
Compitino 1 di Meccanica Quantistica I

Facoltà di Scienze, M.F.N., Università degli Studi di Pisa,
7 ottobre 2005 (A.A. 05/06)

(Tempo a disposizione: 2.5 ore. )

Problema 1. Un oscillatore armonico descritto da

H− =
p2

2m
+

1
2

mω
2
0 x2, (1)

si trova nello stato fondamentale. All’istante t = 0, la costante di richiamo si riduce
all’improvviso di fattore 4: l’Hamiltoniana a t > 0 è:

H+ =
p2

2m
+

1
2

mω
2 x2, ω =

ω0

2
. (2)

Evidentemente, ψ(x,0) è lo stato fondamentale di H−. Si vuole studiare come evolve il
sistema col tempo.

(i) Quale sarebbe la probabilità P(x)dx di trovare la particella nell’intervallo (x,x+dx), se
la misura fosse fatta a t = 0?

(ii) Esistono gli istanti t (t > 0) in cui la distribuzione della probabilità P(x)dx è identica
a quella a t = 0? Quali?

(iii) Dire se il sistema è in un autostato dell’energia (i.e., di H+), dopo la riduzione della
costante di richiamo. Se non lo è, determinare la probabilità che il sistema si trovi
nello stato fondamentale della nuova Hamiltoniana;

(iv) Calcolare il valor medio dell’energia 〈ψ|H+|ψ〉 a t = 0;

(v) Dire come il valor medio 〈ψ(t)|H+|ψ(t)〉 dipende dal tempo.

Problema 2.
Si consideri una particella in un potenziale delta.

(i) Dire quanti stati legati ci sono nel potenziale

V (x) =−gδ(x), g > 0. (3)

e quali sono i livelli energetici (con E < 0).

(ii) Discutere il numero di stati legati come funzione di a e b (con altri parametri del
sistema fissi) nel potenziale

V (x) =−gδ(x+a)−gδ(x)−gδ(x−b), g > 0, a,b > 0. (4)

Rispondere senza fare il calcolo esplicito, considerando le varie situazioni.
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Formulario
Alcuni elementi di matrici dell’oscillatore armonico (con la frequenza angolare ω)

sono:

(x2)nm =


h̄

mω

√
(n+1)(n+2)

4 , se m = n+2,

h̄
mω

√
n(n−1)

4 , se m = n−2,
h̄

mω

2n+1
2 , se m = n,

(5)

(p2)nm =


−mω h̄

√
(n+1)(n+2)

4 , se m = n+2,

−mω h̄
√

n(n−1)
4 , se m = n−2,

mω h̄ 2n+1
2 , se m = n,

(6)

Le relazioni tra operatori x, p e a,a† per un oscillatore di frequenza angolare ω:

a =
√

mω

2h̄
x+ i

√
1

2mωh̄
p; a† =

√
mω

2h̄
x− i

√
1

2mωh̄
p, (7)

x =

√
h̄

2mω
(a+a†); p =−i

√
mωh̄

2
(a−a†). (8)
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Soluzione
Problema 1.

(i)

P(x)dx = |ψ(x)|2 dx =
(mω

π h̄

)1/2
e−

mω

h̄ x2
. (9)

(ii) No. La probablilità richiesta è

|〈ψ0+|ψ0−〉|2 =
√

mω

πh̄

√
mω0

πh̄

∣∣∣∣Z dxe−
mω

2h̄ x2
e−

mω0
2h̄ x2

∣∣∣∣2

=
2
√

2
3

' 0.743 . . . . (10)

(iii)
ψ(t) = ∑

n
cn e−i Ent

h̄ ψn(x), En = ω h̄(n+
1
2
). (11)

Visto che ψ(0) è pari, cn 6= 0 soltanto per n pari in (11). Risulta che a t = πn
ω

,
n = 1,2, . . . , la funzione d’onda ritorna alla stessa forma che aveva a t = 0, perciò,

P(x)|t= πn
ω

= P(x)|t=0, n = 1,2, . . . . (12)

(iv) A t = 0,

〈ψ|H+|ψ〉= 〈ψ| p2

2m
+

1
2

mω
2 x2|ψ〉

=
1

2m
mω0 h̄

2
+

mω2

2
h̄

2mω0
=

5
8

ω h̄. (13)

Oppure,

〈ψ|H+|ψ〉= 〈ψ| p2

2m
+

1
2

mω
2 x2, |ψ〉= 〈ψ| p2

2m
+

1
2

mω
2
0 x2− 3

2
mω

2 x2|ψ〉

=
1
2

ω0 h̄− 3
2

mω
2〈x2〉=

1
2

ω0 h̄− 3
2

mω
2 h̄

2mω0
=

5
8

ω h̄. (14)

Un metodo alternativo ancora: si introducono gli operatori di creazione e di
distruzione come (7), (8) per H+; analogamente con b e b† per H−.

a+a† =

√
2mω

h̄
x =

1√
2

(b+b†); (15)

a−a† = i

√
2

mω h̄
p =

√
2(b−b†); (16)

Perciò
a =

3
2
√

2
b− 1

2
√

2
b†, (17)

a† =− 1
2
√

2
b+

3
2
√

2
b†, (18)

Allora

H+ = ω h̄(a† a+
1
2
) = ω h̄ [(− 1

2
√

2
b+

3
2
√

2
b†)(

3
2
√

2
b− 1

2
√

2
b†)+

1
2
)]

= ω h̄ [−3
8

b2 +
1
8

bb† +
9
8

b† b−−3
8

b†2 +
1
2
] (19)

Nello stato fondamentale dell’oscillatore H− soltanto il termine bb† e la costante
contribuiscono, dando il risultato

〈0−|H+|0−〉= ω h̄ [
1
8

+
1
2
] =

5
8

ω h̄. (20)
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(v) Il valor medio di H+, un operatore indipendente dal tempo, è costante del moto in
qualsiasi stato.

Problema 2.

(i) Un solo stato legato (la condizione di continuità determina univocamente la funzione
d’onda, normalizzabile), con

ψ =
√

κe−κx, κ =
√
−2mE

h̄
=

mg
h̄2 . (21)

(ii) Uno, due o tre a seconda dei parametri (a,b,g,m). In generale, ci si aspetta che a a e b
ambedue molto grandi il sistema avrà una quasi degenerazione tripla (tre stati
legati), mentre a a→ 0, b 6= 0, oppure nel limite b→ 0, a 6= 0, il sistema avrà al
massimo due stati legati. Infine, se a = b = 0 il sistema degenera al caso di un
singolo potenziale delta, −3gδ(x). con un solo stato legato.

************************************

(iii) Per la risposta alle domande, bastano i punti (i) e (ii) sopra.

Per completezza, risolviamo il sistema, ad esempio, per a = b. La condizione di
continuità a x = a è:

A = Beκa +C e−κa; (22)

−κA−κ(Beκa−C e−κa) =−2mg
κ h̄2 A; (23)

la condizione di continuità a x = 0 è:

κ(B−C)−κ(C−B) =−2mg
κ h̄2 (B+C). (24)

Dalla (22) e (23) si trova
Be2κa

C
=

mg/κh̄2

1−mg/κh̄2 ; (25)

menre dalla (24) si ha
B
C

=
1−mg/κh̄2

1+mg/κh̄2 . (26)

Perciò l’equazione che determina l’energia di un livello pari è

e−2κa =
(1− mg

κh̄2 )2

mg
κh̄2 (1+ mg

κh̄2 )
=

(κ− mg
h̄2 )2

mg
h̄2 (κ+ mg

h̄2 )
(27)

Per vedere se questa equazione ammette soluzioni, bisgona paragonare la derivata
prima (lo slope) delle due curve a κ = 0, cioè −2a versus −3h̄2/mg. È chiaro dal
grafico che per a≤ 3 h̄2

2mg c’è una sola soluzione alla destra dello zero,

κ >
mg
h̄2 ; (28)

mentre a > 3 h̄2

2mg c’è un’altra soluzione (il secondo stato di eccitazione) a

κ <
mg
h̄2 . (29)
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Per completezza, per la funzione d’onda dispari (per la quale,
ψ(x)|x<0 =−ψ(−x)|x>0), la condizione di continuità a x = a è lo stesso di prima; la
condizione a x = 0 è semplicemente

B+C = 0. (30)

Sostituendo C =−B in (25) si ha

e2κa =− mg/κh̄2

1−mg/κh̄2 =− mg/h̄2

κ−mg/h̄2 . (31)

Oppure

e−2κa =−κ−mg/h̄2

mg/h̄2 . (32)

Questa equazione ha una o zero soluzioni, a seconda delle incrinazioni a κ = 0 delle
due curve. Dal grafico si vede che per a≤ h̄2

2mg non ci sono soluzioni; per a > h̄2

2mg

c’è una soluzione, a κ < mg/h̄2.

Ricapitolando, c’è un solo stato legato per a≤ h̄2

2mg ; due stati legati (uno pari e uno

dispari) per h̄2

2mg < a≤ 3 h̄2

2mg ; infine, ci sono tre stati legati per a > 3 h̄2

2mg .
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