
Compitino 1 di Meccanica Quantistica I
Facoltà di Scienze, M.F.N., Università degli Studi di Pisa,

15 dicembre 2010 (A.A. 10/11)

(Tempo a disposizione: 3 ore )

Problema 1.
Un sistema a due stati è caratterizzato dall’Hamiltoniana,

H =
(

E0− ε 0
0 E0 + ε

)
, ε > 0 (1)

Si vuole misurare una variabile rappresentata dall’operatore

F =
(

0 −i f
i f 0

)
f > 0 . (2)

(i) Determinare gli autovalori e gli autostati relativi di F .

(ii) Inizialmente il sisitema si trova nello stato fondamentale. Quali sono i risultati possibili
di una misura di F e relative probabilità?

(iii) Supponiamo che la misura di F di cui al punto (ii) eseguito all’istante t = 0 abbia dato
l’autovalore massimo di F come risultato. Qual’è la probabilità P(t) che una seconda
misura di F fatta all’istante t(> 0) dia il valore minimo di F? Fare uno schizzo di
P(t).

(N.B. questo è analogo del fenomeno dell’oscillazione dei neutrini, dei mesoni kappa
neutri, etc.)

Problema 2.
Una particella si muove in un potenziale delta unidimensionale:

H =
p2

2m
−λδ(x), λ > 0. (3)

La condizione di (dis-)continuità atttraverso x = 0è data da,

ψ
′(0+)−ψ

′(0−) =−2mλ

h̄2 ψ(0), (4)

dove ψ′(0±) indicano i valori della derivata prima della funzione d’onda nei limiti x→ 0
da x > 0 e da x < 0 rispettivamente.

(i) Dimostrare che la (4) è compatibile con la continuità della densità di corrente.

(ii) Utilizzando la (4) trovare l’energia e la funzione d’onda dello stato legato.

(iii) Supponiamo che la particella è inizialmente legata al potenziale. All’istante t = 0 la
costante λ si dimezza all’improvviso. Determinare la probabilità che la particella si
liberi dal legame. (Suggerimento: calcolare prima la probabililtà che la particella
resti legata.)

1



Problema 3.
Il teorema di Feynman-Hellman dice che la dipendenza degli autovalori di energia En(g)
dal parametro g nel potenziale

H =
p2

2m
+V (x;g) , (5)

è data da
dEn(g)

dg
= 〈n|∂V

∂g
|n〉 . (6)

(i) Dimostrare il teorema.

(ii) Calcolare tale variazione dEn(g)
dg nel caso di un oscillatore lineare:

g = ω, V (x;ω) =
mω2

2
x2 (7)

e discutere il risultato.

Problema 4 (opzionale)
Si consideri un oscillatore armonico bidimensionale di massa m

H =
p̂2

x

2m
+

p̂2
y

2m
+

mω2

2
(x2 +4y2) . (8)

(i) Determinare lo spettro dell’energia e discutere la degenerazione dei livelli.

(ii) A t = 0 il sistema è descritto da un pacchetto d’onda ψ0(r). Esistono i valori di t (> 0),
tali che la probabilità di trovare la particella nell’intorno di r, P(r, t)dr, sia uguale a
quella iniziale, P(r,0)dr? Se sı̀, quali?

Formulario: oscillatore armonico unidimensionale

H =
p2

2m
+

mω2x2

2
, ψn(x) = Cn Hn(αx)e−

1
2 α2x2

= Cn Hn(
√

mω

h̄
x)e−

mω

2h̄ x2
,

Cn =
(

α

π1/22nn!

)1/2

=
(mω

h̄π

)1/4
(

1
2nn!

)1/2

; α≡
√

mω

h̄
;

H0(x) = 1, H1(x) = 2x,

H2(x) = 4x2−2, H3(x) = 8x3−12x,

H4(x) = 16x4−48x2 +12, . . . . . . .

En = ωh̄(n+
1
2
) ;

xnm =


1
α

√
n+1

2 , m = n+1,
1
α

√ n
2 , m = n−1,

0 altrimenti;

(x2)nm =



1
α2

√
(n+1)(n+2)

4 , m = n+2,

1
α2

√
n(n−1)

4 , m = n−2,
1

α2
2n+1

2 , m = n,

0 altrimenti.
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Figura 1:

Soluzione

Problema 1.
(i) Gli autovalori sono F = f e F =− f con relativi autovettori

|F, f 〉= 1√
2

(
1
i

)
; |F,− f 〉= 1√

2

(
1
−i

)
; (9)

(ii) Lo stato in cui si trova il sistema è

|ψ0〉=
(

1
0

)
, (10)

le probabilità di trovare i due valori possibili di F sono

|〈F, f |ψ0〉|2 =
1
2
, |〈F,− f |ψ0〉|2 =

1
2

. (11)

(iii) Dopo la misura di F lo stato in cui si trova il sistema è

|ψ(0)〉= |F, f 〉= 1√
2

(
1
i

)
. (12)

Esso evolve nel tempo come

|ψ(t)〉= 1√
2

(
eiεt/h̄

ie−iεt/h̄

)
. (13)

All’istante t le probabilità di trovare F =± f sono allora

Pf =
∣∣∣∣12 (1,−i)

(
eiεt/h̄

ie−iεt/h̄

)∣∣∣∣2 = cos2
εt/h̄ (14)

P− f =
∣∣∣∣12 (1, i)

(
eiεt/h̄

ie−iεt/h̄

)∣∣∣∣2 = sin2
εt/h̄ (15)
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Problema 2.

ψ =
√

κe−κ|x|, κ =
mλ

h̄2 . (16)

Dopo il dimezzamento della costante, la funzione d’onda resta quella di prima, mentre la
funzione d’onda dello stato legato del nuovo sistema è:

ψ
′ =
√

κ

2
e−κ|x|/2 . (17)

La probabilità che la particella resta legata al potenziale dopo il cambiamento della costante
di accoppiamento del potenziale è

P = |〈ψ′|ψ〉|2 =
8
9

. (18)

La probabilità richiesta è

1− 8
9

=
1
9

. (19)

Problema 3.

dEn(g)
dg

=
d
dg

Z
dxψ

∗
n(x;g)H(x, p;g)ψn(x;g) = 〈n|∂V

∂g
|n〉+

Z
dxψ

∗
n(x;g)H(x, p;g)

∂

∂g
ψn(x;g)+

+
Z

dx
(

∂

∂g
ψ
∗
n(x;g)

)
H(x, p;g)ψn(x;g) = 〈n|∂V

∂g
|n〉+En

∂

∂g
〈n|n〉= 〈n|∂V

∂g
|n〉 . (20)

Usando il teorema e usando l’elemento di matrice di x2, si ha

dEn(ω)
dω

= h̄(n+
1
2
). (21)

Discussione
Questo risultato che segue dal teorema è consistente con il noto risultato En(ω) = ωh̄(n +
1
2 ) .

La (21) è un risultato esatto. Integrando in ω si ha

En(ω) = ωh̄(n+
1
2
)+C , (22)

doce C è una costante. Considerando il limite ω→ 0, quando il sistema tende ad una
particella libera, con lo spettro E ≥ 0, i.e., con lo stato fondamentale E0 = 0, la consistenza
richiede che

C = 0, (23)

perciò

En(ω) = ωh̄(n+
1
2
) . (24)

Un altro modo per interpretare il risultato (21) è considerare un processo adiabatico in
cui il vlaore di ω è variato col tempo sufficientemente lentamente, di modo che il sistema
che è all’n-simo stato stazionario inizialmente resta all’n-simo stato istantaneo (i.e., n-simo
autostato di H(x, p;ω(t)).) (Teorema adiabtico). Integrando la (21) da ω1 a ω2 si ha allora

∆En = (ω2−ω1)(n+
1
2
) , (25)

che è di nuovo in accordo con il risultato esatto.
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Problema 4.

En,m = ωh̄(n+2m+
3
2
) , n,m = 0,1,2, . . . . (26)

Si ha una degenerazione quando per (n,m) distinti la combinazione n+2m prende lo stesso
valore. Visto che n prende tutti i possibili numeri naturali, dato il livello N = n + 2m
(N = 0,1,2, . . .) basta trovare quali possibili valori m prende.

(i) Per N pari,

m = 0,1, . . .
N
2

, (27)

perciò il grado di degenerazione è g = N
2 +1.

(ii) Per N dispari,

m = 0,1, . . .
N−1

2
, (28)

perciò g = N+1
2 .

Dunque il grado di degenerazione è dato da

g =
[

N +2
2

]
(29)

(parte intero di N+2
2 .)

Un pacchetto d’onda evolve nel tempo come

ψ(r, t) = e−iωt
∑
n,m

cn,m e−iω(n+2m)t
ψn,m(r) . (30)

Per un pacchetto generico (che non ha nessuna proprietà di simmetrie), |ψ(r)|2 ritorna alla
distribuzione originale dopo il periodo classico,

t0 =
2π

ω
, (31)

o dopo un multiplo intero di t0, N t0, N = 1,2,3, . . . .
Tra i casi particolari, un pacchetto d’onda pari in x, ψ(x,y,0) = ψ(−x,y,0) contiene

soltanto i componenti con n pari nello sviluppo (30), per cui la distribuzione ritorna a
quella originale dopo metà priodo,

t0 =
π

ω
. (32)

Se per caso il pacchetto iniziale corrisponde ad uno stato stazionario, naturalmente la
distribuzione |ψ(r)|2 è indipendente dal tempo.

Naturalmente si possono considerare i pacchetti d’onda particolari tali che cn,m 6= 0 solo
per multipli di un intero p, i.e.,

n+2m = p,2p,3p, . . . , (33)

allora tale pacchetto ha una periodicità ridotta

t0 =
2π

pω
. (34)
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