
Compitino 1 di Meccanica Quantistica I (A)
Facoltà di Scienze, M.F.N., Università degli Studi di Pisa,

12 novembre ’08 (A.A. 08/09)

(Tempo a disposizione: 3 ore )

Problema 1.
Un sistema a tre stati è descritto dall’Hamiltoniana

H = E0

 1 0 0
0 −1 0
0 0 0

 .

Si considerino due osservabili rappresentati dagli operatori,

A = a

 0 −i 0
i 0 0
0 0 1

 ; B =
b√
2

 0 1 0
1 0 1
0 1 0

 ;

(i) Trovare gli autovalori e i relativi autostati (normalizzati) di H, di A, e di B.1

(3 punti)

(ii) Supponiamo che, a t = 0, la misura della variabile A abbia dato il risultato, −a. Dire
quali sarebbero i risultati possibili e con quali probabilità rispettive, se si facesse una
misura di B all’istante t. Ponete α ≡ E0t

h̄ per non riempire il foglio di simboli.

(3 punti)

(iii) All’istante t+ε si misura A. Calcolare la probabilità di trovare come risultato il valore
massimo possibile per A, nei tre casi diversi:

1. Se la misura di B non è stata fatta a t;

2. Se la misura di B è stata fatta e si sa che il risultato era bminimo, dove bminimo è
l’autovalore minimo di B.

3. Se la misura di B è stata fatta ma non si conosce il risultato;

(3 punti)

Problema 2.
Una particella di massa m si muove in una buca uni-dimensionale,

V (x) =

{
∞ x <−a, x > 2a
gδ(x) . −a ≤ x ≤ 2a

(1)

(g > 0). Si vuole studiare i primi due livelli energetici. Siano ψ−(x) e ψ+(x) le funzioni
d’onda per x negativo e positivo, rispettivamente. Imponendo la condizione di annullamen-
to della funzione d’onda a x =−a e x = 2a e usando la forma dell’equazione di Schrödinger
nelle due regioni −a < x < 0 e 0 < x < 2a, possiamo porre

ψ−(x) = A sink(x+a), ψ+(x) = B sink(x−2a), k =
√

2mE
h̄

.

1Fate questo punto con grande cura e attenzione, perché si utilizzano questi risultati nelle altre domande (ii) e
(iii).
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(i) Scrivere le relazioni su (A,B,k) che seguono dalle condizioni di (dis-)continuità a x = 0.

(3 punti)

(ii) Dimostrare che tali relazioni ammettono una serie di soluzioni per le quali

ψ(0) = 0,

e determinare l’energia minima fra questo gruppo di livelli.

(3 punti)

(iii) Un altro gruppo di soluzioni esistono, per le quali ψ(0) 6= 0. Facendo uso dei grafi-
ci, dimostrare che lo stato fondamentale del nostro sistema (1) appartiene a questo
secondo gruppo, e determinare la sua energia, nei due limiti, g → 0 e g → ∞.

(3 punti)
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Soluzione

Problema 1.

(i)

|E = E0〉=

 1
0
0

≡ |1〉, |E =−E0〉=

 0
1
0

≡ |2〉, |E = 0〉=

 0
0
1

≡ |3〉 ;

mentre gli autovettori di A sono

|a,1〉(A) =
1√
2

 1
i
0

 =
1√
2
(|1〉+ i|2〉),

|−a〉(A) =
1√
2

 1
−i
0

 =
1√
2
(|1〉− i|2〉),

|a,2〉(A) =

 0
0
1

 = |3〉,

e gli autovettori di B sono

|b〉(B) =
1
2

 1√
2

1

 =
1
2
(|1〉+

√
2|2〉+ |3〉), (2)

|−b〉(B) =
1
2

 1
−
√

2
1

 =
1
2
(|1〉−

√
2|2〉+ |3〉), (3)

|0〉(B) =
1
2

 1
0
−1

 =
1√
2
(|1〉− |3〉), (4)

(ii) Lo stato a t = 0 è dunque

ψ(0) = |−a〉(A) =
1√
2
(|1〉− i|2〉).

Al tempo t lo stato allora è

ψ(t) =
1√
2

(
e−iE0t/h̄ |1〉− i eiE0t/h̄ |2〉

)
. (5)

Le probabilità per trovare B = b,−b,0 sono, rispettivamente (α ≡ E0t
h̄ )

Pb =
1
8
|e−iα−

√
2i eiα|2 =

1
8
(3+2

√
2sin2α) (6)

P−b =
1
8
|e−iα +

√
2i eiα|2 =

1
8
(3−2

√
2sin2α) (7)

P0 =
1
4
. (8)
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(iii) 1. Se la misura di B non è stata fatta a t, lo stato è (5); la probabilità richieta è:

1
4

∣∣(〈1|− i〈2|)
(
e−iα|1〉− ieiα|2〉

)∣∣2 = sin2
α.

2. Se la misura di B è stata fatta e si sa che il risultato era bminimo, dove bminimo è
l’autovalore minimo di B. In questo caso lo stato è |−b〉(B). La probabilità di
trovare il risultato A = a si ottiene sommando la probabilità di trovare lo stato
|a,1〉(A) e lo stato |a,2〉(A):(

1
2
√

2

)2

|1+
√

2i|2 +
1
4

=
5
8
.

3. Se la misura di B è stata fatta ma non si conosce il risultato, bisogna sommare
con appropriato probabilità-peso i casi in cui il risultato era b, −b e 0. In
ciascun caso, va calcolata la somma delle probabilità di trovare lo stato |a,1〉(A)

e lo stato |a,2〉(A):

PA=a =
1
8
(3+2

√
2sin2α) · 5

8
+

1
8
(3−2

√
2sin2α) · 5

8
+

1
4

3
4

=
21
32

.

Problema 2.

(i) Dalle condizioni

ψ−(0) = ψ+(0); ψ
′
+(0)−ψ

′
−(0) =

2mg
h̄2 ψ(0),

seguono due relazioni
A sinka =−B sin2ka; (9)

e
k (B cos2ka−A coska) =

2mg
h̄2 A sinka. (10)

Si deve risolvere il sistema, (9) e (10).

(ii) Dalla prima equazione si ha

sinka(A+2B coska) = 0. (11)

Questo ha soluzioni
sinka = 0 (12)

k =
πn
a

, n = 1,2, . . . .

Sostituendo la (12) nella seconda relazione (10), si trova

B cos2πn−A cosπn = 0,

cioè,
B = (−1)nA.

Per queste soluzioni,
ψ(0) = sinka = 0.

Il livello più basso tra questo gruppo di stati è

k =
π

a
, (13)

i.e.,

E =
π2h̄2

2ma2 .
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Figura 1:

(iii) Un’altra possibilità che segue dalla (11) è che

A+2B coska = 0. A =−2Bcoska.

Sostituendo quest’ultimo nella seconda relazione (10) si ha

cos2ka+2 cos2 ka =−2
2mg
kh̄2 sinkacoska.

Ponendo
ξ = 2ka

si ha
ξ(2cosξ+1) =−4mga

h̄2 sinξ.

Considerando i due grafici,

y = ξ(2cosξ+1), y =−4mga
h̄2 sinξ,

(vedi Fig. 1) si vede facilmente che ci sono una serie infinita di soluzioni; la prima
soluzione sta nell’intervallo,

2π

3
< ξ < π,

i.e.,
π

3a
< k <

π

2a
.

Paragonando con l’eq. (13), vediamo che lo stato fondamentale è priprio questo stato,
i.e., lo stato più basso del secondo gruppo.

Nei limiti, g→ 0, e g→∞, l’intersezione tende a ξ = 2π

3 e ξ = π. L’energia dell stato
fondamentale si avvicina ai valori

E0 →
π2h̄2

18ma2 ,
π2h̄2

8ma2 ,

La funzione d’onda dello stato fondamentale è illustrata in Fig. 2.
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Figura 2:
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