
Compitino 1 di Meccanica Quantistica (A)

4 Novembre 2016 - Università di Pisa

(tempo a disposizione: 2 ore)

Problema 1

Un sistema a due stati ha una Hamiltoniana

H = E01 + ~ω
(

0 1
1 0

)
. (1.1)

(1) Determinare gli autostati e gli autovalori di H.

All’istante t = 0 si misura la variabile F, descritta da

F̂ = f

(
3 0
0 −1

)
, f > 0 . (1.2)

Supponiamo che questa misura abbia dato il risultato maggiore fra i possibili
valori di F, f+.

(2) Calcolare la probabilità P+(t) che al tempo t la misura di F dia di nuovo
il risultato f+. Calcolare anche la probabilità P−(t) per la misura di f−.

(3) Calcolare la probabilità P
(1)
+ (2t) che all’istante 2t la misura di F dia di

nuovo il risultato f+ nel seguente caso: si supponga che la misura di F al
tempo t sia stata eseguita, ma che l’osservatore della seconda misura non
abbia accesso al risultato della misura al tempo t.

(4) Calcolare la probabilità P
(2)
+ (2t) che la misura di F all’istante 2t dia il

risultato f+, nel caso la misura di F non venga fatta al tempo t. Di-

mostrare che P
(1)
+ (2t) > P

(2)
+ (2t) per un generico valore di t.

Problema 2

Consideriamo due particelle di massa m con una Hamiltoniana

H =
p21
2m

+
p22
2m

+
1

2
k(x1 − x2)2 (1.3)

La (1.3) può essere considerata come una schematizzazione, molto rozza, del-
l’Hamiltoniana di una molecola biatomica omonucleare. I livelli energetici sono
definiti come gli autovalori di H nel sistema del centro di massa.

1) Scrivere i valori dei livelli energetici.

2) Si consideri la molecola di idrogeno e quella di deuterio (nucleo formato
da un protone e da un neutrone, di massa circa uguale). Le due molecole
sono identiche dal punto di vista elettronico, quindi possiamo assumere
che la costante elastica k sia la stessa nei due casi. Quando la molecola
passa dal primo stato eccitato allo stato fondamentale emette un fotone.
C’è una relazione fra la frequenza del fotone emesso nel caso della molecola
D2 e quello per la molecola H2?
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Problema 3

Una particella di massa m è soggetta al potenziale

V (x) =

{
m
2 ω

2x2 , x > 0 ,

∞ , x < 0 .

(i) Scrivere l’energia e la funzione d’onda dello stato fondamentale.

(ii) Dire qual è lo spettro completo dell’energia.
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Soluzione Problema 1

1)
Gli autostati dell’Hamiltoniana sono

|1〉 =
1√
2

(
1
1

)
; |2〉 =

1√
2

(
1
−1

)
; (1.4)

con relative energie

E1 = E0 + ~ω , E2 = E0 − ~ω . (1.5)

2)
Invertendo la relazione

|+〉 =

(
1
0

)
=

1√
2

(|1〉+ |2〉) , |−〉 =

(
0
1

)
=

1√
2

(|1〉 − |2〉) (1.6)

sono gli autostati di F . Dunque a t = 0, dopo la misura, il sistema si trova nello
stato |+〉. Al tempo t, lo stato è

|ψ(t)〉 = e−iE0t/~ 1√
2

(e−iωt|1〉+ eiωt|2〉) ∼ 1√
2

(e−iωt|1〉+ eiωt|2〉) . (1.7)

L’ampiezza di probabilità di ritrovare il sistema nello stato |+〉 è

A = 〈+|ψ(t)〉 =
1

2
(e−iωt + eiωt) = cosωt (1.8)

da cui la probabilità
P+(t) = cos2 ωt . (1.9)

La probabilità di trovare il sistema nello stato |−〉 è invece

P−(t) = sin2 ωt . (1.10)

Se a t = 0 la misura avesse dato il risultato f−, il sistema si troverebbe nello
stato |−〉 a tempo t = 0+. Un calcolo analogo dimostra che le probabilità di
trovare i risultati f± della misura di F a tempo t sono

P̃+(t) = sin2 ωt , P̃−(t) = cos2 ωt . (1.11)

3)

In questo caso la probabilità di trovare il risultato f+ all’istante 2t è data
dalla probabilità composta:

P
(1)
+ (2t) = (P+(t))2 + P̃+(t)P−(t) = cos4 ωt+ sin4 ωt . (1.12)

4)

3



Nel caso non c’e’ stata nessuna misura a t, il sistema evolve fino al tempo 2t
secondo l’equazione di Schrödinger. Dunque la misura di F a tempo 2t darà il
risultato f+ con probabilità,

P
(2)
+ (2t) = cos2 2ωt . (1.13)

Usando cos 2ωt = cos2 ωt− sin2 ωt, si ha

P
(2)
+ (2t) = (cos2 ωt− sin2 ωt)2 < P

(1)
+ (2t) , (1.14)

per generico valore di t. La differenza è da attribuire al termine di interferenza,
tipica di meccanica quantistica.

Soluzione Problema 2

(1) Cambiando le variabili a quelle del C.M. e del moto relativo,

X =
x1 + x2

2
, x = x1 − x2, P = −i~ ∂

∂X
, p = −i~ ∂

∂x
, (1.15)

l’Hamiltoniana diventa

H =
P 2

2M
+
p2

2µ
+

1

2
kx2 , M = 2m, µ =

m

2
. (1.16)

La parte del moto relativo (che è la sola parte di interesse nel C.M., P = 0)
è

H =
p2

2µ
+
µω2

2
x2, ω =

√
k

µ
=

√
2k

m
. (1.17)

I valori energetici sono dunque

En = ω~(n+
1

2
) , n = 0, 1, 2, . . . . (1.18)

Un’altra forma di cambio variabili possibile è

X =
x1 + x2

2
, Y =

x1 − x2
2

, PX = −i~ ∂

∂X
, PY = −i~ ∂

∂Y
.

(1.19)
Il risultato è uguale.

(2) Nel caso della molecola di deuterio, m→ 2m, quindi

Ẽn = ω̃~(n+
1

2
) , n = 0, 1, 2, . . . , ω̃ =

ω√
2

(1.20)

La frequenza del fotone emesso nella transizione di D2, ν̃ = ω̃/2π, è più
piccola di fattore

√
2, rispetto a quella del fotone emesso nella transizione

di H2, ν = ω/2π, i.e., ν̃ = ν/
√

2.
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Soluzione Problema 2

Visto che ψ(0) = 0 e visto che l’equazione di Schroedinger a x > 0 è la stessa
dell’oscillatore senza il muro a x = 0, le soluzioni di questo problema sono
semplicemente tutti i livelli dispari, i.e., con le funzioni d’onda dispari, che
si annullano a x = 0. Le funzioni d’onda sono ψn(x) con n dispari, con la
costante di normalizzazione

√
2 volte più grande. Si noti che i livelli dispari

n = 1, 3, 5, ... dell’oscillatore usuale hanno n = 1, 3, 5, ... nodi, rispettivamente.
Nella semiretta, 0 < x < ∞, tralasciando lo zero a x = 0, queste funzioni
d’onda hanno esattamente 0, 1, 2, .. nodi, in accordo con il teorema di oscil-
lazione. Questa è un’ulteriore conferma che le autofunzioni trovate cos̀ı, senza
nessun calcolo, esauriscono tutti i possibili stati discreti.

(i) Lo stato fondamentale:

E0 =
3

2
ω~ , ψ0(x) = Cxe−

mω
2~ x2

, (1.21)

con

C =
2α3/2

π1/4
, α ≡

√
mω

~
. (1.22)

(ii) Lo spettro completo è dato da

En = ω~(2n+
3

2
), n = 0, 1, 2, ... (1.23)
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