Compitino 1 di Meccanica Quantistica I (A)

Facolta di Scienze, M.E.N., Universita degli Studi di Pisa,
7 novembre 20006 (A.A. 06/07)

Problema 1.
Un sistema “a due stati” & descritto dall’Hamiltoniana

H:Eo((l) _01>. (1)

In questo sistema si considera la misura di due variabili A e B, descritte dagli operatori
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Gli autovalori e autovettori ortonormali di A sono dati da:

o) men(h)

come si puo facilmente verificare.

(i) Trovare gli autovalori e i rispettivi autovettori di B.
(ii) Dire se le variabili A e B sono compatibili, e se sono conservate.

(iii) Supponiamo che la misura di A abbia dato il risultato A = 1. Quali sarebbero i risultati
possibili di una misura di B, e quali sarebbero le probabilita rispettive, se questa
misura fosse eseguita immediatamente dopo la misura di A?

(iv) Lo stesso sistema ¢ sottoposto ad una seconda misura di A. Quale sarebbe la probabi-
lita di trovare il risultato A = 1, nei seguenti casi diversi? (Fig.1)

(a) La misura di B non ¢ fatta, e la seconda misura di A ¢ fatta immediatamente
dopo la prima misura di A di cui al punto (iii) ;

(b) La misura di B non ¢ fatta, e la seconda misura di A ¢ fatta dopo un intervallo di
tempo (¢) rispetto alla prima;

(c) La misura di B ¢ stata eseguita, e 1’osservatore di A sa che quest’ultima ha dato
come risultato by (1’autovalore piu grande di B);

(d) La misura di B ¢ fatta, ma chi misura A (immediatamente dopo la misura di B),
non ¢ a conoscenza del risultato di B.



Problema 2.

Una particella di massa m si muove in un potenziale unidimensionale (Fig. 2)
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Si vuole studiare lo stato fondamentale, o con E positiva o negativa. Prima si considerino
le possibili soluzioni con E < 0.

(i) Ponendo E < 0, scrivere la soluzione generale dell’equazione di Schrodinger in 0 < x <
%, senza tenere conto delle condizioni al contorno.

(ii) Imporre le condizioni appropriate a x = 0 e la condizione al contorno a x = 7,
sumendo che la funzione d’onda sia pari !. Trovare I’equazione che determina
implicitamente il livello di energia (E < 0).

as-

(iii) Studiando questa equazione (per es., graficamente) trovare il criterio (sulle costanti
m, g, h,a) per I'esistenza (o ’assenza) di un autostato (o di pil autostati) di energia
E <O0.

Ora ripetiamo I’analisi per E > 0, e sempre assumendo una funzione d’onda pari,

V(=) = ().

(iv) Ponendo E > 0, scrivere la soluzione generale dell’equazione di Schrodinger in 0 <
x < % senza tenere conto delle condizioni al contorno.

(v) Imporre le condizioni a x = 0 e la condizione al contorno a x = %, assumendo 2

y(—x) = y(x). Trovare I’equazione che determina implicitamente il livello di ener-
gia (E > 0).

(vi) Studiando tale equazione trovare il criterio (sulle costanti m, g, %, a) per ’esistenza (o
per I’assenza) di un autostato (o di piu autostati) con energia,

2

0<E< .
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(vii) [Opzionale:] Paragonare i risultati dei punti (iii) e (vi) e discutere le eventuali rela-
zioni tra di essi. E mai possibile che lo stato fondamentale del sistema (4) abbia
esattamente £ = 07?

I'Si puod dimostrare che la soluzione dispari con E < 0 non esiste in questo sistema, ma lo assumiamo qui, per
risparmiare il tempo.
. N . . . . . g . 2,252
28 puo facilmente dimostrare che esistono soluzioni dispari con E > 0, con E,, = "2; Z ,n=2,46,...;ma
visto che uno stato dispari non & mai lo stato fondamentale di (4) qui ci limitiamo allo studio di uno stato pari.
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Soluzione
Problema 1.

(i) Gli autovalori B sono 3,0. Gli autostati corrispondenti sono:

= (V) o=l ®

(ii) [A, B] # 0 quindi non sono compatibili. A e B non commutano neanche con H: né A
né B ¢ conservato.

(iii) Lo stato dopo la misura di A ¢

|A,1>:\%<i>. ©)

La misura di B darebbe B =3 o B = 0, con rispettive probabilita,

( V2i 1)( ! >|2=3+62ﬂ:o.97; ©)

l

(1 Vi )( 1 >|2:3_62ﬁ20.03. (8)

P(B=3)=|(B3|A,1)]’ =

P(B=0)=(B,0JA, 1)* =
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(iv) (a) Probabilita 1.

(b) Lo stato evolve come

1 e*iE()t/h
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Le probabilita per vari risultati per A sono
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(c) Lo stato dopo la misura di B & |B,3). La probabilita richiesta & allora

1 B .
P o = AP = | (1 =0) (7Y )P 0om a2)

(d) La probabilita per A = 1 ¢ in questo caso la somma delle probabilia composte

[(A,1|B,3)|*- P(B,3) +]|(A,1|B,0)|*- P(B,0) = (0.97)% + (0.03)? ~ 0.94.

(13)
Problema 2.
(i)
—2mE
V)|l =Ae ™+ B, yi)|_ =AM+ Be ™, k= T’Z" (14)
dove Y, e y_ sono le funzioni d’onda nella regione x > 0 e nella regione x < 0,

rispettivamente.



(ii) La condizioneax=a/2 e

VGl =Ae 2 4 peri/? —o, (15)

mentre la condizione a x = 0 & data dalla formula
hZ

/

—5-(W:(0) —v_(0)) —gw(0) = 0.

(16)
(la continuita della funzione d’onda stessa ¢ garantita dall’ipotesi, la (14)). Si ha
nx
——(A-B)-g(A+B)=0. a7
Dalla (17) si ha
h mg
7_7;—5—1:1(—5—%—% as)
B ik _ 1 K- %
mg
mentre (15) da
A
E = _eK(l’ (19)
per cui la condizione implicita sull’energia ¢
K+ 2% 72
rtm e B X (20)
K—73 mg 2

(iii) Dal grafico delle due curve (paragonando la derivata a x = 0) si avvince che il criterio
dell’esistenza ( o I’assenza) di una soluzione con E < 0 &
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(iv) Per E > 0 la soluzione generale ¢

2
(viceversa) a < —. (1)
mg

2mE
Y(x)|+ = C coskx+ D sinkx, y(x)|- = C coskx — D sinkx, k=22

[
(22)
(v) Lacondizioneax= 5 ¢&
ki C
Ccoska/2+Dsinka/2=0, .. tangz—ﬁ. (23)
La condizioneax=0¢
n? "’k c
——((2Dk)—gC=0. .. —=——, (24)
m mg D
per cui
"’k k
2Z —tan—. (25)
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Naturalmente questa equazione si trova anche ponendo semplicemente Kk — ik nella
(20). Dal grafico si vede facilmente (paragonando lo slope a k = 0 dei due membri)
che il criterio per I’esistenza (assenza) di una soluzione nell’intervallo k < g e
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(vi) Icriteri (21) e (26) sono complimentari. In altre parole, lo stato fondamentale ha o
. 2 .
E < 0 con la funzione d’onda (14) (a > ?nhé ), 0 E > 0 con la funzione d’onda (22) (
a< %). Fig. 3 e Fig. 4. Questo ¢ consistente perché questi due stati (o con £ < 0
o con £ > 0) sono pari e senza nodi, rappresentano ambedue lo stato fondamentale
del sistema e non possono esserci contemporaneamente.

Questa situazione ci pone il problema di capire cosa succede se esattamente

h2

mg

27)

N

E facile vedere il limite di @ — 22+ ciod k — 0, mentre il limite di 22 — 4+
(k — 0) ¢ piu delicato (perché singolare).

h2

E piu facile studiare direttamente il caso g = % In questo caso, la funzione lineare

—x+4 se 0<x<¥§,
v =9 .7 . (28)
x+5 per —5<x<0,

ovviamente ¢ pari e risolve 1’equazione di Schrédinger con E =0

hl
—2—l|/”:0, x>0, x<0, 29)
m

soddisfa alla condizione al contorno a x = :l:%, e infine soddisfa anche la condizione
di discontinuita di ¢’ ax = 0:

1> a
- (=1=1)—9==0 30
grazie alla (27).
Infatti, la soluzione (28) si ottine correttamente come limite, sia della (14) che della
(22). Vedi Fig. 5.
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Figura 3: Lo stato fondamentale ha energia negativa se a > g’
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Figura 4: Lo stato fondamentale ha energia positiva se a <
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Figura 5: Lo stato fondamentale ha energia zero se a = % La funzione d’onda ¢ lineare.



