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Problema 1.

Un atomo di idrogeno è sottoposto a un campo elettrico debole ed inomoge-
neo, E = (0, 0, κ z), dove κ è una costante.

(i) Scrivere il potenziale V di perturbazione corrispondente a tale campo es-
terno.

(ii) Dire in quanti sottolivelli si dividono i livelli di Bohr n = 1 e n = 2,
calcolando l’effetto dovuto al campo elettrico al primo ordine mediante
la κ teoria delle perturbazioni. Dire quali sono i numeri quantici che
caratterizzano questi sottolivelli, e per ciascuna di essi, dare il grado di
degenerazione (tenendo conto anche dello spin dell’elettrone).

N.B. Questo problema può essere risolto senza calcolare esplicitamente
∆E, ma utilizzando solamente considerazioni generali (teorema di Wigner-
Eckart, simmetrie); tale calcolo è invece necessario per rispondede al punto
(ii) del Problema 2.

Problema 2.

Consideriamo le linee di assorbimento associate a transizioni

[n = 1]→ [n = 2]

dell’atomo di idrogeno, quando l’atomo viene sottoposto ad un fascio di radi-
azione. Senza il campo elettrico (del problema 1) si osserverà una sola linea,
corrispondente alla prima riga (α) della serie di Lyman, λ = 1216× 10−8 cm.

(i) Discutere, utilizzando l’approssimazione di dipolo, come (in quante sotto-
linee) la suddetta linea di assorbimento si divide in presenza del campo
elettrico del problema 1, assumendo una generica direzione del fascio e
della polarizzazione.

(ii) Calcolare la variazione della lunghezza d’onda di ciascuna sottoriga del
punto (i), e trovare (imponendo ∆λ � λ) la condizione per κ tale che il
risultato perturbativo al primo ordine sia valido.

(iii) La stessa domanda di (i), ma supponendo questa volta che il fascio di
luce abbia la direzione di propagazione k̂ = (0, 0, 1), e sia polarizzata
linearmente in direzione ε = (1, 0, 0).
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Soluzione

Problema 1.

(i) Il potenziale è dato da
V = +

κ

2
e z2, (1)

(F = −eE = −∇V ). Esso ha la dimensione di un’energia, perciò la
dimensione di κ è:

[κ ] = gr · cm
2

sec2
· (gr · cm

3

sec2
)−1/2 · cm−2 = gr1/2 · cm−3/2 · sec−1. (2)

(ii) In termini di operatori tensoriali sferici,

z2 ∼ T 0
0 −

√
4/5T 2

0 . (3)

Il teorema di Wigner-Eckart afferma allora che tutti gli elementi di matrici
di z2 non diagonali tra gli stati con n = 2,

| 2, 0, 0 〉, | 2, 1, 0 〉, | 2, 1, 1 〉, | 2, 1,−1 〉 (4)

si annullano. Si noti che l’elemento tra | 2, 0, 0 〉 e | 2, 1, 0 〉 è nullo sia per
Wigner-Eckart (momento angolare) che per la parità.

Perciò basta considerare gli elementi diagonali.

〈 2, 0, 0 |V | 2, 0, 0 〉 =

=
κ e

2
· 1

8

∫ ∞
0

dr r2 · r2 · (2− r)2 e−r 1
4π

∫
dφ

∫
d(cos θ) · cos2 θ

=
κ e

2
· 1

8
· 14 · 4! · 1

4π
· 4π

3
= 7κ e · r2B , (5)

dove abbiamo ripristinato il raggio di Bohr. Analogamente,

〈 2, 1, 1 |V | 2, 1, 1 〉 = 〈 2, 1,−1 |V | 2, 1,−1 〉 =

=
κ e

2
· 1

24

∫ ∞
0

dr r2 · r2 · r2 e−r 3
8π

∫
dφ

∫
d(cos θ) · cos2 θ sin2 θ

=
κ e

2
· 1

24
· 6! · 3

8π
· 8π

15
= 3κ e · r2B , (6)

〈 2, 1, 0 |V | 2, 1, 0 〉 =

=
κ e

2
· 1

24

∫ ∞
0

dr r2 · r2 · r2 e−r 3
4π

∫
dφ

∫
d(cos θ) · cos2 θ cos2 θ

=
κ e

2
· 1

24
· 6! · 3

4π
· 4π

5
= 9κ e · r2B . (7)
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Bisogna calcolare anche

〈 1, 0, 0 |V | 1, 0, 0 〉 =

=
κ e

2
· 4

∫ ∞
0

dr r2 · r2 e−2r 1
4π

∫
dφ

∫
d(cos θ) · cos2 θ

=
κ e

2
· 4 · 4!

25
· 1

4π
· 4π

3
=

1
2
κ e · r2B . (8)

In conclusione il livello n = 2 si divide in tre sottolivelli,

1. | 2, 1,±1 〉 (doppia degenerazione)

2. | 2, 1, 0 〉 (singola)

3. | 2, 0, 0 〉 (singola)

Se il grado di spin è tenuto conto la degenerazione di ciascuno si raddoppia,
per gli stati di spin sz = ± 1

2 .

Il livello n = 1 rimane singolo (doppia se si tiene conto dello spin).

Problema 2.

(i) Tenendo conto della regola di selezione di transizione di dipolo, tenendo
conto anche della degenerazione dei livelli | 2, 1, 1 〉 e | 2, 1,−1 〉, la linea di
transizione

n = 1 −→ n = 2, (9)

si divide in due linee corrispondenti alle transizioni

|1, 0, 0〉 → |2, 1,±1〉 (10)

e
|1, 0, 0〉 → |2, 1, 0〉. (11)

(ii) La lunghezza d’onda associata alla transizione è

λ =
c h

E2,`,m − E1,0,0
, (12)

E2,`,m − E1,0,0 =
3 e2

8 rB
+ ∆E2,`,m −∆E1,0,0, (13)

con

∆E2,1,±1 = 3κ e · r2B ; ∆E2,1,0 = 9κ e · r2B , ∆E1,0,0 =
1
2
κ e · r2B .

(14)
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Perciò

λ =
c h

3 e2

8 rB
+ 5

2 κ e · r
2
B

' 16π rB
3α

(1− 20κr3B
3e

) (15)

∆λ ' −160κ c h r4B
9 e3

, (16)

per |1, 0, 0〉 → |2, 1,±1〉;

λ =
c h

3 e2

8 rB
+ 17

2 κ e · r2B
' 16π rB

3α
(1− 68κr3B

3e
) (17)

∆λ ' −544κ c h r4B
9 e3

, (18)

per |1, 0, 0〉 → |2, 1, 0〉. La condizione per la validità di questi risultati è:

68κr3B
3e

� 1, κ� 3e
68 r3B

(iii) In questo caso, l’elemento di matrice di transizione di dipolo è proporzionale
a

〈ψf |ε · r|ψi〉 =
i

2
〈ψf |(T 1

1 − T 1
−1)|ψi〉, (19)

per cui la transizione |1, 0, 0〉 → |2, 1, 0〉 è proibita. Si osserverà dunque
una sola riga di assorbimento, per |1, 0, 0〉 → |2, 1,±1〉.
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