Compitino 1 di Meccanica Quantistica I

Facolta di Scienze, M.E.N., Universita degli Studi di Pisa,
15 dicembre 2010 (A.A. 10/11)

(Tempo a disposizione: 3 ore )

Problema 1.

Un sistema a due stati € caratterizzato dall’Hamiltoniana,

([ Ey—¢ 0
H_( 0 %+€>, £>0 (1
Si vuole misurare una variabile rappresentata dall’operatore
(0 —if
F = ( if 0 ) f>0. 2)

(i) Determinare gli autovalori e gli autostati relativi di F.

(ii) Inizialmente il sisitema si trova nello stato fondamentale. Quali sono i risultati possibili
di una misura di F e relative probabilita?

(iii) Supponiamo che la misura di F' di cui al punto (ii) eseguito all’istante # = 0 abbia dato
’autovalore massimo di F come risultato. Qual’€ la probabilita P(z) che una seconda
misura di F fatta all’istante #(> 0) dia il valore minimo di F? Fare uno schizzo di
P(1).

(N.B. questo ¢ analogo del fenomeno dell’ oscillazione dei neutrini, dei mesoni kappa
neutri, etc.)

Problema 2.

Una particella si muove in un potenziale delta unidimensionale:

»?
H=-—-)\d A>0. 3
La condizione di (dis-)continuita atttraverso x = O¢ data da,
2mA
V(04H) — ¥ (0-) = ——5-w(0), (4)

dove y'(0+) indicano i valori della derivata prima della funzione d’onda nei limiti x — 0
da x > 0 e da x < O rispettivamente.

(i) Dimostrare che la (4) ¢ compatibile con la continuita della densita di corrente.
(ii) Utilizzando la (4) trovare I’energia e la funzione d’onda dello stato legato.

(iii) Supponiamo che la particella & inizialmente legata al potenziale. All’istante t =0 la
costante A si dimezza all’improvviso. Determinare la probabilita che la particella si
liberi dal legame. (Suggerimento: calcolare prima la probabililta che la particella
resti legata.)



Problema 3.

Il teorema di Feynman-Hellman dice che la dipendenza degli autovalori di energia E,(g)
dal parametro g nel potenziale

_r- .
¢ data da dEy () v
n\8) _, 9V
o=l ©)

(i) Dimostrare il teorema.

(ii) Calcolare tale variazione db;;‘;g ) nel caso di un oscillatore lineare:
m0)2 2
g§=0, V(nw)=—x (7)

e discutere il risultato.

Problema 4 (opzionale)
Si consideri un oscillatore armonico bidimensionale di massa m
ﬁ% ﬁy m(l)

H=1 4 D T 2 4y2)
et (P 4y (8)

(i) Determinare lo spettro dell’energia e discutere la degenerazione dei livelli.

(ii)) A r=0ilsistema & descritto da un pacchetto d’onda Wy (r). Esistono i valori di ¢ (> 0),
tali che la probabilita di trovare la particella nell’intorno di r, P(r,)dr, sia uguale a
quella iniziale, P(r,0)dr? Se si, quali?

Formulario: oscillatore armonico unidimensionale

pz mwz x2 mo 2

g2 me
H= %-l- 5 Y (x) = Cy Hy(0x) e 27 :Can(\/jx)e -
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"\ ml/22mn) - \nn 2mt) 7 TV R

Ho(x) = 1, Hl(x) sz,

Hy(x) = 4*—2,  Hs(x) = 8’ —12x,
Hy(x) = 16x* —48x* 412,
1
Enzmﬁ(n—FE),
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Figura 1
Soluzione
Problema 1.
(i) Gli autovalori sono F = f e F = — f con relativi autovettori

PA = (1) N (_11) : ©)

(ii) Lo stato in cui si trova il sistema &

o) = (3) (10)

le probabilita di trovare i due valori possibili di F' sono
21 21
()P =30 [E~fwo) =5 an

(iii) Dopo la misura di F' lo stato in cui si trova il sistema &

1 /1
won =170 = (). (12)
Esso evolve nel tempo come
1 eiet/h

() = 2 (ie—ist/h> : 13)

All’istante ¢ le probabilita di trovare F = % f sono allora

1 ) eist/ﬁ 2 5
Py = ‘2(1,—1) (ieie’/ﬁ) =cos et /h (14)

1 ) eist/h 2 )

Py= ’2(171) (ieisz/ﬁ> = sin’er/h (15)




Problema 2.

A
V= Vie M, K= rZT

Dopo il dimezzamento della costante, la funzione d’onda resta quella di prima, mentre la
funzione d’onda dello stato legato del nuovo sistema ¢:

v = \/Ee‘qx/2 : (17)

La probabilita che la particella resta legata al potenziale dopo il cambiamento della costante
di accoppiamento del potenziale ¢

(16)

8
P=IWwP=3. (18)

La probabilita richiesta ¢

8 1

l——=—. 1

9= 9 19)
Problema 3.
dEq(g)

d ‘o . e oY - Sy (x
- ch /dxqfn(x,g)H(x,p,g)w,,(x,g) - <n|¥|n>+/dxlv,,(x,g)H(x,p,g)agllln(x,g)+

0 v 0 v
+/dx (agwi(x;g)) H(x, pig)Wn(x:8) = (nl 5 m) + Eng(nln) = a5 fn) - (20)

Usando il teorema e usando ’elemento di matrice di x2, si ha

dE,(®) 1
=h =). 21
10 (n+3) @21
Discussione
Questo risultato che segue dal teorema & consistente con il noto risultato E,(®) = ofi(n+
1
2)-
La (21) € un risultato esatto. Integrando in ® si ha
1
E,(®) = oh(n+ §)+C, (22)

doce C ¢ una costante. Considerando il limite ® — 0, quando il sistema tende ad una
particella libera, con lo spettro E > 0, i.e., con lo stato fondamentale Ey = 0, la consistenza
richiede che

Cc=0, (23)

percio

1
E,(®) = ofi(n+ 5) . (24)
Un altro modo per interpretare il risultato (21) € considerare un processo adiabatico in
cui il vlaore di ® ¢ variato col tempo sufficientemente lentamente, di modo che il sistema
che ¢ all’n-simo stato stazionario inizialmente resta all’n-simo stato istantaneo (i.e., n-simo
autostato di H (x, p;®(¢)).) (Teorema adiabtico). Integrando la (21) da ®; a ®; si ha allora

AE, = (02— 1) (n+ ) es)

che ¢ di nuovo in accordo con il risultato esatto.



Problema 4.
En,m:(nh(nJerJr%), nom=0,1,2,.... (26)

Si ha una degenerazione quando per (n,m) distinti la combinazione n+ 2m prende lo stesso
valore. Visto che n prende tutti i possibili numeri naturali, dato il livello N = n+ 2m
(N =0,1,2,...) basta trovare quali possibili valori m prende.

(i) Per N pari,

m:0,1,..%, (27)
percio il grado di degenerazione ¢ g = % + 1.
(ii) Per N dispari,
m:O,l,...NT_l7 (28)
percio g = %
Dunque il grado di degenerazione ¢ dato da
8= [N;rz] (29)
(parte intero di NT”.)
Un pacchetto d’onda evolve nel tempo come
y(r,t) =e Y e 0TIy, L (r) (30)
nom

Per un pacchetto generico (che non ha nessuna proprieta di simmetrie), [y(r)|? ritorna alla

distribuzione originale dopo il periodo classico,
2n
fh=—, 31
0="3 (31)
o dopo un multiplo intero di ty, N 19, N = 1,2,3,....
Tra i casi particolari, un pacchetto d’onda pari in x, y(x,y,0) = y(—x,y,0) contiene
soltanto i componenti con n pari nello sviluppo (30), per cui la distribuzione ritorna a
quella originale dopo meta priodo,

th = o (32)

Se per caso il pacchetto iniziale corrisponde ad uno stato stazionario, naturalmente la
distribuzione |y(r)|? & indipendente dal tempo.

Naturalmente si possono considerare i pacchetti d’onda particolari tali che ¢, 7 0 solo
per multipli di un intero p, i.e.,

n+2m=p,2p,3p,..., (33)
allora tale pacchetto ha una periodicita ridotta

_275

= . 4
fo o (34



