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Problema
Un atomo di idrogeno nello stato fondamentale è sottoposto, a partire dall’istante t =

0, ad un campo elettrico omogeneo debole dipendente dal tempo. L’Hamiltoniana di
perturbazione è

H ′ = eε(t)y; ε(t) = −iE0 eiωt +h.c. (1)

dove E0, ω sono costanti. Si vuole studiare l’ionizzazione in un trattamento approssimativo.

(i) In teoria delle perturbazioni, e utilizzando il teorema di Wigner-Eckart, determinare la
distribuzione angolare dell’elettrone nello stato finale.

(ii) Determinare la condizione sulla frequenza ω affinché avvenga l’ionizzazione.

(iii) Calcolare la probabilità di ionizzazione (per un intervallo unitario di tempo), utiliz-
zando la regola di Fermi e approssimando gli stati finali con le onde piane,

ψk(r) = L−3/2 exp ik · r; Ek =
k2h̄2

2m
. (2)

θ, φ rappresentano la direzione di k.

(iv) Spiegare perché l’uso delle onde piane (2) per gli stati finali rappresenta un’approssi-
mazione (i.e. oltre ad essere un’approssimazione al primo ordine della teoria delle
perrturbazioni).

Potete usare la formula

ρ(k) =
mL3

8π3h̄2 k sinθdθdφ, (3)

per la densità di stati tra Ek e Ek +∆Ek, dove L è il lato di una scatola grande in cui tutto il
sistema è contenuto.
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Soluzione
Problema 1.

(i) Secondo la regola d’oro di Fermi, la probabilità di transizione per unità di tempo è
data da:

w f i =
2π

h̄
|Ff i|2ρ(E f )|E f =Ei+ωh̄,

dove
Ff i = 〈k|− eE0y

i
|100〉.

Per il teorema di Wigner-Eckart, lo stato finale è in uno stato di momento angolare,
∝ Ty ∝ Y1,1 +Y1,−1,

Y1,1 +Y1,−1√
2

=

√
3

4π
sinθsinφ :

la distribuzione angolare dell’elettrone è

dθsinθdφ
3

4π
sin2

θsin2
φ.

che è correttamente normalizzata:Z
π

0
dθ

Z 2π

0
dφ sinθ

3
4π

sin2
θsin2

φ = 1.

(ii) Dalla conservazione dell’energia si ha

k2h̄2

2m
+

me4

2h̄2 = ωh̄.

Perciò la condizione richiesta è:

ωh̄ >
me4

2h̄2 .

(iii) Questo elemento di matrice si calcola come segue:

Ff i = −eE0

i
L−3/2 2r−3/2

B√
4π

Z
d3r e−ik·rye−r/rB = −2eE0L−3/2r−3/2

B√
4πi

(i
∂

∂ky
)I(k); (4)

I(k) =
Z

d3r e−ik·re−r/rB , (5)

dove rB = h̄2/me2 è il raggio di Bohr. L’integrale I(k) può essere calcolato
facilmente in coordinate sferiche:

I = 2πr3
B

Z
∞

0
dr r2

Z
π

0
d(cosθ)e−r+i(k rB)r cosθ =

8πr3
B

(1+ k2r2
B)2.

Ora,
∂

∂ky
I(k) = −

32πr5
Bky

(1+ k2r2
B)3

,

quindi

Ff i = 2eE0L−3/2r−3/2
B√

4π

32πr5
Bk sinθsinφ

(1+k2r2
B)3 (6)

= 32π1/2eE0r7/2
B k sinθsinφ

L3/2(1+k2r2
B)3 . (7)
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La probabilità d’ionizzazione (per unità di tempo) è dunque data da

w f i =
R R

dθdφ
2π

h̄
322πe2E2

0 r7
Bk2 sin2

θsin2
φ

(1+k2r2
B)6

m
8π3h̄2 k sinθ (8)

= 1024me2E2
0 r7

Bk3

3h̄3(1+k2r2
B)6 , (9)

dove k è determinato dalla condizione di conservazione d’energia,

k2h̄2

2m
+

me4

2h̄2 = ωh̄.

È da notare che la distribuzione angolare dell’elettrone emesso,

sin2
θsin2

φdΩ

riflette la direzione del campo elettrico applicato.

(iv) Le onde piane (2) non sono ortogonali alle funzioni d’onda degli stati legati, perciò
non rappresentano le corrette funzioni d’onda del continuo. Per

k rB � 1,

tuttavia, l’approssimazione deve essere ragionevole, visto che la sovrapposizione tra
la funzione d’onda dello stato legato e l’onda piana (l’integrale I(k)) può essere
arbitrariamente piccola.
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