
Prova Scritta di Meccanica Quantistica

30 gennaio 2013 (A.A. 12/13)

MQI e il compitino mensile del corso annuale: risolvere il Problema 1 e il Problema 2, (i), (ii), (vi).

MQII o il corso annulae di MQ: risolvere il Problema 2.

Tempo a disposizione: 3 ore

Problema 1.

Una particella di massamsi muove in una dimensione, sottosposta ad una forza costante,F .

(i) Si scriva l’Hamiltoniana del sistema.

(ii) Lo stato della particella at = 0 è descritto da una funzione d’ondaψ(x) = ψ(x,0) reale, con〈x〉 = 0, che

decresce rapidamente ax→±∞. Si dimostri che necessariamente (at = 0)

〈p〉 = 0 , 〈xp+ px〉= 0 (1)

dove〈...〉 indica il valor medio sullo statoψ.

(iii) Si scrivano le equazioni di Heisenberg perxH(t) e pH(t) e le si risolvano.

(iv) Si calcolino in funzione di tempot i valori di aspettazione dix, p all’istantet

〈x〉 = 〈ψ(t)|x|ψ(t)〉, 〈p〉 = 〈ψ(t)|p|ψ(t)〉, (2)

usando il risultato dei punti precedenti.

(v) Si calcolino in funzione di tempot i valori di aspettazione di

(∆x)2 = 〈(x−〈x〉)2〉, (∆p)2 = 〈(p−〈p〉)2〉, (3)

usando i risultati precedenti, ed esprimendo il risultato in termini di(∆x)0, (∆p)0 (indeterminazione al

tempot = 0) et. Si valuti il prodotto∆x ·∆p per grandit.

Problema 2

Il positronio è uno stato legato di un elettrone (carica−e e massame) e di un positrone (antielettrone,

carica+ee massame). Le parità intrinseche delle due particelle sono opposte.

(i) Determinare in approssimazione non relativistica le energie degli stati legati del sistema ed indicare le

parità degli stati.
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Le correzioni relativistiche dipendenti dallo spin hanno la forma

V = V1 +V2+V3 (4)

con

V1 = 6µ2
0

1
r3 L ·S ; V2 = 4πµ2

0
14
3

s1 · s2 δ3(r); V3 = 6µ2
0

1
r3

(

(S · r)(S · r)
r2 − 1

3
S2

)

(5)

dove si è postoµ0 = eh̄/(2mec), e

S ≡ s1 + s2. (6)

N.B. Il potenzialeV3 è presente solo negli stati conL 6= 0.

(ii) Spiegare perché è lecito classificare i livelli del positronio in parapositronio (S= 0) e ortopositronio

(S= 1).

(iii) Calcolare l’effetto della perturbazione (4) sul livello fondamentale 1s.

(iv) Calcolare l’effetto dei terminiV1 eV2 per i livelli 2se 2p.

(v) Dire seV3 commuta con

J = L+ S . (7)

Spiegare su quale dei livelli 2s,2p ha effetto il termineV3 al primo ordine della perturbazione, giustifi-

cando la risposta (N.B. non è richiesto il calcolo di∆E.)

(vi) Limitatamente al livello 1s, e ritenendo solo il potenzialeV2 in V, considerare l’effetto di un campo

magnetico esterno costante uniforme,B = (0,0,B). L’Hamiltoniana in questo caso è (µ= me/2)

H =
p2

2µ
− e2

r
+4πµ2

0
14
3

s1 · s2 δ3(r)+
eB
mec

(s1z−s2z) (8)

Dire seS2 commuta conH. Dire seSz è conservato. Discutere lo stato di spin nello stato fondamentale,

nei due limiti di grande e piccoloB.

Formulario (conrB = 1)
Z ∞

0
dr r2 R2

2,0 =

Z ∞

0
dr r2 R2

2,1 = 1;
Z ∞

0
dr rR2

2,0 =

Z ∞

0
dr rR2

2,1 = 1/4, (9)

Z ∞

0
dr R2

2,0 = 1/4,
Z ∞

0
drR2

2,1 = 1/12;
Z ∞

0
dr

1
r

R2
2,0 = ∞,

Z ∞

0
dr

1
r

R2
2,1 = 1/24 . (10)

ψ1s(r) = ψ100(r) =
1√
π

e−r ; ψ2s(r) = ψ200(r) =
1

4
√

2π
(2− r)e−r/2; (11)
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Soluzione

Problema 1.

(i)

H =
p2

2m
−F x . (12)

(ii) p, xp+ px sono operatori Hermitiani: il loro valor medio in uno stato qualsiasi è reale. Ma perψ reale,

sia 〈p〉 che〈xp+ px〉 sono chiaramente numeri immaginari puri. L’unico numero simultaneamente

reale e immaginario puro è 0. Per dimostrarlo esplicitamente, perψ reale, vale

〈p〉 =
Z

dxψ∗(x)(−ih̄)
∂
∂x

ψ(x) = − ih̄
2

Z

dx
∂
∂x

ψ(x)2 = 0 ; (13)

〈xp+ px〉=

Z

dxψ∗(x) [x(−ih̄)
∂
∂x

+(−ih̄)
∂
∂x

x]ψ(x) = −ih̄
Z

dx
∂
∂x

(xψ2) = 0 (14)

per una funzione d’onda che tende a zero sufficientemente rapidamente.

(iii)

H =
p2

H

2m
−F xH (15)

ẋH =
1
ih̄

[xH ,H] =
pH

m
; ṗH =

1
ih̄

[pH ,H] = F. (16)

La soluzione è

pH(t) = p+F t; xH(t) = x+
p
m

t +
F
2m

t2 . (17)

(iv)

p̄(t) = 〈ψ(t)|p|ψ(t)〉 = 〈ψ(0)|pH(t)|ψ(0)〉 = F t; (18)

x̄(t) = 〈ψ(t)|x|ψ(t)〉 = 〈ψ(0)|xH(t)|ψ(0)〉 =
F
2m

t2 (19)

(v)

(∆p(t))2 = 〈ψ(t)|(p− p̄(t))2|ψ(t)〉 = 〈ψ(t)|p2|ψ(t)〉− p̄(t)2 = 〈ψ(0)|pH(t)2|ψ(0)〉− p̄(t)2

= 〈ψ(0)|(p+F t)2|ψ(0)〉− p̄(t)2 = 〈p2〉 = (∆p)2
0 ; (20)

(∆x(t))2 = 〈ψ(t)|(x− x̄(t))2|ψ(t)〉 = 〈ψ(t)|x2|ψ(t)〉− x̄(t)2 = 〈ψ(0)|xH(t)2|ψ(0)〉− x̄(t)2

= 〈ψ(0)|(x+
p
m

t +
F
2m

t2)2|ψ(0)〉− x̄(t)2 = 〈x2〉0 + 〈p2〉0
t2

m2 = (∆x)2
0 +(∆p)2

0
t2

m2 . (21)

Quindi at grande

∆p(t) ·∆x(t) = (∆p)0 ·
√

(∆x)2
0 +(∆p)2

0
t2

m2 ≃ (∆p)2
0

t
m

(22)
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Problema 2.

(i) Nell’approssimazione non-relativistica il sistema è identico a quello di un atomo di idrogeno, a parte la

sostituzione protone→ positrone, quindime → µ= me/2. Il raggio di Bohr è sostituito da:

rB → r̃ =
h̄2

µe2 ≃ 2rB. (23)

I livelli di energia sono

En = − e2

2n2r̃
= − e2

4n2rB
, L = 0,1, . . . ,n−1, (24)

gli stati conL hanno la parità,

−(−)L = (−)L+1. (25)

(ii) Perché l’operatoreS2 commuta conH. Il fatto cheS2 commuta conV1 eV3 è ovvio se ricordiamo che

S2 commuta con ciascuna componenteSi . Per q riguardaV2, basta scrivere

s1 · s2 =
S2− s2

1− s2
2

2
=

S2− 3
2

2
(26)

per verificare[V2,S2] = 0.

(iii) L’effetto di V1 si annulla poichéL = 0. V3 è assente per lo stato 1s.

Per quanto riguarda il potenzialeV2, l’effetto al primo ordine è semplicemente

2πµ2
0

14
3

[S2− s2
1− s2

2 ] |ψ1s(0)|2 = 2πµ2
0

14
3

[S2− 3
2
] |ψ1s(0)|2 =







πµ2
0

14
3 |ψ1s(0)|2 S= 1,

−3πµ2
0

14
3 |ψ1s(0)|2 S= 0.

(27)

Più esplicitamente,V3 commuta con

J = L+ S, S2, L2 ; (28)

(iv) Consideriamo primaV2. ∆H è non nullo solo per 2s. Il calcolo è analogo al caso dello stato 1s; l’unico

cambiamento è

|ψ1s(0)|2 → |ψ2s(0)|2. (29)

L’operatoreV1 ha parità positiva, perciò ha un elemento non nullo solo tra due stati di 2so tra due stati

2p. D’altra parte,V1 commuta con

J = L+S (30)

per cui ha elemento di matrice non nullo solo tra gli stati dello stesso(J,Jz). Gli stati |J,L,S〉 che si

possono formare a partire da 2s, 2p sono (4×4= 16 stati)

|2s;1,0,1〉; |2s;0,0,0〉; (31)

|2p;2,1,1〉; |2p;1,1,1〉; |2p;0,1,1〉; |2p;1,1,0〉 . (32)
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Gli elementi di matrice tra gli stati 2ssi annullano

S ·L|L = 0〉 = 0. (33)

D’altronde l’elemento di matrice dell’operatore

L ·S =
1
2

[J2−L2−S2 ] (34)

tra gli stati di|J,L,S〉 sono semplicemente

〈2,1,1|L ·S|2,1,1〉= 1, 〈1,1,1|L ·S|1,1,1〉= −1, 〈0,1,1|L ·S|0,1,1〉= −2, (35)

per cui

〈2p;2,1,1|V1|2p;2,1,1〉= 6µ2
0

Z

drR2
2,1

1
r

=
µ2

0

4r̃3 , (36)

〈2p;1,1,1|V1|2p;1,1,1〉 = −6µ2
0

Z

drR2
2,1

1
r

= − µ2
0

4r̃3 , (37)

〈2p;0,1,1|V1|2p;0,1,1〉= −12µ2
0

Z

drR2
2,1

1
r

= − µ2
0

2r̃3 , (38)

(v) Si’ V3 commuta conJ. V3 commuta anche conS2. Esso commuta anche con la parità. InoltreV3 annichila

uno stato diS= 0. Infine,V3 è un tensore sferico simmetrico di rango 2, ripetto al momento angolare

orbitaleL, come e’ ovvio scrivendo

xix j = (xix j −
δi j

3
r2)+

δi j

3
r2. (39)

Intanto possiamo considerare tra gli stati din = 2, |2L;J,L,S〉, solo gli stati di spinS= 1 eL 6= 0:

|2p;2,1,1〉; |2p;1,1,1〉; |2p;0,1,1〉; (40)

e l’effetto diV3 è solo in elementi diagonali tra gli stati|J,Jz〉

〈2p;2,1,1|V3|2p;2,1,1〉, 〈2p;1,1,1|V3|2p;1,1,1〉, 〈2p;0,1,1|V3|2p;0,1,1〉. (41)

(vi) S2 non commuta con il termine con il campo magnetico, quindi noncommuta conH. Sz invece commuta

conH, come si vede riscrivendo

s1 · s2 =
S2− s2

1− s2
2

2
=

S2− 3
2

2
(42)

Dunque, l’autoscatto diH è in generale un autostato diSz ma non diS2.

Nel limite di grandeB domina l’ultimo termine per cui lo stato fondamentale è unostato di spin,

≃ | ↓↑〉 =
|S= 1,Sz = 0〉− |S= 0,Sz = 0〉√

2
; (43)

mentre per piccoloB il termine di spin-spin è dominante, per cui lo stato fondamentale è circa

≃ |S= 0,Sz = 0〉 =
| ↑↓〉− | ↓↑〉√

2
. (44)
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