
Prova Scritta di Meccanica Quantistica

Facoltà di Scienze, M.F.N., Università di Pisa

29 giugno 2012 (A.A. 11/12)

Tempo a disposizione: 3 ore. Risolvere:

Problemi 1 o 2 a scelta + [3, (i)-(v)] per la prova scritta completa del corso annuale MQ (A);

Problemi 3 per il Compitino 2 del corso annuale MQ (B);

Problemi 1 e 2 per la prova scritta di MQI, vecchio ordinamento (C);,

Problemi 3 per la prova scritta di MQII, vecchio ordinamento(D).

Indicate chiaramente per quale dei (A)-(D) avete optato.

Problema 1.

Si consideri una particella di spin12 in un autostato|1
2, 1

2〉 di s edsz.

(i) Dire quali sono i possibili risultati delle misure dell’osservabileA = s ·n, doven è il versore nel piano

y− z, che fa un angoloθ con l’assez.

(ii) Si calcolino gli autovalori e gli autostati diA.

(iii) Si calcolino le probabilità di ottenere i risultati di cui al punto (i) se si effetua una misura diA sullo stato

|1
2, 1

2〉.

Problema 2.

Una particella di massam è vincolata a muoversi sul segmento 0< x < a. Lo stato della particella è

descritta dalla funzione d’onda

ψ(x) = N sin
πx
a

(i+2
√

2 cos
πx
a

) . (1)

(i) Determinare la costante di normalizzazioneN.

(ii) Dire quali sono i possibili risultati di misura di energia con le relative probabilità. Trovare il valor medio

dell’energia.

(iii) Trovare il valor medio della posizionex della particella.
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Problema 3.

Un atomo di idrogeno, dovuto alle interazioni tra l’elettrone e il nucleo, ha un piccolo termine di poten-

ziale aggiuntivo,

V = G [δ3(r)s ·p+ s ·pδ3(r) ] (2)

doveG > 0 er, p e s (in unità di h̄) sono rispettivamente gli operatori delle coordinate, dell’impulso e dello

spin dell’elettrone.

(i) Dire perchéV non è scritto semplicemente come

V = 2Gδ3(r)s ·p (3)

(ii) Dire quali dei seguenti osservabili sono conservati in presenza diV :

J2, Jz, L2, Lz, s2, sz, Π . (4)

(Π è la parità.J = L+ s )

(iii) Classificare gli stati dei livelli imperturbatin = 1,2 dell’idrogeno, second l’usuale schema, i.e.,

nLJ (5)

doveL = S,P,D, . . . rappresenta il momento angolare orbitale, eJ il momento angolare totale.

(iv) In base a considerazioni di simmetria, dire quali sono gli elementi di matrice non nulli diV (tra gli

stati imperturbati di cui al punto (iii)) rilevanti al primoordine perturbativo inG, e di conseguenza,

descrivere se e come il potenziale risolve la degenerazionedei livelli n = 1,2.

(v) Quali tra le interazioni fondamentali note oggi, i.e., le interazioni forti (nucleari), le interazioni elettro-

devoli* e le interazioni gravitazionali, potrebbero causare le correzioni di forma, (2)? (*le interazioni

elettromagnetiche e deboli)

(vi) Calcolare le correzioni all’energia al primo ordine inG ai livelli n = 1,2.

Suggerimento: per il punto (vi) potrebbero risultare utilidelle relazioni come (ponendorB = 1)

s ·p =
s+p− + s−p+

2
+ sz pz, s+ = sx + isy =

(

0 1

0 0

)

, s+ = sx − isy =

(

0 0

1 0

)

; (6)

p± = px ± ipy = (−ih̄)(
∂
∂x

± ∂
∂y

); (7)

R2,0Y0,0 =
1

4
√

2π
(2− r)e−r/2; R2,1Y1,0 =

1

4
√

2π
ze−r/2; R2,1Y1,1 = − 1

4
√

4π
(x + iy)e−r/2; (8)

Z

d3rF(r)δ3(r){. . .} = F(0){. . .}|r=0 . (9)

Visto cheGh̄(lunghezza)−4 ha la dimensione di un’energia (come si vede dalla (2)), basta reintrodurrer−4
B

per ripristinare la dimensione corretta alla fine del calcolo.
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Soluzione

Problema 1.

(i)

± 1
2. (10)

(ii) Gli autostati din · s (con gli atovalori± 1
2 pern generico sono

χ+ =

(

e−iφ/2cosθ/2

eiφ/2sinθ/2

)

; χ− =

(

e−iφ/2sinθ/2

−eiφ/2cosθ/2

)

. (11)

Pern del problema,θ generico eφ = π/2.

χ+ =

(

e−iπ/4cosθ/2

eiπ/4sinθ/2

)

∼
(

cosθ/2

i sinθ/2

)

; χ− =

(

e−iπ/4sinθ/2

−eiπ/4cosθ/2

)

∼
(

sinθ/2

−i cosθ/2

)

.

(12)

(iii) La probabilità di trovaren · s = ± 1
2 nello stato

χsz=1/2 =

(

1

0

)

(13)

sono

P+ = |〈χ+|χsz=1/2〉|2 = cos2 θ/2; P− = |〈χ−|χsz=1/2〉|2 = sin2 θ/2. (14)

Problema 2.

(i)

ψ(x) = N [ isin πx
a +

√
2 sin2πx

a ] . (15)
Z

dx |ψ|2 = N2
Z a

0
dx [sin2 πx

a +2 sin2 2πx
a ] = N2 3a

2
. (16)

N =

√

2
3a

. (17)

Utilizzando le autofunzioni normalizzate,

ψ(1) =

√

2
a

sin πx
a , ψ(2) =

√

2
a

sin 2πx
a , (18)

con l’energia

E(1) =
π2h̄2

2ma2 , E(2) =
4π2h̄2

2ma2 , (19)

eispettivamente,ψ si scrive come

ψ(x) =

√

1
3

[ iψ(1) +
√

2ψ(2) ]. (20)
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(ii) La misura dell’energia darà oE(1) o E(2), con rispettive probabilità,13 e 2
3.

(iii)

〈x〉 = N2
Z a

0
dxx [sin2 πx

a +2 sin2 2πx
a ] = N2

Z a/2

−a/2
dx̃(x̃ + a/2) [sin2 π(x̃+a/2)

a +2 sin2 2π(x̃+a/2)
a ]

= N2
Z a/2

−a/2
dx̃ (x̃+ a/2) [cos2 πx̃

a +2 sin2 2πx̃
a ] =

aN2

2
3a
2

=
a
2

. (21)

Problema 3.

(i)

V = 2Gδ3(r)s ·p (22)

Non è Hermitiano e perciò non è ammesso come forma di un’Hamitoniano.

(ii)
J2, Jz, s2 . (23)

(iii)

1S1/2; 2S1/2; 2P1/2; 2P3/2. (24)

(iv) Pern = 1 ovviamente la correzione si annula poichéV cambia la parità. Pern = 2 gli unici elementi

di matrice non nulli tra gli stati inperturbati sono tra 2S1/2 e 2P1/2; visto cheJz si conserva, basta

considerare e.g., tra gli stati diJz = +1/2:

〈2S1/2, Jz = 1
2|V |2P1/2, Jz = 1

2〉; 〈2P1/2, Jz = 1
2|V |2S1/2, Jz = 1

2〉; (25)

(vi) Pern = 2 basta considerare l’elemento di matrice

〈2S1/2, Jz = 1
2|V |2P1/2, Jz = 1

2〉 = V1 +V2, (26)

V1 = G〈2S1/2, Jz = 1
2|δ

3(r) s ·p |2P1/2, Jz = 1
2〉, (27)

V2 = G〈2S1/2, Jz = 1
2|s ·p δ3(r) |2P1/2, Jz = 1

2〉 = G〈2P1/2, Jz = 1
2|δ

3(r)s ·p |2S1/2, Jz = 1
2〉

∗ (28)

e h.c.; dove

|2P3/2, Jz = 1
2〉 = R2,1(r) [

√

1
3Y1,1 |↓〉+

√

2
3Y1,0 |↑〉 ]; (29)

|2P1/2, Jz = 1
2〉 = R2,1(r) [

√

2
3Y1,1 |↓〉−

√

1
3Y1,0 |↑〉 ]; (30)

|2S1/2, Jz = 1
2〉 = R2,0(r)Y0,0 |↑〉 (31)

Utilizzo

s ·p =
s+p− + s−p+

2
+ sz pz, s+ = sx + isy =

(

0 1

0 0

)

, s+ = sx − isy =

(

0 0

1 0

)

; (32)

p± = px ± ipy; (33)
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R2,0Y0,0 =
1

4
√

2π
(2−r)e−r/2; R2,1Y1,0 =

1

4
√

2π
ze−r/2; R2,1Y1,1 =− 1

4
√

4π
(x+ iy)e−r/2;

(34)

Visto che

R2,1Y1,0|r=0 = R2,1Y1,1|r=0 = 0, (35)

risulta, usando (9), che

V2 = 0 : (36)

basta considerareV1. Usando (8), (9), si ha

V1 =
G

2
√

2π
1

4
√

2π

[

〈↑ |
(

s+p− + s−p+

2
+ sz pz

)

{−
√

1
3 (x + iy)e−r/2|↓〉−

√

1
3 ze−r/2|↑〉}

]

r=0

=
G

16π

√

1
3

[

− 1
2 p− (x + iy)e−r/2− 1

2
pz ze−r/2

]

r=0

= ih̄
G

32π
√

3
(2+1) = ih̄

√
3G

32π
(37)

(N.B. i termini che si ottengono agendo ˆp sul fattore esponenziale si annullano ar = 0.) Visto che

Gh̄L−4 ha la dimensione di un’energia, per ripristinare la dimensione corretta, basta reintrodurrer−4
B :

V1 = ih̄

√
3G

32πr4
B

. (38)

Nello spazio di stati imperturbati degenerin = 2, |2S1/2〉, |2P1/2〉, |2P3/2〉, perciò, considerando gli

stati diJz = +1/2 (la degenerazione suJz resta intatta), si ha gli elementi di matrice diV ,









0 ih̄
√

3G
32πr4

B
0

−ih̄
√

3G
32πr4

B
0 0

0 0 0









. (39)

Diagonalizzando la matrice, si hanno le correzioni

∆EJ=1/2 = ±
√

3Gh̄

32πr4
B

, (40)

ciascuno dei quali doppiamente degeneri; gli autostati relativi sono

1√
2

[ |2S1/2, Jz = 1
2〉∓ |2P1/2, Jz = 1

2〉 ] . (41)

Osserviamo infatti cheL non è un buon numero quantico. (Punto (ii)). Infine, gli stati di J = 3/2

quattro volte degenere, restano invariati,

∆EJ=3/2 = 0 . (42)
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