Compitino 1 di Meccanica Quantistica (A)
4 Novembre 2016 - Universita di Pisa

(tempo a disposizione: 2 ore)

Problema 1
Un sistema a due stati ha una Hamiltoniana
H = Byl + hw (‘; é) . (1.1)

(1) Determinare gli autostati e gli autovalori di H.

All'istante t = 0 si misura la variabile F, descritta da
~ 3 0
F-f(0 _1> , f>0. (1.2)

Supponiamo che questa misura abbia dato il risultato maggiore fra i possibili
valori di F, fy.

(2) Calcolare la probabilita Py (t) che al tempo ¢ la misura di F' dia di nuovo
il risultato fi. Calcolare anche la probabilitdh P_(¢) per la misura di f_.

(3) Calcolare la probabilita PJ(rl)(Qt) che all’istante 2¢ la misura di F' dia di
nuovo il risultato fi nel seguente caso: si supponga che la misura di F' al
tempo t sia stata eseguita, ma che l'osservatore della seconda misura non
abbia accesso al risultato della misura al tempo t.

(4) Calcolare la probabilita PJ(FQ)(Qt) che la misura di F all’istante 2t dia il
risultato fi, nel caso la misura di F' non venga fatta al tempo t. Di-

mostrare che PS)(Zt) > PJ(FQ)(Qt) per un generico valore di t.

Problema 2
Consideriamo due particelle di massa m con una Hamiltoniana
2 2
P1 Py 1 2
=L 22 (- 1.
om T om T 2@ (1)

La (1.3) puo essere considerata come una schematizzazione, molto rozza, del-
I’Hamiltoniana di una molecola biatomica omonucleare. I livelli energetici sono
definiti come gli autovalori di H nel sistema del centro di massa.

1) Scrivere i valori dei livelli energetici.

2) Si consideri la molecola di idrogeno e quella di deuterio (nucleo formato
da un protone e da un neutrone, di massa circa uguale). Le due molecole
sono identiche dal punto di vista elettronico, quindi possiamo assumere
che la costante elastica k sia la stessa nei due casi. Quando la molecola
passa dal primo stato eccitato allo stato fondamentale emette un fotone.
C’¢ una relazione fra la frequenza del fotone emesso nel caso della molecola
D5 e quello per la molecola Hy?



Problema 3

Una particella di massa m & soggetta al potenziale
2.2

Fwiz®, x>0,
V(z) =

o0, z<0.

(i) Scrivere ’energia e la funzione d’onda dello stato fondamentale.

(ii) Dire qual & lo spettro completo dell’energia.



Soluzione Problema 1

1)

Gli autostati dell’Hamiltoniana sono

m=>(1)s m=-5(4): (14)

con relative energie
Ei=FEy+ hw, FEo=Fy— hw. (15)

2)

Invertendo la relazione

H=(¢ )=+, =(7)=Jm-1 0o

sono gli autostati di F'. Dunque a t = 0, dopo la misura, il sistema si trova nello
stato |+). Al tempo ¢, lo stato e

*€7i ot/ i efiwt eiwt ~ i efiwt 6iwt
(1)) = e E0t/0 \@( 1) +e*7[2)) \/5( 1) +e72)) . (1.7)

L’ampiezza di probabilita di ritrovare il sistema nello stato |+) &
1 ) .
A= {+|v() = i(e_“’”S + ™) = coswt (1.8)
da cui la probabilita
Py (t) = cos® wt . (1.9)

La probabilita di trovare il sistema nello stato |—) & invece
P_(t) = sin® wt . (1.10)

Se a t = 0 la misura avesse dato il risultato f_, il sistema si troverebbe nello
stato |—) a tempo ¢t = 0+. Un calcolo analogo dimostra che le probabilita di
trovare i risultati fi della misura di F a tempo ¢ sono

P, (t) = sin® wt , P_(t) = cos® wt . (1.11)

3)

In questo caso la probabilita di trovare il risultato fi all’istante 2t ¢ data
dalla probabilita composta:

P (2t) = (P (1)) + Py (1) P_(t) = cos* wt + sin wt . (1.12)

4)



Nel caso non c¢’e’ stata nessuna misura a ¢, il sistema evolve fino al tempo 2t
secondo l’equazione di Schrodinger. Dunque la misura di F a tempo 2¢ dara il
risultato fi con probabilita,

PP (2t) = cos® 2wt . (1.13)
Usando cos 2wt = cos? wt — sin® wt, si ha
PJ(FZ)(Qt) = (cos? wt —sin® wt)? < Pil)(Qt) , (1.14)
per generico valore di t. La differenza e da attribuire al termine di interferenza,
tipica di meccanica quantistica.
Soluzione Problema 2

(1) Cambiando le variabili a quelle del C.M. e del moto relativo,

1+ X2
2 )

T = X1 — To, Pz—ihi pz—ihg, (1.15)

X = X’ o

I’Hamiltoniana diventa

P pr 1 m
H=_—+4+" 4 _ka? M =2 =—. 1.1
oM o T2 o RE (1.16)

La parte del moto relativo (che & la sola parte di interesse nel C.M., P = 0)

&
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I valori energetici sono dunque

1
En:wh(n+§), n=20,1,2,.... (1.18)

Un’altra forma di cambio variabili possibile e

X1+ T2 T — X2 . 0 . 0
X = B) s Y = B) y PX—*ZhaiX, PY—*ZFL*Y
(1.19)

Il risultato & uguale.
(2) Nel caso della molecola di deuterio, m — 2m, quindi

~ 1 w
E,=0h(n+=), n=0,1,2,..., 0=— 1.20
(n+5) o )
La frequenza del fotone emesso nella transizione di Dy, o = @/2m, & piu
piccola di fattore v/2, rispetto a quella del fotone emesso nella transizione
di Hy, v =w/2m, ie., 7 = v/V2.



Soluzione Problema 2

Visto che ¥(0) = 0 e visto che I’equazione di Schroedinger a = > 0 ¢ la stessa
dell’oscillatore senza il muro a x = 0, le soluzioni di questo problema sono
semplicemente tutti i livelli dispari, i.e., con le funzioni d’onda dispari, che
si annullano a x = 0. Le funzioni d’onda sono v, (z) con n dispari, con la
costante di normalizzazione v/2 volte pitt grande. Si noti che i livelli dispari
n = 1,3,5, ... delloscillatore usuale hanno n = 1,3, 5, ... nodi, rispettivamente.
Nella semiretta, 0 < = < oo, tralasciando lo zero a x = 0, queste funzioni
d’onda hanno esattamente 0, 1,2,.. nodi, in accordo con il teorema di oscil-
lazione. Questa ¢ un’ulteriore conferma che le autofunzioni trovate cosi, senza
nessun calcolo, esauriscono tutti i possibili stati discreti.

(i) Lo stato fondamentale:

Ey = gwﬁ, Yolz) = Cae™ 507" (1.21)
o 203/2 mw
C="gr. a=7" (1.22)
(ii) Lo spettro completo & dato da
E, :wh(2n+g), n=0,1,2,.. (1.23)



