
Compitino 1 di Meccanica Quantistica I (A)

Facoltà di Scienze, M.F.N., Università degli Studi di Pisa,
6 novembre ’07 (A.A. 07/08)

(Tempo a disposizione: 3 ore )

Problema 1.
Si consideri un sistema “a tre stati”. L’Hamiltoniana è data da

H = E0

 0 0 1
0 0 0
1 0 0

 , E0 > 0 . (1)

mentre un osservabile F è descritto dall’operatore:

F = f

 0 −i 0
i 0 0
0 0 1

 , f > 0 . (2)

(i) Dire se la variabile F e l’energia H sono compatibili; F è conservato?

(ii) Trovare gli autovalori e i rispettivi autovettori di H e di F .

(iii) Esprimere ciascun autostato di F in termini degli autostati dell’energia, e vice versa.

(iv) Supponiamo che la misura di F fatta all’istante t = 0 abbia dato il risultato minimo per
F. Sapendo questo, si misura F di nuovo, all’istante t. Qual’è la probabilità che la
misura dia come risultato il valore massimo di F?

(v) [Opzionale] Sapendo che la misura di cui al punto (iv) abbia infatti dato il valore mas-
simo di F, calcolare la probabilità che la misura fatta dopo un ulteriore intervallo di
tempo t dia il valore minimo di F.

Esprimete le risposte ai punti (iv) ed eventualmente (v), in termini di C ≡ cos E0t
h̄ .

Problema 2.
Una particella di massa m si muove in un potenziale uni-dimensionale,

V (x)


∞ , x < 0 ,

−V0 , 0 ≤ x ≤ a ,

0 , x > a ,

con V0 > 0 (Fig.1). Si vuole esaminare lo spettro del sistema.

(i) Determinare come il numero degli stati legati (spettro discreto) dipende dai parametri,
m,a,V0.

(ii) Determinare lo spettro continuo e rispettive funzioni d’onda. Dire se ci sono delle
degenerazioni.
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Soluzione

Problema 1.

(i)

[F,H] = f E0

 0 0 −1
0 0 i
1 i 0

 6= 0 .

Sono incompatibili. Dunque F non è conservato.

(ii) Gli autovalori di H sono E0,0,−E0 con rispettive autovettori

|H,1〉=
1√
2

 1
0
1

 ; |H,0〉=

 0
1
0

 ; |H,−1〉=
1√
2

 1
0
−1

 .

Gli autovalori di F sono f , f ,− f con rispettive autovettori

|F,1〉=
1√
2

 1
i
0

 ; |F,1′〉=

 0
0
1

 ; |F,−1〉=
1√
2

 1
−i
0

 .

(iii)

|H,1〉= 1
2

(|F,1〉+ |F,−1〉)+ 1√
2
|F,1′〉; |H,−1〉= 1

2
(|F,1〉+ |F,−1〉)− 1√

2
|F,1′〉;

|H,0〉=
1√
2i

(|F,1〉− |F,−1〉) .

|F,1〉= 1
2

(|H,1〉+ |H,−1〉)+ i√
2
|H,0〉; |F,−1〉= 1

2
(|H,1〉+ |H,−1〉)− i√

2
|H,0〉;

|F,1′〉=
1√
2

(|H,1〉− |H,−1〉) .

(iv)
|ψ(0)〉= |F,−1〉=

1
2

(|H,1〉+ |H,−1〉)− i√
2
|H,0〉;

|ψ(t)〉= 1
2

(
e−iE0t/h̄|H,1〉+ eiE0t/h̄|H,−1〉

)
− i√

2
|H,0〉

= 1
2

[
cos E0t

h̄ (|F,1〉+ |F,−1〉)− i
√

2sin E0t
h̄ |F,1′〉

]
− 1

2 (|F,1〉− |F,−1〉)

= 1
2 (cos E0t

h̄ −1) |F,1〉+ 1
2 (cos E0t

h̄ +1) |F,−1〉− i√
2

sin E0t
h̄ |F,1′〉 (3)

La probabilità che la misura di F dia + f è allora:

Pf =
1
4
(cos

E0t
h̄
−1)2 +

1
2

sin2 E0t
h̄

= 1− 1
4
(cos

E0t
h̄

+1)2 =
3−2C−C2

4
=

(3+C)(1−C)
4

.

dove
C ≡ cos

E0t
h̄

.
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(v) [Opzionale] Lo stato è dato all’istante t, dall’eq. (3):

|ψ(t)〉= α|F,1〉+β|F,1′〉+ γ|F,−1〉 , (4)

dove

α =
1
2
(cos

E0t
h̄

−1) =
C−1

2
; β =− i√

2
sin

E0t
h̄

=− i√
2

√
1−C2;

γ =
1
2
(cos

E0t
h̄

+1) =
C +1

2
.

La probabilità che la misura di F dà F = + f è perciò

Pf = |α|2 + |β|2 =
(3+C)(1−C)

4
, C ≡ cos

E0t
h̄

,

ma ora il problema è sapere lo stato immediatamente dopo la misura, sapendo che la
misura di F ha dato il risultato F = + f .

Ci sono vari casi possibili, ma è opportuno fare delle considerazioni preliminari,
sugli stati nel sottospazio con F = + f . Lo stato un’istante prima della misura di F,
normalizzato, se ci limitiamo al sottospazio con F = f , è

ψ1 =
1√

|α|2 + |β|2
[

α|F,1〉+β|F,1′〉
]

(5)

Dei due possibili stati linearmente indipendenti (visto che l’autovalore F = f è
doppiamente degenere) l’evoluzione ha prodotto lo stato ψ1, mentre l’altro stato
indipendente

ψ2 =
1√

|α|2 + |β|2
[

β
∗|F,1〉−α

∗|F,1′〉
]
. (6)

è assente.

Consideriamo i vari operatori di proiezione.

Π1 ≡ |ψ1〉〈ψ1|;

è l’operatore che dà 1 sullo stato |ψ1〉 e 0 sullo stato |ψ2〉;

Π2 ≡ |ψ2〉〈ψ2|;

l’operatore che dà 0 sullo stato |ψ1〉 e 1 sullo stato |ψ2〉;

Π ≡ |F1〉〈F1|;

è l’operatore che dà 1 sullo stato ||F1〉〉 e 0 sullo stato ||F1′〉〉;

Π
′ ≡ |F1′〉〈F1′|;

è l’operatore che dà 0 sullo stato ||F1〉〉 e 1 sullo stato ||F1′〉〉. Analogamente si può
considerare altre scelte per il “disturbo-misura”.

Visto che F in questo sottospazio è proporzionale all’operatore unità, F commuta
con tutti gli operatori, Π1,Π2,Π,Π′, . . .. La misura di ognuno di questi osservabili è
compatibile con quella di F .

Caso I
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Se la misura di F è “pulita”, i.e., non coinvolge una simultanea determinazione di
nessuna di questi osservabili (Π, per es.), allora il risultato della misura di F (che ha
dato F = + f ) sarà lo stato ψ1: lo stato all’istante 2t è dato da

|ψ1〉 → |ψ1〉|t =
1√

|α|2 + |β|2
[

α|F,1〉|t +β|F,1′〉|t .
]

(7)

Lo stato |F,1〉 evolve come

|F,1〉 → |F,1〉|t = 1
2

(
e−iE0t/h̄|H,1〉+ eiE0t/h̄|H,−1〉

)
+ i√

2
|H,0〉

= 1
2

[
cos E0t

h̄ (|F,1〉+ |F,−1〉)− i
√

2sin E0t
h̄ |F,1′〉

]
+ 1

2 (|F,1〉− |F,−1〉)

= 1
2 (cos E0t

h̄ +1) |F,1〉+ 1
2 (cos E0t

h̄ −1) |F,−1〉− i√
2

sin E0t
h̄ |F,1′〉

mentre |F,1′〉 evolve come

|F,1′〉 → |F,1′〉|t = 1√
2

(
e−iE0t/h̄|H,1〉− eiE0t/h̄|H,−1〉

)
= 1√

2

[√
2cos E0t

h̄ |F,1′〉− isin E0t
h̄ (|F,1〉+ |F,−1〉)

]
,

perciò si avrtà all’istante 2t:

|F,1〉|t = 1√
|α|2+|β|2

[
(

α

2 (cos E0t
h̄ −1)− iβsin E0t

h̄√
2

)
|F,−1〉+ . . .]

= 1√
|α|2+|β|2

[
(

(C−1)2

4 − 1
2 (1−C2)

)
|F,−1〉+ . . .] = (3C+1)(C−1)

4
√
|α|2+|β|2

|F,−1〉+ . . . (8)

La probabilità di trovare F =− f all’istante 2t è dunque data da:

1
|α|2 + |β|2

(1−C)2(1+3C)2

16
=

(1−C)(1+3C)2

4(3+C)
. (9)

Caso II
Consideriamo invece la possibilità che la misura di F sia tale che, accidentalmente,
si “misura” anche Π, anche se il risultato di quest’ultimo non viene registrato. In
questo caso, sapendo che il risultato della misura era comunque + f , sappiamo che
abbiamo l’autostato |F,1〉 (il risultato Π = 1) con probabilità relativa

P1 =
1
4 (C−1)2

Pf
, C ≡ cos

E0t
h̄

.

e lo stato |F,1′〉 (il risultato Π = 0) con probabilità relativa

P′
1 =

1
2 sin2 E0t

h̄
Pf

=
1
2 (1−C2)

Pf
;

con P1 +P′
1 = 1. Lo stato |F,1〉 evolve come

|ψ(t)〉= 1
2

(
e−iE0t/h̄|H,1〉+ eiE0t/h̄|H,−1〉

)
+ i√

2
|H,0〉

= 1
2

[
cos E0t

h̄ (|F,1〉+ |F,−1〉)− i
√

2sin E0t
h̄ |F,1′〉

]
+ 1

2 (|F,1〉− |F,−1〉)

= 1
2 (cos E0t

h̄ +1) |F,1〉+ 1
2 (cos E0t

h̄ −1) |F,−1〉− i√
2

sin E0t
h̄ |F,1′〉

con la probabilità di produrre lo stato |F,−1〉 dopo l’intervallo t,

1
4
(C−1)2 ;

5



mentre lo stato |F,1′〉 evolve come

|ψ(t)′〉= 1√
2

(
e−iE0t/h̄|H,1〉− eiE0t/h̄|H,−1〉

)
= 1√

2

[√
2cos E0t

h̄ |F,1′〉− isin E0t
h̄ (|F,1〉− |F,−1〉)

]
,

con la probabilità di produrre lo stato |F,−1〉

1
2

sin2 E0t
h̄

=
1
2
(1−C2) .

La probabilità di trovare F =− f all’istante 2 t è quindi la somma di probabilità
composte (Figura 2, come funzione di E0t/h̄ );

P = P1 ·
1
4
(cos

E0t
h̄

−1)2 +P′
1 ·

1
2

sin2 E0t
h̄

=
5+C−C2−5C3

4(3+C)
. (10)

Morale:
I due risultati, eq.(9) e eq.(10), in due esperimenti (“pulito” e “sporco”) differiscono
per il termine di interferenza tra le due ampiezze nell’eq.(8). Studiando perciò la
probabilità P(F =− f ), e confrontando la teoria con i dati, in principio siamo in
grado di dire se la “misura” o “il disturbo” è stato eseguito sul sistema. La
crittografia quantistica è basata su un principio analogo. Nel secondo caso la
coerenza tra i due termini (nello stato Ψ1) viene distrutta, il sistema diventa uno
“stato misto” (vedi Sez. 4.9 della “Meccanica Quantistica: nuova introduzione”).
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Figura 2: La dipendenza di P(F =− f ) come funzione di E0t/h̄, nell’esperimento “pulito”

Problema 2.

(i) Consideriamo −V0 < E < 0 prima. La funzione d’onda ha la forma

ψI(x) = sinqx, 0 ≤ x ≤ a, q =

√
2m(E +V0)

h̄
> 0;

e

ψII(x) = Ae−κx, x > a, κ =
√
−2mE

h̄
> 0 .

La condizione di continuità a x = a impone:

sinqa = Ae−κa, q cosqa =−κAe−κa,

6



0.5 1.0 1.5 2.0 2.5 3.0

0.2

0.4

0.6

0.8

1.0

Figura 3: La dipendenza di P(F = − f ) come funzione di E0t/h̄, in un esperimento
“sporco”

i.e.,
η =−ξ cotξ,

dove

ξ ≡ qa =

√
2m(E +V0)a

h̄
; η ≡ κa =

√
−2mEa

h̄
,

con

ξ
2 +η

2 =
2mV0a2

h̄2 .

Dai grafici di queste curve si ha che per√
2mV0a2

h̄2 ≤ π

2

non esistono stati legati; per

π

2
<

√
2mV0a2

h̄2 ≤ 3π

2

esiste un solo stato legato, etc.; in generale, per

(2n−1)π
2

<

√
2mV0a2

h̄2 ≤ (2n+1)π
2

troviamo n stati legati.

(ii) Per E ≥ 0 la funzione d’onda ha la forma

ψI(x) = sinqx, 0 ≤ x ≤ a, q =

√
2m(E +V0)

h̄
> 0;

e

ψII(x) = Aeikx +Be−ikx, x > a, k =
√

2mE
h̄

≥ 0 .

La condizione di continuità a x = a impone:

sinqa = Aeika +Be−ika, q cosqa = ik (Aeika−Be−ika) .

o (
eika e−ika

eika −e−ika

) (
A
B

)
=

(
sinqa

iq
k cosqa

)
. (11)
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Visto che

det
(

eika e−ika

eika −e−ika

)
=−2 6= 0,

la (11) ha un’unica soluzione, per generici valori di m,V0,a:(
A
B

)
=

1
2

(
e−ika e−ika

eika −eika

) (
sinqa

iq
k cosqa

)
.

Vuol dire che per ogni valore di k ≥ 0, perciò per ogni valore di E ≥ 0, esiste un’unica
soluzione. Lo spettro continuo è

E ≥ 0 ,

non ci sono degenerazioni. Quest’ultimo risultato può essere ottenuto anche notando che
la dimostrazione del teorema di non-degenerazione di stati discreti in una dimensione si
applica ugualmente in questo caso, visto che la funzione d’onda si deve annullare a r = 0.
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