
Compitino 1 di Meccanica Quantistica I (A)
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Problema 1.
Un sistema “a due stati” è descritto dall’Hamiltoniana

H = E0

(
1 0
0 −1

)
. (1)

In questo sistema si considera la misura di due variabili A e B, descritte dagli operatori

A =
(

0 −i
i 0

)
; B =

(
2 −

√
2 i√

2 i 1

)
(2)

Gli autovalori e autovettori ortonormali di A sono dati da:

|A,1〉=
1√
2

(
1
i

)
, |A,−1〉=

1√
2

(
1
−i

)
, (3)

come si può facilmente verificare.

(i) Trovare gli autovalori e i rispettivi autovettori di B.

(ii) Dire se le variabili A e B sono compatibili, e se sono conservate.

(iii) Supponiamo che la misura di A abbia dato il risultato A = 1. Quali sarebbero i risultati
possibili di una misura di B, e quali sarebbero le probabilità rispettive, se questa
misura fosse eseguita immediatamente dopo la misura di A?

(iv) Lo stesso sistema è sottoposto ad una seconda misura di A. Quale sarebbe la probabi-
lità di trovare il risultato A = 1, nei seguenti casi diversi? (Fig.1)

(a) La misura di B non è fatta, e la seconda misura di A è fatta immediatamente
dopo la prima misura di A di cui al punto (iii) ;

(b) La misura di B non è fatta, e la seconda misura di A è fatta dopo un intervallo di
tempo (t) rispetto alla prima;

(c) La misura di B è stata eseguita, e l’osservatore di A sa che quest’ultima ha dato
come risultato b1 (l’autovalore più grande di B);

(d) La misura di B è fatta, ma chi misura A (immediatamente dopo la misura di B),
non è a conoscenza del risultato di B.
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Problema 2.
Una particella di massa m si muove in un potenziale unidimensionale (Fig. 2)

H =
p2

2m
+V (x), V (x) =

{
∞ x <− a

2 , x > a
2 ,

−gδ(x), − a
2 ≤ x ≤ a

2 .
, g > 0. (4)

Si vuole studiare lo stato fondamentale, o con E positiva o negativa. Prima si considerino
le possibili soluzioni con E < 0.

(i) Ponendo E < 0, scrivere la soluzione generale dell’equazione di Schrödinger in 0 < x <
a
2 , senza tenere conto delle condizioni al contorno.

(ii) Imporre le condizioni appropriate a x = 0 e la condizione al contorno a x = a
2 , as-

sumendo che la funzione d’onda sia pari 1. Trovare l’equazione che determina
implicitamente il livello di energia (E < 0).

(iii) Studiando questa equazione (per es., graficamente) trovare il criterio (sulle costanti
m,g, h̄,a) per l’esistenza (o l’assenza) di un autostato (o di più autostati) di energia
E < 0.

Ora ripetiamo l’analisi per E > 0, e sempre assumendo una funzione d’onda pari,
ψ(−x) = ψ(x).

(iv) Ponendo E > 0, scrivere la soluzione generale dell’equazione di Schrödinger in 0 <
x < a

2 , senza tenere conto delle condizioni al contorno.

(v) Imporre le condizioni a x = 0 e la condizione al contorno a x = a
2 , assumendo 2

ψ(−x) = ψ(x). Trovare l’equazione che determina implicitamente il livello di ener-
gia (E > 0).

(vi) Studiando tale equazione trovare il criterio (sulle costanti m,g, h̄,a) per l’esistenza (o
per l’assenza) di un autostato (o di più autostati) con energia,

0 < E <
π2h̄2

2ma2 .

(vii) [Opzionale:] Paragonare i risultati dei punti (iii) e (vi) e discutere le eventuali rela-
zioni tra di essi. È mai possibile che lo stato fondamentale del sistema (4) abbia
esattamente E = 0?

1Si può dimostrare che la soluzione dispari con E < 0 non esiste in questo sistema, ma lo assumiamo qui, per
risparmiare il tempo.

2Si può facilmente dimostrare che esistono soluzioni dispari con E > 0, con En = π2n2 h̄2

2ma2 , n = 2,4,6, . . .; ma
visto che uno stato dispari non è mai lo stato fondamentale di (4) qui ci limitiamo allo studio di uno stato pari.

2



(a)
A

a
1

T=0

A

T=0+

(b)

A
a

1

T=0

A

T=t

(c) B

T=0+

A

T=0++

A
a

1

T=0

b
1

(d) B

T=0+

A

T=0++

A
a

1

T=0

?

Figura 1:

3



a/2-a/2 x

Figura 2:

4



Soluzione
Problema 1.

(i) Gli autovalori B sono 3,0. Gli autostati corrispondenti sono:

|B,3〉=
1√
3

(
−
√

2 i
1

)
; |B,0〉=

1√
3

(
1

−
√

2 i

)
(5)

(ii) [A,B] 6= 0 quindi non sono compatibili. A e B non commutano neanche con H: né A
né B è conservato.

(iii) Lo stato dopo la misura di A è

|A,1〉=
1√
2

(
1
i

)
. (6)

La misura di B darebbe B = 3 o B = 0, con rispettive probabilità,

P(B = 3) = |〈B,3|A,1〉|2 = | 1√
6

( √
2 i 1

)(
1
i

)
|2 =

3+2
√

2
6

' 0.97; (7)

P(B = 0) = |〈B,0|A,1〉|2 = | 1√
6

(
1

√
2 i

)(
1
i

)
|2 =

3−2
√

2
6

' 0.03. (8)

(iv) (a) Probabilità 1.

(b) Lo stato evolve come

|A,1〉 → |ψ(t)〉=
1√
2

(
e−iE0t/h̄

i eiE0t/h̄

)
. (9)

Le probabilità per vari risultati per A sono

P(A,1)|t = |〈A,1|ψ(t)〉|2 = |1
2

(
1 −i

)(
e−iE0t/h̄

i eiE0t/h̄

)
|2 = cos2 E0t

h̄
; (10)

P(A,−1)|t = |〈A,−1|ψ(t)〉|2 = |1
2

(
1 i

)(
e−iE0t/h̄

i eiE0t/h̄

)
|2 = sin2 E0t

h̄
; (11)

(c) Lo stato dopo la misura di B è |B,3〉. La probabilità richiesta è allora

P(A,1)|t=0+ = |〈A,1|B,3〉|2|2 = | 1√
6

(
1 −i

)(
−
√

2 i
1

)
|2 = 0.97; (12)

(d) La probabilità per A = 1 è in questo caso la somma delle probabilià composte

|〈A,1|B,3〉|2 ·P(B,3)+ |〈A,1|B,0〉|2 ·P(B,0) = (0.97)2 +(0.03)2 ' 0.94.
(13)

Problema 2.

(i)

ψ(x)|+ = Ae−κx +Beκx, ψ(x)|− = Aeκx +Be−κx, κ =

√
−2mE

h̄2 , (14)

dove ψ+ e ψ− sono le funzioni d’onda nella regione x > 0 e nella regione x < 0,
rispettivamente.
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(ii) La condizione a x = a/2 è

ψ(
a
2
)|+ = Ae−κa/2 +Beκa/2 = 0, (15)

mentre la condizione a x = 0 è data dalla formula

− h̄2

2m
(ψ′

+(0)−ψ
′
−(0))−gψ(0) = 0. (16)

(la continuità della funzione d’onda stessa è garantita dall’ipotesi, la (14)). Si ha

h̄2
κ

m
(A−B)−g(A+B) = 0. (17)

Dalla (17) si ha

A
B

=
h̄2

κ

mg +1
h̄2

κ

mg −1
=

κ+ mg
h̄2

κ− mg
h̄2

(18)

mentre (15) dà
A
B

=−eκa, (19)

per cui la condizione implicita sull’energia è

eκa =−
κ+ mg

h̄2

κ− mg
h̄2

;
κh̄2

mg
= tanh

κa
2

. (20)

(iii) Dal grafico delle due curve (paragonando la derivata a x = 0) si avvince che il criterio
dell’esistenza ( o l’assenza) di una soluzione con E < 0 è

a >
2h̄2

mg
. (viceversa) a <

2h̄2

mg
. (21)

(iv) Per E > 0 la soluzione generale è

ψ(x)|+ = C coskx+D sinkx, ψ(x)|− = C coskx−D sinkx, k =

√
2mE
h̄2 ,

(22)

(v) La condizione a x = a
2 è

C coska/2+D sinka/2 = 0, ... tan
ka
2

=−C
D

. (23)

La condizione a x = 0 è

− h̄2

2m
(2Dk)−gC = 0. ...

h̄2k
mg

=−C
D

, (24)

per cui
h̄2k
mg

= tan
ka
2

. (25)

Naturalmente questa equazione si trova anche ponendo semplicemente κ → i k nella
(20). Dal grafico si vede facilmente (paragonando lo slope a k = 0 dei due membri)
che il criterio per l’esistenza (assenza) di una soluzione nell’intervallo k < π

a è

h̄2

mg
>

a
2
. (viceversa)

h̄2

mg
<

a
2
. (26)
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(vi) I criteri (21) e (26) sono complimentari. In altre parole, lo stato fondamentale ha o
E < 0 con la funzione d’onda (14) ( a > 2h̄2

mg ), o E > 0 con la funzione d’onda (22) (

a < 2h̄2

mg ). Fig. 3 e Fig. 4. Questo è consistente perché questi due stati (o con E < 0
o con E > 0) sono pari e senza nodi, rappresentano ambedue lo stato fondamentale
del sistema e non possono esserci contemporaneamente.

Questa situazione ci pone il problema di capire cosa succede se esattamente

h̄2

mg
=

a
2
. (27)

È facile vedere il limite di a → 2h̄2

mg + cioè κ → 0, mentre il limite di h̄2

mg →
a
2+

(k → 0) è più delicato (perché singolare).

È più facile studiare direttamente il caso h̄2

mg = a
2 . In questo caso, la funzione lineare

ψ(x) =

{
−x+ a

2 se 0 < x < a
2 ,

x+ a
2 per − a

2 < x < 0,
(28)

ovviamente è pari e risolve l’equazione di Schrödinger con E = 0

− h̄2

2m
ψ
′′ = 0, x > 0, x < 0, (29)

soddisfa alla condizione al contorno a x =± a
2 , e infine soddisfa anche la condizione

di discontinuità di ψ′ a x = 0:

− h̄2

2m
(−1−1)−g

a
2

= 0, (30)

grazie alla (27).

Infatti, la soluzione (28) si ottine correttamente come limite, sia della (14) che della
(22). Vedi Fig. 5.
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Figura 3: Lo stato fondamentale ha energia negativa se a > 2h̄2

mg .
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Figura 4: Lo stato fondamentale ha energia positiva se a < 2h̄2

mg .
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Figura 5: Lo stato fondamentale ha energia zero se a = 2h̄2

mg . La funzione d’onda è lineare.
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