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Problema 1
Una particella di massa m e di carica q si muove in una dimensione, legato ad un centro

di forza di richiamo armonico e inoltre sottoposto ad un campo elettrico esterno uniforme,
ε. L’Hamiltoniana è:

H =
p2

2m
+

mω2

2
x2−qεx . (1)

(i) Trovare lo spettro dell’energia, come funzione di ε.

(ii) Il sistema si trova nello stato fondamentale. Supponiamo che il campo elettrico vari a
partire da t = 0 molto lentamente (variazione adiabatica), come

ε = ε0 cosΩ t , t ≥ 0 .

Determinare come il valor medio dell’energia Ē(t) dipende dal tempo. Qual’è il
valore di Ē(t) a t = π/Ω, Ē(π/Ω)?

[ Opzionale: Verificare che il teorema di Feynman-Hellman

d
dt

Ē(t) = 〈ψ|∂H
∂t
|ψ〉= qε0 Ω sinΩt 〈ψ|x|ψ〉

sia soddisfatto da Ē(t) trovato sopra. ]

(iii) Supponiamo invece che a t = 0 la direzione del campo elettrico si inverta all’improv-
viso, da ε a −ε. Trovare la probabilità che il sistema, dopo l’inversione, si trovi nello
stato fondamentale della nuova Hamiltoniana.

(iv) Trovare le probabilità che il sistema si trovi nell’n-simo autostato della nuova Hamil-
toniana. Calcolare il valore medio dell’energia Ē(t) a t > 0.

Problema 2.
Un nucleo di spin parità J = ( 1

2 )+ e nello stato |J,Jz〉= | 12 , 1
2 〉 decade, a riposo, in due

nuclei, A e B. Il nucleo A ha spin-parità, JA = ( 1
2 )+, mentre il nucleo B ha JB = 0−.

(i) Usando la conservazione del momento angolare totale, ma senza assumere la conserva-
zione della parità, scrivere la funzione d’onda angolare-spin (del moto relativo) dello
stato finale, in termini di due costanti ignoti, a (per la parte che viola la parità) e b
(per la parte che conserva la parità).

(ii) Calcolare la distribuzione angolare del nucleo A. Dire se la distribuzione angolare del
nucleo B è uguale a quella di A.

(iii) Quale sarebbero le risposte alle domande (ii) se la parità fosse conservata?

(iv) Siano P+(θ,φ) e P+(θ,φ) le probabilità che lo spin del nucleo A nella direzione del
suo moto, i..e.,

s ·n, n = (sinθcosφ,sinθsinφ,cosθ),

sia + 1
2 e − 1

2 rispettivamente. Determinare il rapporto P−(θ,φ)/P+(θ,φ). Quanto fa
tale rapporto a θ = 0?
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Formulario
Armoniche sferiche

Y0,0 =
1√
4π

,

Y1,0 =
√

3
4π

cosθ, Y2,0 =
√

5
16π

(3cos2
θ−1),

Y1,±1 =∓
√

3
8π

sinθe±iφ, Y2,±1 =∓
√

15
8π

cosθ sinθe±iφ,

Oscillatore unidimensionale standard

H =
p2

2m
+

mω2

2
x2 ; ψn(x) = Cn Hn(αx)e−

1
2 α2x2

= Cn Hn(
√

mω

h̄
x)e−

mω

2h̄ x2
,

dove

Cn =
(

α

π1/22nn!

)1/2

=
(mω

h̄π

)1/4
(

1
2nn!

)1/2

; α≡
√

mω

h̄
;

H0(x)=1, H1(x) = 2x, H2(x)=4x2−2, . . . .

a =
√

mω

2h̄
x+i

√
1

2mωh̄
p; a† =

√
mω

2h̄
x−i

√
1

2mωh̄
p ; x =

√
h̄

2mω
(a+a†); p =−i

√
mωh̄

2
(a−a†) .

|n〉= (a†)n
√

n!
|0〉, n = 1,2, . . . , a |n〉=

√
n |n−1〉 .

Coefficienti di Clebsch-Gordan (e.g. −2/3 va letto come −
√

2/3)

m1

m3

. . .

m2

m4

. . .

J1

M1

J2

M2

. . .

. . .

C-G

coefficients

j1 Ä j2
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Soluzione

Problema 1.

(i) Scrivendo H come

H =
p2

2m
+

mω2

2
(x− x0)2− mω2

2
x2

0 , x0 =
qε

mω2 , (2)

i.e.,

H =
p2

2m
+

mω2

2
(x− x0)2− q2ε2

2mω2 , (3)

Cambiando le variabili,
x̃ = x− x0, p̃ = p,

il sistema è un oscillatore armonico con il centro spostato di x0,

En = ωh̄(n+
1
2
)− q2ε2

2mω2 . (4)

(ii) Nella variazione adiabatica il sistema rimane nello “stato fondamentale” istantaneo,
con l’energia

Ē(t) =
1
2

ωh̄− q2ε2(t)
2mω2 =

1
2

ωh̄−
q2ε2

0 cos2 Ωt
2mω2 . (5)

Ē(Ω/π) =
1
2

ωh̄−
q2ε2

0
2mω2 (6)

Il teorema di Feynman-Hellman dà

d
dt

Ē(t) = Ω〈ψ(Ω)| ∂H
∂Ωt
|ψ(Ω)〉= qε0 Ω sinΩt 〈ψ|x|ψ〉 .

Ma
〈ψ|x|ψ〉= 〈ψ|x− x0 + x0|ψ〉= x0 =

qε0 cosΩt
mω2 ,

per cui
d
dt

Ē(t) =
Ωq2ε2

0 cosΩt sinΩt
mω2 .

Ma questa è esattamente quello che si ottiene facendo derivata esplicita d/dt della
(5).

(iii) La funzione d’onda rimane invariata,

ψ0(x) = C0 e−
mω

2h̄ (x−x0)2
, C0 =

(mω

πh̄

)1/4
,

mentre il sistema (l’Hamiltoniana) cambia rapidamente. Dopo t > 0 la probabiltà
che il sistema rimane nello stato fondamentale è

|〈ψ̃0|ψ0〉|2 = |C0|2
∣∣∣∣Z dxe−

mω

2h̄ (x+x0)2
e−

mω

2h̄ (x−x0)2
∣∣∣∣2 = e−

2mω

h̄ x2
0 = e−

2q2ε2

h̄mω3 . (7)

(iv) Introduciamo gli operatori di creazione e di annichilazione per oscilatore originale e
invertito,

a =
√

mω

2h̄
(x− x0)+ i

√
1

2mωh̄
p a† =

√
mω

2h̄
(x− x0)− i

√
1

2mωh̄
p ,
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x− x0 =

√
h̄

2mω
(a+a†); p =−i

√
mωh̄

2
(a−a†) .

e

b =
√

mω

2h̄
(x+ x0)+ i

√
1

2mωh̄
p b† =

√
mω

2h̄
(x+ x0)− i

√
1

2mωh̄
p ,

x+ x0 =

√
h̄

2mω
(b+b†); p =−i

√
mωh̄

2
(b−b†) .

Segue che

b = a+2
√

mω

2h̄
x0 = a+ f , f =

√
2mω

h̄
x0 =

√
2mω

h̄
qε

mω2

Scrivendo il vettore di stato come

|Ψ〉= ∑
N

cN |N〉,

dove |N〉 è l’N-simo stato della nuova Hamiltoniana

b†b |N〉= N |N〉 ,

la condizione che essa è lo stesso dello stato prima dell’inversione, i.e., lo stato
fondamentale dell’oscillatore originale dà

0 = a |Ψ〉=(b− f ) ∑
N

cN |N〉=∑
N

cN
√

N|N−1〉− f ∑
N

cN |N〉=∑
N

(
√

N +1cN+1− f cN)|N〉= 0.

Segue che

cN =
f√
N

cN−1 =
f 2√

N(N−1)
cN−2 = . . . =

f N
√

N!
c0

La condzione di normalizzazione dà

∑
N

PN = |c0|2 ∑
| f |2N

N!
= |c0|2 e| f |

2
= 1, ... c0 = e−| f |

2/2 .

La probabilità per lo stato fondamentale n = 0 è

|c0|2 = e−| f |
2

ed è consistente con la (7).

Il valor medio dell’energia è dato da

Ē =
1
2

ωh̄−
q2ε2

0
2mω2 +∑

N
PN N ωh̄ =

1
2

ωh̄−
q2ε2

0
2mω2 +ωh̄| f |2 .

Si può vedere inoltre che lo stato |Ψ〉 è uno stato coerente: infatti,

|Ψ〉=∑
N

cN |N〉= e−| f |
2/2

∑
N

f N
√

N!
(b†)N
√

N!
|0〉= e−| f |

2/2
∑
N

( f Nb†)N

N!
|0〉= e−| f |

2/2e f a† |0〉 .

Il pacchetto d’onda oscillerà senza cambiare il profilo.

Problema 2.
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(i) La conservazione del momento angolare dice che ci sono due valori L = 0 e L = 1
possibili. La parte di L = 0 viola la parità, mentre la parte di L = 1 rispetta la parità.
La funzione d’onda è

Ψ = aY0,0 |↑〉+b
(√

2
3 Y1,1 |↓〉−

√
1
3 Y1,0 |↑〉

)
=

1√
4π

[
(a−b cosθ) |↑〉−b sinθeiφ |↓〉

]
(8)

|a|2 + |b|2 = 1 .

(ii)

P(θ,φ)dΩ =
1

4π
(|a|2 + |b|2−2ℜ(ab∗) cosθ)dΩ =

1
4π

[1−2ℜ(ab∗) cosθ]dΩ .

Visto che
P(π−θ,φ+π) 6= P(θ,φ)

in generale (ℜ(ab∗) 6= 0) la distribuzione di B è diversa da quella di A. Appunto la
parità è violata.

(iii) In questo caso, a = 0, e la distribuzione angolare è isotropa, e le distribuzioni di A e
di B sono uguali.

(iv) Le funzionid d’onda di spin per s ·n =± 1
2 sono

ψ
+ = cos θ

2 |↑〉+ eiφ sin θ

2 |↓〉, ψ
− = sin θ

2 |↑〉− eiφ cos θ

2 |↓〉 .

Proiettando la funzione d’onda (8) sui due stati di spin, si ha

P+ =
1

4π
(a−b)2 cos2 θ

2 , P− =
1

4π
(a+b)2 sin2 θ

2 ,

Perciò
P−

P+ =
(a+b)2

(a−b)2 tan2 θ

2 .

A θ = 0
P−

P+ = 0.
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