
Compitino 2 di Meccanica Quantistica I (A)
Facoltà di Scienze, M.F.N., Università degli Studi di Pisa,

18 dicembre ’08 (A.A. 08/09)

(Tempo a disposizione: 3 ore )

Problema 1.
Un atomo di idrogeno si trova in uno stato di n = 2 (lo stato fondamentale corrisponde

a n = 1).

(i) Dire qual’è il grado di degenerazione del livello n = 2, tenendo conto dello spin dell’e-
lettrone. Dire quali sono i valori possibili di ` e di j, dove 1

J = L+ s ,

dove L e s sono gli operatori (adimensionali) del momento angolare orbitale e dello
spin dell’elettrone, rispettivamente. J è il momento angolare totale.

(ii) Tenendo conto delle interazioni spin-orbita, l’Hamiltoniana ha la forma,

H = H0 +
e2h̄2

2m2c2
1
r3 s ·L, H0 =

p2

2m
− e2

r
.

Dire quali degli operatori L, L2, s, s2, J, e J2 commutano con l’Hamiltoniana H.

(iii) Se il termine delle interazioni spin-orbita è piccolo rispetto al termine Coulombiano,
possiamo in una prima approssimazione trascurare gli stati con n 6= 2, e usare gli
autostati (n = 2) di H0,

|2, `,m;↑〉, |2, `,m;↓〉, m = `,`−1, . . . ,−`,

come stati di base per trovare gli autostati di H. Trovare in questo modo gli autostati
di H, relativi numeri quantici e rispettivi autovalori. In quanti sottolivelli si divide il
livello n = 2, e con quale degenerazione per ciascun sottolivello? Esprimere i risultati
sull’energia in termini di e2/rB e di α = e2/h̄c, e discutere l’ordine di grandezza degli
spostamenti dovuti al termine spin-orbita, rispetto all’energia del livello di Bohr.

(iv) Spiegare perché il calcolo del punto (iii) non è esatto.

Problema 2.
Un nucleo A di spin-parità JP = ( 5

2 )− decade, a riposo, in due nuclei, B di spin-
parità ( 1

2 )+, e C di spin-parità 0−. Sono conservati sia il momento angolare e la parità
nel processo.

(i) Trovare il momento angolare orbitale del moto relativo nello stato finale.

(ii) Sapendo che il nucleo A era originalmente nello stato

(J,Jz) = ( 5
2 , 3

2 ),

determinare la distribuzione angolare della particella C.

(iii) Si misura la componente sz dello spin della particella B, con un apparecchio à la Stern–
Gerlach posto nella direzione ( 1√

2
,0, 1√

2
) (i.e., θ = π

4 , φ = 0). (Fig. 1.) Trovare la

probabilità che il risultato sia sz = + 1
2 .

1Gli autovalori di L2 sono `(`+1); gli autovalori di J2 sono j( j +1).
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Figura 1:
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Soluzione

Problema 1.

(i) ` = 0,1, e perciò j = 1
2 o j = 3

2 .

(ii) 1/r3 commuta sia con L che con s. D’altronde s ·L può essere riscritto come

s ·L =
1
2
(J2−L2− s2). (1)

Si vede allora che questo commuta con l’operatore del momento angolare totale J =
L + s: questo è semplice conseguenza del fatto che per ogni operatore di momento
angolare il suo quadrato commuta con ciascun componente. H dunque commuta con
Ji e, naturalmente, con J2. H commuta inoltre con L2 e con s2 ma non commuta né
con L né con s.

(iii) Il livello n = 2 dell’Hamiltoniana H0 è otto volte degenere, con autostati,

|2, `,m;↑〉, |2, `,m;↓〉, m = `,`−1, . . . ,−`;

qualsiasi combinazioni lineari di questi stati sono ancora autostato di H0. Da quanto
si è detto al punto (ii), per trovare gli autostati dell’Hamiltoniana totale, è sufficiente
diagonalizzare il termine di spin-orbita in questo sottospazio: essi sono autostati di
J2, i.e.,

| 3
2 , 3

2 〉= |2,1,1;↑〉;

| 3
2 , 1

2 〉=
√

1
3 |2,1,1;↓〉+

√
2
3 |2,1,0;↑〉;

| 3
2 ,− 1

2 〉=
√

2
3 |2,1,0;↓〉+

√
1
3 |2,1,−1;↑〉;

| 3
2 ,− 3

2 〉= |2,1,−1;↓〉;

| 1
2 , 1

2 〉
(1) =

√
2
3 |2,1,1;↓〉−

√
1
3 |2,1,0;↑〉;

| 1
2 ,− 1

2 〉
(1) =

√
1
3 |2,1,0;↓〉−

√
2
3 |2,1,−1;↑〉;

| 1
2 , 1

2 〉
(2) = |2,0,0;↑〉;

| 1
2 ,− 1

2 〉
(2) = |2,0,0;↓〉;

Per calcolare l’energia di ciascun sottolivello, vista la degenerazione dovuta alle di-
rezioni del momento angolare totale, basta calcolarla per lo stato di Jz massimo, per
i tre multipletti di J:

∆EJ=3/2 = 〈 3
2 , 3

2 |
(

e2h̄2

2m2c2
1
r3 s ·L

)
| 3

2 , 3
2 〉=

e2h̄2

4m2c2 〈2,1,1| 1
r3 |2,1,1〉

dove abbiamo usato la (1). L’elemento di matrice di 1
r3 si calcola facilmente:

〈2,1,1| 1
r3 |2,1,1〉=

Z
∞

0
dr r2R2

2,1(r)
1
r3 =

1
24

Z
∞

0
dr r e−r =

1
24r3

B
,

dove alla fine del calcolo abbiamo ripristinato il raggio di Bohr. Perciò

∆EJ=3/2 =
e2h̄2

96m2c2r3
B

=
e2

96rB

e4

h̄2c2
=

e2

96rB
α

2 .
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Questo livello è 4 volte degenere. Per lo stato di J = 1
2 con ` = 1,

∆EJ=1/2
1 = (1)〈 1

2 , 1
2 |

(
e2h̄2

2m2c2
1
r3 s ·L

)
| 1

2 , 1
2 〉

(1) =− e2h̄2

2m2c2 〈2,1| 1
r3 |2,1〉=− e2

48rB
α

2 ,

che è 2 volte degenere. Negli 2 stati di onda S (| 1
2 , 1

2 〉
(2)) le interazioni spin-orbita si

annullano e
∆EJ=1/2

2 = 0

Ricapitolando, il livello n = 2 si divide in tre sottolivelli (Fig. 2) con lo splitting
dell’ordine di

O(α2)∼ 10−5,

relativamente all’energia di Bohr, − e2

8rB
.

(iv) Il calcolo non è esatto perché sono stati trascurati gli stati di n 6= 2, nella diagonalizza-
zione dell’Hamiltoniana. L’effetto di elementi non diagonali in n, O(ε), con termini
diagonali dell’ordine di O( e2

rB
) si può studiare, considerando una matrice del tipo,

H =
(

E1 ε

ε E2

)
,

dove E1 e E2 rappresentano le energie di due orbite n1 e n2 (n1 6= n2). La diagonaliz-
zazione di questa matrice dà:

λ ' E1,2±
ε2

E1−E2
.

L’elemento non diagonale ε può essere considerato come una quantità dello stesso
ordine di grandezza dello splitting calcolato nel punto (iii):

ε ∼ O(
e2

rB
α

2).

Perciò le correzioni dovute a tali effetti (mixing tra gli stati non degeneri, i.e., di n
diversi) sono dell’ordine di (

e2

rB
α

2
)2

/

(
e2

rB

)2

∼ α
4,

i.e., formalmente O(α2) rispetto alle correzioni tenute conto nel calcolo al punto (iii).

Nella teoria delle perturbazioni, il calcolo fatto qui al punto (iii) non è altro che la
usuale procedura all’ordine più basso, nella teoria delle perturbazioni degenere.

Problema 2.

(i) Lo spin totale nello stato finale è S = 1
2 . Per formare il momento angolare totale uguale

a 5
2 i valori possibili per ` sono ` = 2 o ` = 3. Tenendo conto della conservazione

della parità, l’unico valore possibile è

` = 2.
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Figura 2:

(ii) Utilizzando la tabella dei coefficienti di Clebsch-Gordan, la funzione d’onda (angolare-
spin) risulta essere:

Φ =

√
1
5

Y2,2(θ,φ)|↓〉+
√

4
5

Y2,1(θ,φ)|↑〉.

La distribuzione angolare della particella C (o di B— la distribuzione è identica,
perché la funzione d’onda del moto relativa è pari per r ↔−r) è dunque data da:

dΩ|Φ|2 = dΩ
( 1

5 |Y2,2(θ,φ)|2 + 4
5 |Y2,1(θ,φ)|2

)
= dφdθ sinθ

3
32π

(sin4
θ+16sin2

θcos2 θ). (2)

È facile verificare cheZ
dφdθ sinθ

3
32π

(sin4
θ+16sin2

θcos2
θ) = 1 :

la distribuzione è correttamente normalizzata.

(iii) Nella direzione θ = π

4 , φ = 0 la funzione d’onda è:

Φ =

√
1
5

Y2,2

(
π

4
,0

)
|↓〉+

√
4
5

Y2,1

(
π

4
,0

)
|↑〉=

√
1
5

1
4

√
15
2π

1
2
|↓〉−

√
4
5

√
15
8π

1
2
|↑〉.

Considerata come funzione d’onda di spin, questa è semplicemente (normalizzando)

1√
17

(|↓〉−4 |↑〉).

La probabilità richiesta è perciò

P↑ =
16
17

' 0.94118.
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