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Problema 1.

Un nucleo A di spin J = 3

2
decade, a riposo, spontaneamente in due nuclei, B e C,

A→ B + C,

dove B ha spin-parità 1

2

+
e C ha 0+. Prendendo la direzione dello spin di A come asse z, supponiamo

che la distribuzione angolare misurata del nucleo C risulti proporzionale a

sin2 θ dΩ = sin3 θ dθ dφ . (1)

(i) Assumendo che la parità sia conservata nel decadimento, che cosa si può dire sulla parità del

nucleo A, avendo a disposizione soltanto i dati, (1)?

(ii) Supponiamo che la misura dello spin del nucleo B, eseguita con l’apparecchio à la Stern-Gerlach

situata nella direzione (θ, φ), abbia dato risultati consistenti con relative probabilità:

P (sz = 1

2
) = cos2 θ, P (sz = − 1

2
) = sin2 θ . (2)

Utilizzando sia (1) che (2) che cosa si può dire sulla parità del nucleo A?

Problema 2.

Un sistema di due oscillatori armonici lineari accoppiati è descritto dall’Hamiltoniana

H = ω~ (a†a+ b†b+ 1) + λ b†a+ λ∗ a†b , (3)

dove

[a, a†] = [b, b†] = 1, [a, b] = [a, b†] = 0 .

(i) Per λ = 0, trovare lo spettro (gli autovalori e relative degenerazioni) dell’energia.

(ii) Supponiamo che λ sia non nullo e reale. Definiamo

A ≡ 1√
2
(a+ b), B ≡ 1√

2
(a− b) .

Determinare, utilizzando gli operatori (A,A†), (B,B†), lo spettro del sistema e discutere come

esso dipende da λ.
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(iii) Supponiamo che il sistema si trovi stato (N, 0), dove N si riferisce all’N -simo stato di ecc-

itazione dell’oscillatore (A,A†) (e lo stato fondamentale rispetto all’oscillatore (B,B†)). Ad

un tratto si spegne λ. Quali sono le probabilità che il sistema si trovi in vari stati (m,n) di

oscillatori disacoppiati, (a, a†), (b, b†),

(iv) Discutere lo spettro del sistema per λ complesso.

(v) Esprimere gli stati coerenti del sistema con λ 6= 0

|α, β〉 ≡ e−|α|2/2−|β|2/2 eαA†

eβB† |0, 0〉

dove |0, 0〉 è lo stato fondamentale degli oscillatori (A,B), i.e.,

A |0, 0〉 = B |0, 0〉 = 0, 〈0, 0|0, 0〉 = 1 ,

in termini di stati coerenti del sistema con λ = 0.

N.B. Per un oscillatore unidimensionale lo stato normalizzato |n〉 è dato da

|n〉 =
1√
n!

(a†)n |0〉, a |0〉 = 0, || |0〉 || = 1 .
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34. CLEBSCH-GORDAN COEFFICIENTS, SPHERICAL HARMONICS,

AND d FUNCTIONS

Note: A square-root sign is to be understood over every coefficient, e.g., for −8/15 read −
√

8/15.
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Figure 34.1: The sign convention is that of Wigner (Group Theory, Academic Press, New York, 1959), also used by Condon and Shortley (The
Theory of Atomic Spectra, Cambridge Univ. Press, New York, 1953), Rose (Elementary Theory of Angular Momentum, Wiley, New York, 1957),
and Cohen (Tables of the Clebsch-Gordan Coefficients, North American Rockwell Science Center, Thousand Oaks, Calif., 1974). The coefficients
here have been calculated using computer programs written independently by Cohen and at LBNL.
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SOLUZIONE

Problema 1.

(i) Lo spin totale dello stato finale è Stot = 1

2
. I valori del momento angolare orbitale possibilie

sono

L = 1, 2 .

Nel caso L = 2 la funzione d’onda dello stato finale è

2√
5
Y2,2(θ, φ) |↓〉 − 1√

5
Y2,1(θ, φ)| ↑〉 . (4)

La distribuzione angolare sarà data da

4

5
|Y2,2|2 +

1

5
|Y2,1|2 =

3

8π
(sin4 θ + sin2 θ cos2 θ) =

3

8π
sin2 θ .

Nel caso L = 1 la funzione d’onda dello stato finale è

Y1,1(θ, φ)|↑〉 = −
√

3

8π
sin θ eiφ |↑〉 , (5)

dando la distribuzione angolare
3

8π
sin2 θ ,

i.e., la stessa del caso L = 2. La parità del nucleo A è data da (−)L: dunque non è possibile

concludere sulla parità di A, basandosi soltanto suli dati della distribuznone angolare di C.

(ii) Visto che
1

5
|Y2,1|2

4

5
|Y2,2|2

=
cos2 θ

sin2 θ
,

i dati (1) e (2) presi insieme implicano L = 2. La parità del nucleo A è dunque +.

Problema 2.

(i) Per λ = 0, il sistema è oscillatore bidimensionale isotropo, con

En,m = ω~ (n+m+ 1), n,m = 0, 1, 2, . . . .

Il livello N (N = n+m = 0, 1, 2, . . .) è N + 1 volte degenere (n = 0, 1, 2, . . . , N).

(ii) Gli operatori

A =
1√
2
(a+ b), B =

1√
2
(a− b), A† =

1√
2
(a† + b†), B† =

1√
2
(a† − b†) , (6)

soddisfano le relazioni di commutatori

[A,A†] = 1, [B,B†] = 1, [A,B†] = [A,B] = 0 :
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essi possono essere considerati come due oscillatori indipendenti. Risolvendo per a, b si hanno

a =
1√
2
(A+B), b =

1√
2
(A−B), a† =

1√
2
(A† +B†), b =

1√
2
(A† −B†) , (7)

e sostituendo questi nella (3) abbiamo

H = ω~ (A†A+B†B + 1) +
λ

2
[ (A† −B†)(A+B) + (A† +B†)(A −B) ]

= (ω~ + λ)A†A+ (ω~ − λ)B†B + ω~ . (8)

• Per λ nell’intervallo

−ω~ < λ < ω~ .

Il sistema descrive due oscillatori indipendenti con frequenze

ω1 = ω + λ/~ > 0, ω2 = ω − λ/~ > 0 .

Lo spettro del sistema è

EN,M = (ω~ + λ)N + (ω~ − λ)M + ω~ , N,M = 0, 1, 2, . . . .

Ci sono degenerazioni dei livelli se λ/ω~ è un numero razionale. Altrimenti non ce ne

sono.

• Per λ = ω~ o λ = −ω~, uno degli oscillatori sparisce dal sistema; esso descrive un

oscillatore armonico con (e.g., per λ = ω~) frequenza 2ω,

H = 2ω~ (A†A+
1

2
) .

• Per

|λ| > ω~

il sistema non ha uno stato fondamentale; esso descrive un sistema instabile.

(iii) Lo stato iniziale è dunque

|ψ〉 =
(A†)N

√
N !

|0〉 =
1√
N !

2−N/2(a† + b†)N |0〉 =
1√
N !

2−N/2
∑

ℓ

(

N

ℓ

)

(a†)ℓ (b†)N−ℓ |0〉 .

Le probabilità per vari stati (m,n) sono

Pm,n =







1

2N

(

N
m

)

se m+ n = N,

0 se m+ n 6= N.

La somma delle probabilità è data da

∑

m,n

Pm,n =
1

2N
(1 + 1)N = 1 .
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(iv) Per λ = |λ|eiδ complesso, basta ridefinire gli stati di uno degli oscillatori come

|n〉′ ≡ einδ |n〉

o, equivalentemente, ridefinire gli operatori come

ã = eiδ a, ã† = eiδ a† .

In termini di nuovi operatori l’Hamltoniana ha la forma di (3) con δ = 0 (i.e., con λ reale).

Perciò lo spettro del sistema non dipende dalla fase di λ.

(v) Visto che A† e B† commutano, si ha

|α, β〉 ≡ e−|α|2/2−|β|2/2 eαA†
+βB† |0, 0〉 = e−|α̃|2/2−|β̃|2/2 eα̃a†+β̃b† |0, 0〉

dove

α̃ =
1√
2

(α+ β), β̃ =
1√
2

(α− β) ;

lo stato è sempre uno stato coerente anche rispetto agli oscillatori a, b, ma con i parametri

differenti, dati da α̃, β̃.
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