Compitino 1 di Meccanica Quantistica I (A)

Facolta di Scienze, M.E.N., Universita degli Studi di Pisa,
6 novembre 07 (A.A. 07/08)

(Tempo a disposizione: 3 ore )

Problema 1.
Si consideri un sistema “a tre stati”’. L’Hamiltoniana & data da

0 0 1
H=E, 0 0 O s Ey>0.
1 00
mentre un osservabile F ¢ descritto dall’operatore:
0 —i O
F=f i 0 0 |, f>0.
0 0 1

(i) Dire se la variabile F e I’energia H sono compatibili; F ¢ conservato?

(ii) Trovare gli autovalori e i rispettivi autovettori di H e di F'.

(D

2

(iii) Esprimere ciascun autostato di F in termini degli autostati dell’energia, e vice versa.

(iv) Supponiamo che la misura di F fatta all’istante r = 0 abbia dato il risultato minimo per
F. Sapendo questo, si misura F di nuovo, all’istante . Qual’¢ la probabilita che la

misura dia come risultato il valore massimo di F?

(v) [Opzionale] Sapendo che la misura di cui al punto (iv) abbia infatti dato il valore mas-
simo di F, calcolare la probabilita che la misura fatta dopo un ulteriore intervallo di

tempo ¢ dia il valore minimo di F.

Esprimete le risposte ai punti (iv) ed eventualmente (v), in termini di C = cos

Problema 2.
Una particella di massa m si muove in un potenziale uni-dimensionale,

oo, x<0,
V(x)< Vo, 0<x<a,
0, x>a,

con Vy > 0 (Fig.1). Si vuole esaminare lo spettro del sistema.

(i) Determinare come il numero degli stati legati (spettro discreto) dipende dai parametri,

m,a, V.

(i) Determinare lo spettro continuo e rispettive funzioni d’onda. Dire se ci sono delle

degenerazioni.



Figura 1:



Soluzione
Problema 1.

)

[F,H] = f Eo

- o O
-~ O O

#0.
Sono incompatibili. Dunque F non ¢ conservato
(ii) Gli autovalori di H sono Ey,0, —E( con rispettive autovettori

1 1

0 1
1
H1)=—1 0 |; H,0) = 1 ]; H,—1)=— 0
IH,1) 7 |H,0) | ) VA
1 0 1
Gli autovalori di F sono f, f,— f con rispettive autovettori
| 1 0 1 1
Fiy=—| i | E=[o0]: |F-1)=—| —i
V2 0 1 V2 0
(iii)
H ) = 3 (1) IE 1)+ F 1) JH, 1) =5 (F1) |, ~1) — s F 1)
) *2 ’ ) \/E P s 5 —2 \f
1
H,0) = — (|[F,1)—|F,—1)) .
|1H,0) ﬁi(l )—|F,=1))

1 i 1 i
F,1)==(|H,1)+|H,—1))+—|H,0); F,—1)=—(|H,1)+|H, ——_|H,0);
\>2(|>|>)\f|>|>2(|>|>)ﬂ\>

F1') = *(IH 1) —[H,-1)) .
V2
(iv)
1 i
0)) =|F,—1) == (|H,1) +|H,—1)) — —|H,0);
W(0)) = |F,~1) =5 (IH,1) +| ) ﬁl )
W) = & (7 5/ 1, 1) 450/, 1)) — L5 |H,0)
=} |eo E0’<|F D)+ |F,=1) = iv2sin 5 |F,1)] = L(1F, 1)~ |F,~1)
= L(cos B — 1) |F,1) + L (cos B 4+ 1) |F, — %ﬁm%mw 3)
La probabilita che la misura di F dia +f ¢ allora:
1, Eot ., 1 . ,Et L 3-20-C* _(3+0)(1-C)
P ——1 = —=1-—(cos —+1 .
y=gleos =) gsin gt =" 4
dove B
0
C= —_—.
cos —



(v) [Opzionale] Lo stato ¢ dato all’istante ¢, dall’eq. (3):

() = alF, 1) +BIF, 1) +]F,—1) “)
dove
1 Eot Cc—-1 i . Ept i
o 2(cos p ) 5 B ﬁsm 5 ﬁ\/
1 Eot C+1
Y 2(cos P ) >
La probabilita che la misura di F da F' = 4 f & percio
3+C)(1-C Eot
pr=laf+ = ETNZE - om o

ma ora il problema ¢ sapere lo stato immediatamente dopo la misura, sapendo che la
misura di F ha dato il risultato F = +f.

Ci sono vari casi possibili, ma € opportuno fare delle considerazioni preliminari,
sugli stati nel sottospazio con F = +f. Lo stato un’istante prima della misura di F,
normalizzato, se ci limitiamo al sottospazio con F' = f, ¢

1
Y o

Dei due possibili stati linearmente indipendenti (visto che ’autovalore F' = f ¢
doppiamente degenere) I’evoluzione ha prodotto lo stato Yy, mentre 1’altro stato

[F,1)+B|F,1") ] (5)

indipendente
1
W2:7[5*|F,1>—(X*|F,1/>]. (6)
Va2 + B2
¢ assente.

Consideriamo i vari operatori di proiezione.

[l

I = |y1) (v
¢ I’operatore che da 1 sullo stato |y) e 0 sullo stato |y2);

I = [w2)(y2l;
’operatore che da 0 sullo stato |y ) e 1 sullo stato |y»);

= |F1){F1|;
& I’operatore che da 1 sullo stato ||[F1)) e 0 sullo stato ||F1'));

Il = |[FU)F1|;

& ’operatore che da 0 sullo stato ||F1)) e 1 sullo stato ||F1’)). Analogamente si pud
considerare altre scelte per il “disturbo-misura”.

Visto che F in questo sottospazio ¢ proporzionale all’operatore unita, ' commuta
con tutti gli operatori, ITy,II,,IT,IT,.... La misura di ognuno di questi osservabili &
compatibile con quella di F.

Caso I



Se la misura di F ¢ “pulita”, i.e., non coinvolge una simultanea determinazione di
nessuna di questi osservabili (I1, per es.), allora il risultato della misura di F (che ha
dato F' = +f) sara lo stato yy: lo stato all’istante 2 & dato da

1) — [l [a|F, 1)|: +BIF, 1')]:.] (7)

- 1
o>+ [B]?
Lo stato |F, 1) evolve come
F1) = 1P = § (e B0/, 1) 0, -1) 55|, 0)
=1 [cos Bt (|F, 1) + |F, 1) —i zm%mw}+1<|F,1>—|F,—1>)

= L(cos B +1)|F, 1) + 4 (cos 2 — 1) |F, —1) — L sin 2| F, 1)

ﬁ
mentre |F,1") evolve come

|F, 1/> N |F7 1/>‘t _ % (e—iEot/hU_I7 1> 7€iEot/h|H’71>)

=L [\@cos%m 1) —isin 228 (|F, 1) + |F,—1>)} ,

percio si avrta all’istante 2¢:

|F,1>t0621+[3|2[<g(C0SEhot )7155\1}71 > ‘F71> ]

=1 €1 1 _e)) |F— _ BCHC-) p
_\/|a|2+lﬁ\2[< 2l C)) F-1)+. )= e B+ ®

La probabilita di trovare F = — f all’istante 2¢ ¢ dunque data da:

1 (1-C)*(1+3C)*  (1-C)(1+3C)?
otz + B 16 4340

(€))

Caso II

Consideriamo invece la possibilita che la misura di F sia tale che, accidentalmente,
si “misura” anche IT, anche se il risultato di quest’ultimo non viene registrato. In
questo caso, sapendo che il risultato della misura era comunque + f, sappiamo che
abbiamo 1’autostato |F, 1) (il risultato IT = 1) con probabilita relativa

7 (C—1 Eot
plZM, C=cos—2 .

h
e lo stato |F, 1’} (il risultato IT = 0) con probabilita relativa

12 E
P{:jsm %:%(I—CZ)
Py Py

con P; + P| = 1. Lo stato |F, 1) evolve come
W(e)) = & (e /7 H, 1) + 0P, 1)) + | H,0)
E /5 ein E
os 0 (|F, 1) +|F,—1)) —iv/2sin = |F, 1’)} + 3 (|F,1) = |F,—1))

smE‘)l\F 1)

B[—

= L(cos 2 + 1) |F, 1) + 4 (cos 2 — 1) |F, —1) — NG

con la probabilita di produrre lo stato |F, —1) dopo Iintervallo 7,
1

2(C-1%



mentre lo stato |F, 1) evolve come
(eY) = 5 (e B0, 1) — 0 1, 1))

-5 [ﬁcos%ﬂw, 1'>_isin%(|F,1>_|F,_1>)} :

con la probabilita di produrre lo stato |F,—1)

1 Eyt 1
Esinz% =51 —c?).
La probabilita di trovare F = — f all’istante 2¢ ¢ quindi la somma di probabilita

composte (Figura 2, come funzione di Eot /i );

1, Eot ., ., 1. ,Et 5+C—C*-5C
P=P - —1 P = —_—=— 10
1gleos G =T P g sint 4(3+C) (19)

Morale:

I due risultati, eq.(9) e eq.(10), in due esperimenti (“pulito” e “sporco”) differiscono
per il termine di interferenza tra le due ampiezze nell’eq.(8). Studiando percio la
probabilita P(F = — f), e confrontando la teoria con i dati, in principio siamo in
grado di dire se la “misura” o “il disturbo” ¢ stato eseguito sul sistema. La
crittografia quantistica ¢ basata su un principio analogo. Nel secondo caso la
coerenza tra i due termini (nello stato W) viene distrutta, il sistema diventa uno
“stato misto” (vedi Sez. 4.9 della “Meccanica Quantistica: nuova introduzione”).
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Figura 2: La dipendenza di P(F = — f) come funzione di Eot /i, nell’esperimento “pulito”

Problema 2.

(i) Consideriamo —Vj < E < 0 prima. La funzione d’onda ha la forma

\2m(E +Vp) < 0:

yi(x) = singx, 0<x<a, q= ;
e
yi(x) =Ae ™, x>a, K:$>O,
La condizione di continuita a x = a impone:
singa=Ae ", gcosqa=—KAe ™,
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Figura 3: La dipendenza di P(F = —f) come funzione di Ept/fi, in un esperimento
“sporco”
i.e.,
n= 7& COtE.\a
dove
2m(E+Vp)a —2mEa
E=qga= : nN=«ka= ,
h h
con 5
2mVpa
gz +Tl2 = 72

Dai grafici di queste curve si ha che per

IN

2mVya?
hz

T
2

o 2mVpa? 3w
— < < —
2 o2

esiste un solo stato legato, etc.; in generale, per

_ 2
(2n—1D)m - 2mVpa < (2n+1)m
2 )

(ii) Per E > 0 la funzione d’onda ha la forma

non esistono stati legati; per

troviamo 7 stati legati.

2m(E 4V,
yi(x) = singx, 0<x<a, q:w>0;
e
. . 2mE
Vi (x) =Ae* 4 Be ik, x>a, k= ;ln >0.

La condizione di continuita a x = a impone:

sinqa :Aeika _,'_Befika’ g cosga = ik (Aeika _Befika) .

ez:ka efilfa A _ singa an
eika  _g—ika B Zcosga )



Visto che
6‘ika efika
det eika  _ p—ika =-2#0,

la (11) ha un’unica soluzione, per generici valori di m, Vj, a:

( A ) 1 ( o—ika  ,—ika ) ( singa >
B 2\ ke _pika Lcosga ) -
Vuol dire che per ogni valore di k > 0, percio per ogni valore di E > 0, esiste un’unica

soluzione. Lo spettro continuo &
E>0,

non ci sono degenerazioni. Quest’ultimo risultato puo essere ottenuto anche notando che
la dimostrazione del teorema di non-degenerazione di stati discreti in una dimensione si
applica ugualmente in questo caso, visto che la funzione d’onda si deve annullare a r = 0.



