
Prova Scritta di Meccanica Quantistica

28 gennaio 2014 (A.A. 13/14)

Tempo a disposizione: 3 ore

Per il Compitino II risolvere il Problema 2;
Per MQI, risolvere i Problemi 1 e 2;

Per MQII / MQ annuale, risolvere i Problemi 2 e 3, o in alternativa, 1 e 3.

Problema 1

Una particella di massam si muove nella semirettax ∈ (0,∞), sottoposta al potenziale

V (x) =

{

−gδ(x−a) , x > 0 ,

∞ x < 0 .
(a > 0, g > 0) (1)

Si vuole studiare lo spettro di questo sistema, in particolare, le proprietà di eventuali stati
legati.

(i) Scrivere le condizioni di continuità (o discontinuità) da imporre sulla funzione d’onda
ψ(x), ψ′(x), ax = a.

(ii) PerE < 0, scrivere la forma generale della funzione d’onda, tenendo conto solo della
condizione al contorno ax = +∞.

(iii) Tenendo conto della condiziona al punto (i) e della condizione al contorno ax = 0,
trovare l’equazione implicita che determina l’energia di uno stato legato.

(iv) Analizzando la detta equazione trovare il valore critico dia, a = acr, in termini di
m,g, h̄, dimostrando che il sistema ammette uno stato legato pera > acr; nessuno per
a ≤ acr.

(v) Trovare approssimativamente l’energia dello stato legato, nei due limiti:

1. a è appena al di sopra diacr, i.e.,(a−acr)/acr ≪ 1.

2. a ≫ acr.

(vi) Per quanto riguarda lo spettro continuo,E ≥ 0, qual’è la degenerazione dei livelli?

Problema 2

Un sistema di due spin12 è descritto dalla funzione d’onda:

|Ψ〉 =
|↓↑〉− |↓↓〉√

2
, (2)

dove

sz |↑〉 =
1
2
|↑〉, (3)

etc.

(i) Esprimere lo stato (2) come una combinazione lineare di stati di spin totale,|Stot ,Stot z〉.

(ii) Si misura
O = Stot ·B, (4)

doveStot = s(1) + s(2), B = (0,0,B) (B è un vettore costante), nello stato di cui sopra.
Dire quali sono i possibili risultati della misura, e con quali relative probabilità.
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(iii) Si accende la seguente Hamiltoniana all’istantet = 0

H = f t s(1) · s(2) , (5)

( f è una costante). Determinare l’evoluzione temporale della funzione d’onda e

trovare la probablità che una misura dis(1)
z fatta ad un istantet (t > 0) dia il risultato

+ 1
2.

Problem 3

Un atomo di idrogeno (carica dell’elettrone =−e) è immerso in un campo elettricoE =
(0,0,E ) debole, doveE è una costante.

(i) Scrivere il potenziale di perturbazioneV corrispondente a tale campo esterno.

(ii) Dire quali elementi di matrice diV tra gli stati din = 2,

|2,0,0〉 , |2,1,0〉 , |2,1,1〉 , |2,1,−1〉, (6)

sono non nulli. In quanti sottolivelli si divide il livellon = 2?

(iii) Calcolare le correzioni all’energia del livellon = 2 dovuto alla perturbazioneV , al
primo ordine inE .

(iv) Dire come il campo elettrico di cui sopra influenza la riga di assorbimento della
transizione

|n = 1〉 → |n = 2〉,
i.e., in quante linee questa linea (α di Lyman) si divide in generale, e con quale
spostamento della lunghezza d’onda.

(v) In approssimazione di dipolo, dire come il numero delle righe cambia se

1. la luce ha la direzione di propagazione,k̂ = (0,0,1) ;

2. la luce non polarizzata ha la direzione di propagazione,k̂ = (0,1,0) ;

3. la luce ha la direzione di propagazione,k̂ = (0,1,0) ed è polarizzata linearmen-
te conε = (0,0,1).

Formulario

ψ(n,ℓ,m) = Rn,ℓ(r)Yℓ,m(θ,φ).

R1,0(r) = 2r−3/2
B e−r/rB ,

R2,0(r) = 1
2
√

2
r−3/2

B

(

2− r
rB

)

e−r/2rB ,

R2,1(r) = 1
2
√

6
r−3/2

B
r
rB

e−r/2rB .

Y0,0 =
1√
4π

,

Y1,0 =
√

3
4π cosθ, Y2,0 =

√

5
16π (3cos2 θ−1),

Y1,±1 = ∓
√

3
8π sinθe±iφ, Y2,±1 = ∓

√

15
8π cosθ sinθe±iφ,

Y2,±2 =
√

15
32π sin2 θe±2iφ .
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Soluzioni

Problema 1.

(i) Il valore della funzione d’onda deve essere continuo,

ψ(a+) = ψ(a−) . (7)

Integrando l’equazione di Schrödinger nell’intervallo(a−ε,a+ε) si trova la condı̀zione
sulla derivata

ψ′(a+)−ψ′(a−) = −2mg

h̄2 ψ(a) . (8)

(ii)

ψ(x) =

{

Aeκx + Be−κx, 0 < x < a ,

C e−κx, x > a ,
κ =

√

−2mE

h̄2 (9)

(iii) La condizione al contorna ax = 0 è semplicementeψ(0) = 0, i.e.,

A + B = 0 . (10)

Le condizioni ax = a sono:

Aeκa + Be−κa = C e−κa ; (11)

Aeκa −Be−κa = −C e−κa (1− 2mg

κh̄2 ) ; (12)

La condizione perché (10)-(12) abbiano soluzioni non banali risulta

e−2κa +
κh̄2

mg
−1 = 0 . (13)

Questa equazione determinaκ quindi l’energia dello (eventuale) stato legato.

(iv) Dai grafici

y = e−2κa, y = 1− κh̄2

mg
, (14)

si evince che per

a > acr =
h̄2

2mg
(15)

i due grafici si intersecano aκ > 0 quindi il sistema ha uno stato legato; per

a ≤ h̄2

2mg
(16)

l’unica intersezione è aκ = 0 quindi non ci sono stati legati.

(v) Dai grafici si vede cheκ → 0+ a a → acr+, quindiκ è piccola per(a−acr)/acr ≪ 1.
Sviluppando perciò la (13) inκ fino al secondo ordine, si ha

κ ≃ 1
2a2 (2a− h̄2

mg
) =

1
a2 (a−acr) . (17)

Nel limite opposto, il primo termine della (13) è piccola; la soluzione è vicina a

κ =
mg

h̄2 : (18)

la soluzione del sistema senza la parete ax = 0. La prima correzione è data da

κ ≃ mg

h̄2 (1− e−2mga/h̄2
) . (19)
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(vi) I livelli del continuo sono singoli. Utilizzando la condizioneψ(0) = 0, il teorema
di non degenerazione nello spettro discreto (conψ → 0, a x = ±∞) può essere
generalizzato in questi casi.

Problema 2.

i)

Ψ(0) =
|↓↑〉− |↓↓〉√

2
=

|1,0〉− |0,0〉
2

− |1,−1〉√
2

; (20)

ii)

O = Stot ·B = BStot,z. (21)

Ψ =
|↓↑〉− |↓↓〉√

2
=

|Stot,z = 0〉− |Stot,z = −1〉√
2

(22)

I possibili risultati della misura sonoStot,z = 0 o Stot,z = −1, con relative probabilità,
1
2 per ambedue.

iii)

s(1) · s(2) =
1
2

(S2
tot −

3
4
− 3

4
) =

{

1
4, Stot = 1

− 3
4, Stot = 0.

(23)

L’equazione di Schrödinger è, per le componentiStot = 1 eStot = 0,

ih̄
∂
∂t

ψ(1)(t) =
a
4

t ψ(1)(t), ih̄
∂
∂t

ψ(0)(t) = −3a
4

t ψ(0)(t). (24)

Queste equazioini si risolvono facilmente introducendo lavariable

T ≡ t2 : (25)

le equazioni sopra diventano

ih̄
∂

∂T
ψ(1)(t) =

a
8

ψ(1)(t), ih̄
∂

∂T
ψ(0)(t) = −3a

8
ψ(0)(t), (26)

con la soluzione,

ψ(1)(t) = e−iat2/8h̄ψ(1)(0), ψ(0)(t) = e3iat2/8h̄ψ(0)(0), (27)

A t = 0

Ψ(0) =
|↓↑〉− |↓↓〉√

2
=

|1,0〉− |0,0〉
2

− |1,−1〉√
2

; (28)

all’istantet la funzione d’onda è

Ψ(t) = eiat2/8h̄ [
e−iat2/4h̄|1,0〉− eiat2/4h̄|0,0〉

2
− e−iat2/4h̄|1,−1〉√

2
]

= eiat2/8h̄ [
−i sin at2

4h̄ | ↑↓〉+ cosat2
4h̄ |↓↑〉√

2
− e−iat2/4h̄|↓↓〉√

2
]. (29)

La probabilità richiesta è:

P(s1
z =

1
2
) =

1
2

sin2 at2

4h̄
. (30)
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Problema 3.

(i)
V = eE z (31)

(ii) V è un tensore sferico di rango 1,
∼ T 1

0 .

Dal teorema di Wigner-Eckart si evince che gli unici elementi di matrice non nulli
sono tra|2,0,0〉 e |2,1,0〉,

〈2,0,0|V |2,1,0〉 , 〈2,1,0|V |2,0,0〉 . (32)

(iii) Secondo la teoria delle perturbazioni degenere al primo ordine, le correzioni sono dati
dagli autovalori della matrice

〈2, ℓ,m|V |2, ℓ′,m′ 〉 . (33)

Ora

〈2,0,0|V |2,1,0〉 = eE
Z

dr r2 R2,0r R2,1

Z

d cosθdφY ∗
0,0 cosθY1,0

= −3eE rB = 〈2,1,0|V |2,0,0〉 (34)

∆E = ±3eE rB, |ψ1,2〉 =
1√
2
(|2,1,0〉± |2,0,0〉), (35)

∆E = 0, |ψ3,4〉 = |2,1,±1〉 (36)

(iv) Il livello n = 1, |Ψ0〉 = |ψ1,0,0〉 non è corretto al primo ordine inE . La rigan = 1→
n = 2 si divide in tre righe con le lunghezze d’onda

hc
E2−E1

, |Ψ0〉 → |Ψ3,4〉, (37)

hc
E2−E1+ ∆E

, |Ψ0〉 → |Ψ2〉,
hc

E2−E1−∆E
, |Ψ0〉 → |Ψ1〉, (38)

(v) L’ampiezza di transizione è proporzionale a

〈Ψ f inale|ε · r|Ψiniziale〉 :

segue che il numero delle righeN è:

1. N = 1 se la luce ha la direzione di propagazione,k̂ = (0,0,1), poiché le uniche
transizioni possibili sono|Ψ0〉 → |Ψ3,4〉;

2. N = 3 se la luce non polarizzata ha la direzione di propagazione,k̂ = (0,1,0)
perché in questo caso le polarizzazioni sono in direzioniε = (1,0,0),(0,0,1):
transizioni sono possibili su tutti gli statiΨ1,2,3,4;

3. N = 2 se la luce ha la direzione di propagazione,k̂ = (0,1,0) ed è polarizza-
ta linearmente in direzioneε = (0,0,1), poiché le uniche transizioni possibili
sono|Ψ0〉 → |Ψ1,2〉.
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