
Compitino 2 di Meccanica Quantistica I (A)
Facoltà di Scienze, M.F.N., Università degli Studi di Pisa,

18 dicembre ’09 (A.A. 09/10)

(Tempo a disposizione: 3 ore )

Problema 1
Due particelle di spin 1

2 interagiscono con l’Hamiltoniana,

H0 = 4 f s1 · s2, f > 0, .

(i) Dire quali sono le variabili conservate. Determinare gli autovalori dell’energia e gli
autostati relativi (in termini di stati dei due spin). ( 3 punti )

(ii) Si accende un campo esterno C = (0,0,C). Solo la prima particella interagisce con il
campo esterno, con il potenziale,

V = 2C · s1 .

Trovare le osservabili conservate e determinare lo spettro del sistema descritto da
H = H0 +V . ( 3 punti )

(iii) Il sistema è nello stato fondamentale di H = H0 +V . Sapendo che la misura di s1z ha
dato il risultato s1z = + 1

2 , determinare la probabilità che una comtemporanea misura
di s2z dia il risultato + 1

2 . ( 2 punti )

Problema 2
N.B. Risolvere il problema esattamente, senza usare la teoria delle perturbazioni.

Una particella di massa m e di carica q è legato ad un centro di forza armonica. Il
sistema è inoltre sottoposto ad un campo magnetico debole esterno, B = (0,0,B). L’Ha-
miltoniana è

H =
(p− q

c A)2

2m
+

mω2

2
r2 ;

il potenziale vettoriale può essere preso come

A = (−By
2

,
Bx
2

,0) .

(i) Considerate prima il caso senza il campo esterno, e.g., B = 0. Determinare l’energia
e relativa degenerazione dei primi tre livelli in ordine ascendente dell’energia, in
questo caso. Dire quali valori del momento angolare orbitale L appaiono fra questi
stati. ( 4 punti )

(ii) Si consideri ora il caso B 6= 0. Tenendo conto soltanto dei termini del primo ordine
in B, elencare tutte le osservabili che commutano con H. Determinare lo spettro
(autovalori dell’energia e la degenerazione) per i livelli corrispondenti 1 agli stati
considerati al punto (i). ( 3 punti )

(iii) (Opzionale) Discutere lo stesso problema tenendo conto anche dei termini O(B2). ( 1
punto )

1Il fatto che B sia un campo debole significa che ogni livello calcolato esattamente comunque ha, nella sua
vicinanza, il livello corrispondente (del sistema B = 0) cui tende nel limite B→ 0. Ripetiamo quindi che non si
richiede di lavorare in un metodo approssimativo – la teoria delle perturbazioni.
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Formulario

Armoniche sferiche

Y0,0 =
1√
4π

,

Y1,0 =
√

3
4π

cosθ, Y2,0 =
√

5
16π

(3cos2
θ−1),

Y1,±1 =∓
√

3
8π

sinθe±iφ, Y2,±1 =∓
√

15
8π

cosθ sinθe±iφ,

Y2,±2 =
√

15
32π

sin2
θe±2iφ,

Oscillatore unidimensionale

ψn(x) = Cn Hn(αx)e−
1
2 α2x2

= Cn Hn(
√

mω

h̄
x)e−

mω

2h̄ x2
,

dove

Cn =
(

α

π1/22nn!

)1/2

=
(mω

h̄π

)1/4
(

1
2nn!

)1/2

; α≡
√

mω

h̄
;

H0(x) = 1, H1(x) = 2x,

H2(x) = 4x2−2, H3(x) = 8x3−12x,

H4(x) = 16x4−48x2 +12, . . . . . . .

Operatori di spin per s = 1/2

sx =
1
2

(
0 1
1 0

)
, sy =

1
2

(
0 −i
i 0

)
, sz =

1
2

(
1 0
0 −1

)
,
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Soluzione

Problema 1.

(i) L’Hamiltoniana è riscritto come

H0 = 2 f (S2− s2
1− s2

2) = 2 f (S2− 3
2
),

dove S = s1 + s2 è lo spin totale. Le variabili conservate sono

S2, Si, i = 1,2,3 .

Visto che lo spin totale può prendere i valori S = 0 o S = 1, gli autovalori dell’energia
sono

E = f , (S = 1), −3 f , (S = 0).

Glu autostati relativi dunque possono essere presi come autostati di (S2,Sz):

|1〉= |1,1〉= |↑〉|↑〉, |2〉= |1,−1〉= |↓〉|↓〉, |3〉= |1,0〉= 1√
2
(|↑〉|↓〉+ |↓〉|↑〉),

|4〉= |0,0〉= 1√
2
(|↑〉|↓〉− |↓〉|↑〉). (1)

(ii) L’Hamiltoniana totale è

H = 2 f (S2− 3
2
)+2C s1z.

L’osservabile conservata è soltanto
Sz .

Calcolando gli elementi di matrice di H nella base (1), si ha
f +C 0 0 0

0 f −C 0 0
0 0 f C
0 0 C −3 f

 .

Diagonalizzandola si trovano gli autovalori dell’energia:

E1 = f +C, E2 = f−C, E3 =− f +
√

4 f 2 +C2, E4 =− f−
√

4 f 2 +C2 .

(iii) La funzione d’onda dello stato fondamentale (E4) è una combinazione lineare di |3〉 e
|4〉, i.e., una combinazione di |↑〉|↓〉 e |↓〉|↑〉. Quindi non è necessario determinare la
funzione d’onda esplicitamente per poter concludere che la probabilità richiesta è 0.

Problema 2.

(i) I livelli di un oscillatore tridimensionale isotropo è

En1,n2,n3 = ω h̄(n1 +n2 +n3 +
3
2
).

Perciò i primi tre livelli sono

E0 =
3
2

ω h̄, E1 =
5
2

ω h̄ E2 =
7
2

ω h̄
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con relativa degenerazione

d0 = 1, d1 = 3, d2 = 6,

e in generale,

dN =
(N +1)(N +2)

2
i.e., il numero di insieme degli interi non negativi (n1,n2,n3) tali che

n1 +n2 +n3 = N .

Dalle funzioni d’onda relative si avvince che l’N-simo livello contiene gli stati con il
momento angolare orbitale L

L = N, N−2, . . . ,1(0),

con i valori della stessa parità. Perciò per i primi tre livelli i valori del momento
angolare orbitale sono:

L = 0, L = 1, L = 2,0

rispettivamente.

(ii)

H =
1

2m

(
(px +

qBy
2c

)2 +(py−
qBx
2c

)2 + p2
z

)
+

mω2

2
r2

=
p2

2m
+

mω2

2
r2 +

qB
2mc

(ypx− xpy)+
q2B2

8mc2 (x2 + y2)

=
p2

2m
+

mω2

2
r2− qBh̄

2mc
Lz +

q2B2

8mc2 (x2 + y2) . (2)

Trascurando i termini O(B2), le variabili conservate sono

L2, Lz, P

Quindi gli autostati dell’oscillatore tridimensionale, presi come autostati di L2, Lz
sono autovalori dell’Hamiltoniana, con autovalori,

E0 =
3
2

ω h̄, ELz
1 =

5
2

ω h̄− qBh̄
2mc

Lz, (Lz = 1,0,−1);

ELz
2 =

7
2

ω h̄− qBh̄
2mc

Lz, (Lz = 2,1,0,−1,−2). (3)

dove nell’ultimo gruppo di livelli, il livello corrispondente a Lz = 0 è doppiamente
degenere (L = 2,0).

(iii) Tenendo conto anche di termini O(B2), L2 non commuta più con H, tuttavia Lz conti-
nua ad essere un buon numero quantico. Il problema si risolve lo stesso esattamente,
poiché prima risolvendo il problema

H =
p2

2m
+

mω2

2
r2 +

q2B2

8mc2 (x2 + y2) .

si ha un oscillatore non isotropo, con i livelli,

Ẽn1,n2,n3 = ω̃h̄(n1 +n2 +1)+ωh̄(n3 +
1
2
), ω̃ =

√
ω2 +

q2B2

4m2c2 .

Ora è facile trovare tutti i livelli esattamente.
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1. Lo stato fondamentale ha n1 = n2 = n3 = 0. Esso ha Lz = 0, per qui

Ê0 = ω̃h̄+
1
2

ωh̄ .

2. I tre stati corrispondenti a N = 1 dell’oscillatore isotropo, sono divisi in

Ê0,0,1
1 = ω̃h̄+

3
2

ωh̄,

(che non ha contributo del termine ∝ B perché Lz = 0); i due stati degeneri
(n1,n2,n3) = (1,0,0),(0,1,0) devono essere ricombinati come autostati di Lz,
i.e.,

ψ(1,0,0)± iψ(0,1,0) ∝∓Y1,±;

questi ultimi sono autostati dell’energia, con

ÊLz=1
1 = 2ω̃h̄+

1
2

ωh̄− qBh̄
2mc

;

ÊLz=−1
1 = 2ω̃h̄+

1
2

ωh̄+
qBh̄
2mc

.

3. Il terzo livello dell’oscillatore isotropo corrisponde a

(n1,n2,n3) = (0,0,2), (Lz = 0), (1,0,1),(0,1,1), (Lz =±1),
(2,0,0),(0,2,0),(1,1,0), (Lz =±2,0) (4)

Gli autostati dell’energia sono le combinazioni di questi stati che sono autostati
di Lz:

ψ0,0,2 (Lz = 0); ψ1,0,1± iψ0,1,1(Lz =±1);

ψ2,0,0 +ψ0,2,0, (Lz = 0); ψ2,0,0−ψ0,2,0±
√

2ψ1,1,0, (Lz =±2);

con relativi valori di energia

ÊLz=0
0,0,2 = ω̃h̄+

5
2

ωh̄;

ÊLz=±1
2 = 2ω̃h̄+

3
2

ωh̄∓ qBh̄
2mc

.

ÊLz=0
2 = 3ω̃h̄+

1
2

ωh̄.

ÊLz=±2
2 = 3ω̃h̄+

1
2

ωh̄∓ qBh̄
mc

.

La degenerazione trovata al punto (ii) è dunque eliminata.
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