
Compitino 2 di Meccanica Quantistica I (A)
Facoltà di Scienze, M.F.N., Università degli Studi di Pisa,

20 dicembre ’07 (A.A. 07/08)

(Tempo a disposizione: 3 ore )

Problema 1.
Un nucleo (A) di spin-parità JP = 1

2
+

, a riposo, decade in due nuclei, il nucleo B di spin-
parità 1

2
+

e un altro nucleo C di spin-parità 0−. Il momento angolare totale è conservato
nel processo. Il nucleo A, prima del decadimento, è nello stato (J,Jz) = ( 1

2 , 1
2 ). Vedi Fig.

1.

(i) Dire quali sono i valori possibili del momento angolare orbitale (`) del moto relativo
del sistema (B-C), senza assumere la conservazione della parità. (2 punti)

(ii) Scrivere la funzione d’onda normalizzata dello stato finale (B−C), nei due casi; (a) la
parità è conservata; (b) la parità è violata (i.e., con la parità totale dello stato finale
uguale a (−)). Considerate solamente la parte angolare-spin della funzione d’onda.
(2 punti)

(iii) Se la parità non è conservata esattamente, la funzione d’onda finale (sempre solo
angolare-spin) sarà una combinazione lineare delle due del punto (ii). Siano a e
b i coefficienti relativi (incogniti, in generale complessi), tali che |a|2 + |b|2 = 1. De-
terminare la distribuzione angolare del nucleo B, in termini di a e b. La distribuzione
angolare di C è uguale a quella di B?

(3 punti)

(iv) Determinare il valor medio dell’operatore

F = s · p
|p|

,

(polarizzazione lungo la direzione del moto) dove s è lo spin del nucleo B, p è il suo
impulso, considerato classicamente e nella direzione di

r = rB− rC ∝ (sinθcosφ,sinθsinφ,cosθ) ,

nello stato di cui al punto (iii). In particolare, determinare 〈F〉 nel caso in cui la
parità è conservata e discutere il risultato.

(1 punti)

Problema 2.
Si consideri un oscillatore armonico bi-dimensionale con un termine aggiuntivo di

interazione,

H =
p2

x + p2
y

2m
+

mω2

2
(x2 + y2)+gxy .

(i) Trovare gli operatori impulsi PX ,PY relativi alle nuove coordinate

X ≡ x+ y√
2

, Y ≡ x− y√
2

,

in termini di px, py, e dimostrare che essi soddisfano i commutatori canonici,

[X ,PX ] = ih̄, [Y,PY ] = ih̄, [X ,PY ] = [Y,PX ] = 0 .

(4 punti)
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(ii) Scrivere l’Hamiltoniana in termini delle nuove variabili e discutere come lo spettro del
sistema (i livelli energetici e la degenerazione) depende da g

(3 punti)
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Figura 1:
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Soluzione

Problema 1.

(i) Visto che lo spin totale è 1/2, il momento angolare orbitale è ` = 0 oppure ` = 1.

(ii) Caso (a): la conservazione della parità impone che ` sia 1. La funzione d’onda è

ψ+ =

√
2
3

Y1,1(θ,φ)|↓〉−
√

1
3

Y1,0(θ,φ)|↑〉=− 1√
4π

(sinθeiφ |↓〉+ cosθ |↑〉).

Caso (b): in questo caso si ha ` = 0: la funzione d’onda è:

ψ− = Y0,0(θ,φ)|↑〉=
1√
4π

|↑〉.

(iii)
Ψ = aψ+ +bψ− =

1√
4π

[ (b−acosθ) |↑〉−a sinθeiφ |↓〉 ] (1)

La distribuzione angolare è data da:

dP = dθsinθdφ
1

4π
[ |b−acosθ|2 +|a sinθeiφ|2 ] = dθsinθdφ

1
4π

[1−2ℜ(ab∗)cosθ ] .

Scambiare B e C equivale a r →−r, o θ → π−θ, cioè, cosθ →−cosθ. La distribu-
zione per B e qualla per C non coincidono per ℜ(ab∗) 6= 0, cioè, in generale, quando
la parità non è conservata.

(iv) Calcolando il valor medio dell’operatore

F = s · p
|p|

=
1
2

(
cosθ sinθe−iφ

sinθeiφ −cosθ

)
nello stato (1), si ha

1
2

Z
dθsinθdφ

1
4π

(cosθ−2ℜ(ab∗)) =−ℜ(ab∗).

Esso si annulla se la parità è conservata (b = 0). Ma tale risultato è da aspettarsi,
poiché l’operatore F è dispari per parità, mentre lo stato Ψ ha una parità definita,
(−), rispetto al moto orbitale.

Problema 2.

(i) Risolvendo per x,y, si ha

x =
X +Y√

2
, y =

X −Y√
2

,

pX =−ih̄
∂

∂X
=− ih̄√

2
(

∂

∂x
+

∂

∂y
)=

1√
2
(px + py); pY =−ih̄

∂

∂Y
=− ih̄√

2
(

∂

∂x
− ∂

∂y
)=

1√
2
(px− py);

la verifica che essi soddisfano la regola di commutazione canonica standard è ovvia.
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(ii)
p2

x + p2
y = P2

X +P2
Y ,

x2 + y2 = X2 +Y 2, xy =
X2−Y 2

2
.

Sostituendo questi, H diventa

H =
P2

X
2m

+
mω2

2
X2 +

P2
Y

2m
+

mω2

2
Y 2 +

g
2

(X2−Y 2)

=
P2

X
2m

+
m [ω(1)]2

2
X2 +

P2
Y

2m
+

m [ω(2)]2

2
Y 2, (2)

dove
ω

(1)2 = ω
2 +

g
m

, ω
(2)2 = ω

2− g
m

.

(iii) • Finché
|g|< mω

2,

il sistema è un oscillatore bi-dimensionale non isotropo, con lo spettro,

En1,n2 =
√

ω2 +
g
m

h̄(n1 +
1
2
)+

√
ω2− g

m
h̄(n2 +

1
2
),

con
n1 = 0,1,2, . . . , n2 = 0,1,2, . . .

Se g è tale che il rapporto √
ω2 +

g
m

/

√
ω2− g

m

è razionale, ci sono delle degenerazioni; altrimenti non ci sono degenerazioni.

• Per
g = mω

2, oppure g =−mω
2,

si ha un oscillatore in una direzione e un moto libero nell’altro. Per es., per
g = mω2, lo spettro consiste in uno spettro discreto dell’oscillatore in direzione
X ,

EN =
√

2ω h̄(N +
1
2
),

sommato al continuo del moto libero nella direzione Y , i.e.,

E =
√

2ω h̄(N +
1
2
)+

P2

2m
≥ ω h̄√

2
, −∞ < P < ∞, N = 0,1,2, . . .

La degenerazione dipende dall’energia. Se chiamiamo con D il grado di dege-
nerazione,

1. Lo stato fondamentale, E = ω h̄/
√

2 è singolo (P = 0). D = 1.

2. Ogni livello ω h̄/
√

2 < E < 3ω h̄/
√

2 è doppio. D = 2.

3. Il livello E = 3ω h̄/
√

2 è triplo: D = 3.

4. Per 3ω h̄/
√

2 < E < 5ω h̄/
√

2, D = 4,

etc. In generale, si ha

D = 2n+1, per E = (2n+1)ω h̄/
√

2;

D = 2n, per (2n−1)ω h̄/
√

2 < E < (2n+1)ω h̄/
√

2 .
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Figura 2:

• Infine, per g > mω2, o g < −mω2, il sistema è instabile: non ha uno stato
fondamentale, un po’ come in un sistema unidimensionale con il potentiale,

V =−x2,

(Fig. 2).
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