
Meccanica Quantistica - A.A. 2012/2013

Prova scritta - 28.06.2013

Per MQI risolvere il Problema 1;
Per MQII e per il corso annuale di MQ risolvere Problema 1, 1)-3), e Problema 2.

Tempo disponibile: 3 ore

Problema 1
1) Si scriva l’operatore T (k) che trasla l’impulso di una particella di k: e.g., da p a

p+k.

Il deutone può essere considerato in prima approssimazione come un (unico) sistema
legato p−n in una buca di potenziale in onda S. Sia −ε l’energia di legame. Supporremo
nel seguito che il raggio d’azione della forza p−n sia molto piccolo, cioè che la funzione
d’onda dello stato legato possa essere approssimata dalla sua forma all’esterno della buca
di potenziale. Si assumano mp = mn.

2) Nell’approssimazione detta sopra si scriva la funzione d’onda dello stato legato di
deutone.

3) Il protone della coppia p− n riceve per urto una velocità v. L’urto è molto veloce.
Qual’è la probabilità di disintegrazione del deutone in questo processo? (Fig. 1)
Discutere i limiti v→ 0 e v→ ∞ della detta probabilità.

4) Supponiamo che il deutone si sia disintegrato a causa dell’urto ricevuto a t = 0. Dopo
un tempo t qual’è il valor medio 〈r2〉 dell’elettrone del deuterio, che era nello stato
fondamentale prima dell’urto? (Fig. 2)

Problema 2
Un fascio di particelle neutre con momento magnetico µ si muove di moto rettilineo unifor-
me lungo l’asse x, con velocità v, soggette ad un campo magnetico B0 diretto lungo l’asse
z. Le particelle hanno spin 1/2 e sono nell’autostato con sz =−1/2.

Nell’intorno al punto x = 0 si trova un campo magnetico lungo l’asse y schematizzabile
con

By = B1 exp(−|x|/a)cos(ω t) ; B1� B0

Questa zona è indicata nel seguito come “apparato sperimentale”. N.B.: il moto delle
particelle in direzione x è qui trattato classicamente, con x≡ vt.

1) Si calcoli in teoria perturbativa in B1 qual’è la probabilità di inversione dello spin
nell’attraversare l’apparato sperimentale.

2) Si spieghi come la dipendenza da ω del risultato possa essere utilizzata per una
misura di µ e si indichi come l’errore sulla misura dipende dalla lunghezza a.

3) Si supponga di costrurire un esperimento in cui l’apparato precedente venga ripetuto
a distanza b� a, prima si faccia il caso di una sola ripetizione e poi di N ripetizioni:
cosa cambia rispetto alla precisione della misura?

Formule utile:
∫
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Soluzioni

Problema 1
1) L’operatore che aggiunge (trasla) l’impulso di una quantità p1 è

T (p1) = eip1x/h̄,

in analogia con il noto operatore che trasla la posizione x di x0 ,

T̂ (r0) = e−ip̂x0/h̄.

La cosa si verifica immediatamente in rappresentazione degli impulsi:

eip1x/h̄
ϕ(p) = exp(−p1

∂

∂p
)ϕ(p) = ϕ(p−p1) (1)

Ad esempio se ϕ è una funzione piccata attorno al valore nullo del suo argomento, lo
stato trasformato descrive uno stato con impulso p1.

Oppure, più banalmente, lavorando nella rappresentazione delle coordinate, l’opera-
tore T (p1) = eip1x/h̄, agendo su un autostato dell’impulso con autovalore p,

eipx/h̄

dà luogo ad uno stato

eipx/h̄→ T (p1)eipx/h̄ = ei(p+p1)x/h̄,

che è un autostato dell’impulso con autosalone p+p1 !

In generale, una qualsiasi funzione d’onda può essere espressa come combinazio-
ne lineare di onde piane (autostati dell’impulso); ogni componente in p riceve lo
suddetto spostamento. Cioè

ψ(r) =
∫

d3 pϕ(p)eipx/h̄ (2)

→ T (p1)ψ(r) =
∫

d3 pϕ(p)ei(p+p1)x/h̄ =
∫

d3 pϕ(p−p1)eipx/h̄ (3)

che riproduce la (1).

2) Per una stato legato in onda S la funzione d’onda asintotica è, con le notazioni del testo:

ψ(x) = A
1
r

e−αr ; α =
√

2µε/h̄

µ è la massa ridotta del sistema. La condizione di normalizzazione impone

4πA2 1
2α

= 1 (4)

4) Lo stato iniziale del sistema è

Ψ(R,r) = exp(iPR/h̄)ψ(r) (5)

Indichiamo con 1,2 il protone ed il neutrone. R è la coordinata del centro di massa e
P l’impulso del centro di massa (si suppongono uguali le masse delle due particelle)

R =
r1 + r1

2
; r = r1− r2

r1 = R+
1
2

r ; r2 = R− 1
2

r
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Per quanto visto al punto 1 la funzione immediatamente dopo l’urto è approssimabile
dalla forma

Ψ f = eimvr1/h̄eiPR/h̄
ψ(r) = ei(mv+P)Rei m

2 vr/h̄
ψ(r) (6)

In totale il sistema ha acquisito un impulso mv quindi l’impulso finale dovrebbe
essere

P f = P+mv

e confrontando con l’espressione precedente si deduce che la funzione d’onda relati-
va dopo l’urto è

ψ f = exp(iqr)ψ(r), q≡ mv/2 .

La probabilità che non si ionizzi vale

P0 =

∣∣∣∣∫ ψ
2(r)eiqr

∣∣∣∣2 = A2
[

2π2

q
− 4π

q
arctan(

2α

q
)

]
(7)

e la probabilità di disintegrazione è

1−P0

in quanto il solo stato legato è quello indicato sopra. Un modo alternativo di verifi-
care l’affermazione è di scrivere le funzioni d’onda del continuo normalizzate in un
volume V .

Come verifica, non è difficile dimostrare che nel limite di piccola velocità, i.e., q→ 0,
(il limite adiabatico), P0→ 1, utilizzando

arctan
β

q
' π

2
− q

β
, q' 0,

nella (7), e ricordando la (4). Questo è consistente, come si vede direttamente dalla
(7):

P0 =

∣∣∣∣∫ ψ
2(r)eiqr

∣∣∣∣2→ ∣∣∣∣∫ ψ
2(r)

∣∣∣∣2 = 1. (8)

P0 tende a 0 invece nel limite opposto, q→ ∞.

Dopo la disintegrazione del deutone, il deuterio (l’elettrone) resta senza il protone, e
non sarà più legato. Tuttavia a t = 0+ la funzione d’onda resta quella del deuterio legato,

ψ0 =
r−3/2

B√
π

e−r/rB

Per calcolare 〈r2〉 all’istante t, conviene utilizzare lo schema di Heisenberg,

〈ψ(t)|r2|ψ(t)〉= 〈|ψ(0)|r2
H |ψ(0)〉 ,

dove
rH = eiHt/h̄re−iHt/h̄,

ma visto che il sistema è ora libero,

rH = eip2t/2mh̄re−ip2t/2mh̄ = eip2t/2mh̄ih̄∇pe−ip2t/2mh̄ = r+
p
m

t

(doce abbiamo utilizzato la rappresentazione degli impulsi per convenienza). Dunque

〈ψ(t)|r2|ψ(t)〉= 〈ψ(0)|r2
H |ψ(0)〉= 〈ψ(0)|

(
r2 +

r ·p+p · r
m

t +
p2

m2 t2
)
|ψ(0)〉.
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Il secondo termine si annulla, mentre

〈ψ(0)|r2|ψ(0)〉= 3r2
B,

〈ψ(0)|p2|ψ(0)〉= 2m〈ψ(0)|H +
e2

r
|ψ(0)〉= 2m

(
− e2

2rB
+

e2

rB

)
=

me2

rB
,

perciò

〈ψ(t)|r2|ψ(t)〉= 3r2
B +

e2

mrB
t2.

Problema 2
La particella si muove di moto rettilineo e possiamo trascurare l’influsso sul moto del
campo magnetico, quindi possiamo porre x = vt.

L’Hamiltoniana del sistema, relativa allo spin, è:

H =−µB0sz−µBy(t)sy =−
1
2

µB0

(
1 −i B1

B0
e−v|t|/a cos(ωt)

i B1
B0

e−v|t|/a cos(ωt) −1

)
(9)

Porremo h̄ω0 = µB0, , h̄ω1 = µB1.
Lo stato iniziale e finale hanno energia

Ei =
1
2

h̄ω0 ; E f =−
1
2

h̄ω0

L’ampiezza di probabilità per passare dallo stato i allo stato f è

a f i =−
i
h̄

∫
∞

−∞

e
i
h̄ (E f−Ei)Vf i(t)dt =− i

h̄

∫
∞

−∞

e−iω0tV21(t)dt

Nel fare l’integrale possiamo limitarci al termine risonante ottenendo

a f i =
1
4

µB1
1
h̄

∫
∞

−∞

e−iω0te−v|t|/aeiωt =
1
4

ω1
2v/a

(ω−ω0)2 + v2/a2 (10)

e quindi per la probabilità

Pi→ f =
ω2

1
4

v2

a2
1

((ω−ω0)2 + v2/a2)2 (11)

Il risultato è una curva risonante per ω = ω0 quindi misurando la frequenza di risonanza si
ha una misura del momento magnetico µ. In prossimità della risonanza possiamo scrivere

((ω−ω0)
2 + v2/a2)2 ' v4

a4 +2(ω−ω0)
2 v2

a2 = 2
v2

a2

(
(ω−ω0)

2 +
v2

2a2

)
quindi

Pi→ f =
ω2

1
8

1

(ω−ω0)2 + v2

2a2

(12)

che è una Lorentziana con larghezza

Γ =
√

2
v
a

che dà l’ordine di grandezza l’incertezza sulla misura.
Attorno a x = b il campo magnetico è

B1e−|x−b|/a cosωt→ B1e−|vt−b|/a cosωt
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Figura 3: Pi→ f come funzione di ω, misurato con un apparato

Per l’ampiezza (10) si ha

a(1)f i =
µB1

4
1
h̄

∫
∞

−∞

e−iω0te−(|vt−b|/aeiωt =
ω1

2
v/a

(ω−ω0)2 + v2/a2 ei(ω−ω0)b/v (13)

dove abbiamo spostato la variable t = τ+ b
v nel calcolo. In presenza di due apparecchi a

x = 0 e a x = b, il risultato per a1
f i è, all’ordine più basso in B1, la semplice somma di (10)

e (13):

a(1)f i =
ω1

2
v/a

(ω−ω0)2 + v2/a2 (1+ ei(ω−ω0)b/v) (14)

dove osserviamo effetti importanti dell’interferenza tra due ampiezze (tra il processo di
spin flip dovuto al primo apparato e quello dovuto al secondo apparato).

P(2) =
ω2

1
2

1

(ω−ω0)2 + v2

2a2

cos2 (ω−ω0)
b
v (15)

In generale per N apparati a distanza b fra di loro

A f i =
N−1

∑
n=0

ein(ω−ω0)b/va f i =
eiNδωb/v−1
eiδωb/v−1

a f i

e quindi per la probabilità

P(N) =
ω2

1
8

1

(ω−ω0)2 + v2

2a2

sin2(N(ω−ω0)
b
v )

sin2((ω−ω0)
b
v )

(16)

N.B, a questo ordine (al primo ordine in B1), non ci sono contributi in cui lo spin si inverte
più di una volta. La parte risonante della curva (di larghezza Γ∼ v/a) è suddivisa in frange
di larghezza δω∼ v/(bN), migliorando notevolmente la precisione della misura di µ, come
illustrato in Fig.3, Fig.4 e Fig.5.
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Figura 4: Pi→ f come funzione di ω, misurato con due apparati

0.0 0.5 1.0 1.5 2.0

20

40

60

80

100

120

140

Figura 5: Pi→ f come funzione di ω, misurato con quattro apparati
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