a disposizione: 3 ore.

Problema 1.

Una particella di massa m e legata ad un potenziale delta tridimensionale,
V(r)=g6(r).
E noto che tale sistema ammette un solo stato legato, con la funzione d’onda

relativa
( K )1/2 e fT v —2mkEy

o T

to(r) = r h

dove Ey(< 0) & 'energia dello stato legato.! Questo sistema & sottoposto ad
una perturbazione

AH =nze“ + h.c.

a partire da ¢ = 0. Si vuole studiare il rate — la probabilita per un intervallo
unitario del tempo — di ionizzazione, il processo in cui la particella si liberi
dal legame. Si usi la teoria delle perturbazione al primo ordine in 7; inoltre si
assuma che lo stato finale possa essere approssimato da un’onda piana.

(a) Determinare la soglia per w perché avvenga 'ionizzazione. Cosa succede al
sistema, al di sotto di tale soglia?

(b) Determinare la distribuzione angolare della particella emessa, senza calco-
lare esplicitamente il rate della transizione.

(c) Calcolare il rate della transizione, determinando la distribuzione in p =
(p, 0, ¢) finale.

(d) Calcolare il rate della transizione, integrata in p.

Formulario:

Pre—ikr € _ Am
T k2 + k27

INon & richiesto di determinare Eg in termini di g,m,%. In realtd, in questo sistema
un calcolo semplice e “standard” analogo al caso del potenziale §(z) unidimensionale non &
possibile. Ma questa questione non é rilevante per la considerazione di problema proposto.



Problema 2.

Si consideri un oscillatore armonico tridimensionale con un termine di per-

turbazione
P2 1 2.2 /
(i) Prendendo

H =razy2? (2)

come perturbazione, calcolare le correzioni all’energia del primo stato di
eccitazione, al primo ordine in k. In quanti sottolivelli esso si divide?

(ii) Assumendo che il termine di perturbazione sia invece
H =\zyz, (3)

calcolare la correzione all’energia dello stato fondamentale al secondo or-
dine in A.



Soluzione

Problema 1.

(i) E 2p2
0 KR
I E = — .
h ’ 0 2m

(i) Visto che lo stato iniziale ¢ in onda S, mentre la perurbazione &

X T X Tl,l — T1,71~

Per il teorema di Wigner-Eckart, lo stato finale e nella stessa combinazione
di tensori sferici: la distribuzione angolare di p finale ¢ data da:
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(iii)
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La distribuzione in impulso & data da (a parte normalizzazione)
2
P mpdp dS)
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La part angolare coincide con quella ottenuta al punto (ii); integrando su
p usando la delta function, si ha
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Problema 2.

i) 11 primo livello & tre volte degenere: |ny,nq,n3) = |1,0,0), |0,1,0), |0,0,1).
Gli unici elementi di matrice non nulli sono quelli nondiagonali tra i due
stati |1,0,0), 0,1, 0):

B\ 2
(L0.01A"10,1,0) = (0.1, 0][711,0,0) = {110} (01} (0}:210) = 5 ()
(5)
11 livello si divide in tre sottolivelli, con le energie,
Swh K ho\? S5wh
it (LR bl 6
2 4 (mw) ’ 2 (6)
ii)
L |H] 0,0,0)
_ ni,n2,n3;u,u,
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dove |ny,na,n3) # |0,0,0). Per H' del problema, soltanto |ny,ng,n3) =
[1,1,1) contribuisce:
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