
Compitino II MQ
05 febbraio ’15 (A.A. 14/15)

Tempo a disposizione: 3 ore.

Problema 1.

Una particella A di spinJ = 2 e parità negativa decade, a riposo, in due particelle identiche
B di spin 1

2.

(i) Dire quali possono essere a priori i valori dello spin totaleS, (S = s1 + s2), nello stato
finale.

(ii) Per ciascuno dei valori possibili diS, elencare i possibili valori diL, il momento ango-
lare orbitale del moto relativo nello stato finale, tenendo conto solo della conserva-
zione del momento angolare e della parità, ma senza tenere conto della statistica di
Fermi-Dirac.

(iii) Infine, determinare, tenendo conto della statistica, le possibili combinazioni (S,L)
dello stato finale.

Risulta che le considerazioni di cui ai punti (i)-(iii) non determinano univocamente i valori
(S,L). Supponiamo che la dinamica del processo di decadimento sia tale che la combina-
zione (S,L) conL minimo sia dominante. Sapendo questo, e sapendo che la particella A
prima del decadimento fosse nello stato|J,Jz〉 = |2,1〉,

(iv) scrivere la funzione d’onda orbitale-spin dello stato finale;

(v) calcolare la distribuzione angolare di B, indipendentemente dallo spin.

(vi) La misura disz di una delle particelle finali fatta con un apparecchio à la SG posto
nella direzione(θ,φ) = (π

4 ,0) ha datosz = 1
2. Sapendo ciò, calcolare la probabilità

che la misura disz dell’altra particella finale, eseguita contemporaneamente 1 dia
s′z = 1

2.

Problema 2.

L’Hamiltoniana dell’atomo di idrogeno è modificato da un potenziale aggiuntivoV0(r) =
f

r2 ,

H =
p2

2m
+V(r), V(r) = VCoul(r)+V0(r) = −e2

r
+

f
r2 , (1)

dove f (> 0) è una costante positiva.

(N.B. Nella soluzione, non deve essere utilizzata la teoria delle perturbazioni.)

(i) Fare uno schizzo del potenziale totaleV(r).

Come si verifica facilmente (si veda il formulario) l’equazione di Schrödinger radiale per
(1) è formalmenteidentica all’equazione radiale per l’atomo di idrogeno (f = 0), tranne
che per la sostituzioneℓ → β, doveβ è una costante che dipende daℓ e da f .

1con SG posto a(θ,φ) = ( 3π
4 ,π))
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(ii) Trovareβ (β > 0) in termini diℓ e di f , per generico valore dif . Basta considerare la
soluzione perβ positiva.

I livelli dell’energia degli stati legati nel potenziale (1) si trovano notando che l’equa-
zione radiale, avendo la stessa forma dell’equazione per l’atomo di idrogeno, eccetto la
sostituzioneℓ → β, ha una soluzione normalizzabile per i valori dell’energiatali 2 che

λ = β +k+1, k = 0,1,2, . . . (2)

dove

λ ≡
√

1
−2E

, (E in unita′ di e2

rB
). (3)

(iii) Trovare i livelli energeticiE(k, ℓ; f ), usandoβ trovato al punto (ii).

(iv) Verificare che perf = 0 lo spettro si riduce a quello di Bohr. Per piccolof 6= 0,
sviluppareE(k, ℓ; f ) al primo ordine inf , esprimendo la risposta nella forma

E(k, ℓ; f ) = E(Bohr)
n [1+ ε(n, ℓ) f + . . .], n = k+ ℓ+1 , (4)

determinandoε(n, ℓ).

(v) Discutere se e come la degenerazione caratteristica dell’atomo di idrogeno viene mo-
dificata dal termineε(n, ℓ) f , e interpretare fisicamente l’aspetto qualitativo di tale
modifica.

Formulario: l’Equazione di Schr̈odinger radiale.
[

1
r2

d
dr

(

r2 d
dr

)

+
2m

h̄2

(

E−V(r)
)

− ℓ(ℓ+1)

r2

]

R(r) = 0.

2N.B.: Questa condizione segue dal metodo di Frobenius (la soluzione dell’equazione radiale col sviluppo in
serie di potenze inr di R(r): qui la prendete come dato di fatto.
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34. CLEBSCH-GORDAN COEFFICIENTS, SPHERICAL HARMONICS,

AND d FUNCTIONS

Note: A square-root sign is to be understood over every coefficient, e.g., for −8/15 read −
√

8/15.
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Figure 34.1: The sign convention is that of Wigner (Group Theory, Academic Press, New York, 1959), also used by Condon and Shortley (The
Theory of Atomic Spectra, Cambridge Univ. Press, New York, 1953), Rose (Elementary Theory of Angular Momentum, Wiley, New York, 1957),
and Cohen (Tables of the Clebsch-Gordan Coefficients, North American Rockwell Science Center, Thousand Oaks, Calif., 1974). The coefficients
here have been calculated using computer programs written independently by Cohen and at LBNL.
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Soluzione

N.B. Per un misterioso problema di LaTeX (che per ora non riesco a sistemare) hbar
appare come semplice h nelle formule sotto.

Problema 1

(i) Lo spin totale può prendere i valoriS= 1 eS= 0.

(ii) L = 2 perS= 0. PerS= 1, invece,L può essere uno dei valoriL = 1,2,3. Infine
tenendo conto anche della parità rimangono gli statiS= 1 eL = 1,3.

(iii) La funzione d’onda di spin è o simmetrico (S= 1) o antisimmetrico (S= 0), mentre le
funzioni orbitali sono o simmetrica o antisimmetrica a seconda del valore diL (pari
o dispari). Segue che le possibili combinazioni sono(S,L) = (1,1) o (1,3), (0,2).
Tenendo conto delle considerazioni ai punti (i) e (ii) (momento angolare e parità), gli
stati premessi restano(S,L) = (1,1) o (1,3).

Risulta che in questo particolare processo, la statistica di Fermi-Dirac non dà un
vincolo in più rispetto alle considerazioni al punti (i) e (ii).

(iv) Secondo l’ipotesi, lo stato finale è dominantemente nello stato (S,L) = (1,1), che
forma il momento angolare totale|J,Jz〉 = (2,1). Utilizzando i Coeff. CG, si ha
perciò

Ψ2,1 =
1√
2

(

Y1,1(θ,φ)
|↑↓〉+ |↓↑〉√

2
+Y1,0(θ,φ)|↑↑〉

)

; (5)

(iv) La distribuzione angolare sarà:

dP= Ψ†
2,1Ψ2,1dΩ =

1
2

(

Y1,1(θ,φ)|2 + |Y1,0(θ,φ)|2
)

dΩ =
3

16π
(1+cos2 θ)dΩ ;

dΩ = dφdcosθ. Essa è correttamente normalizzata.

(v) La funzione d’onda (5) nella direzione diθ,φ = π
4 ,0, considerata come funzione d’onda

di spin normalizzata è

ψ =
1√
6
(|↑↓〉+ |↓↑〉−2|↑↑〉) .

La probabilità richiesta è:

P(s2z = ↑)|s1z=↑ =
4
5
.

N.B.La risposta non è23.

Problema 2.

(i)
d2

dr2 R+
2
r

d
dr

R− ℓ(ℓ+1)

r2 R+
2m

h̄2 (E +
e2

r
− f

r2 )R= 0. (6)

Si vede che l’aggiunta del termine∝ f è equivalente ad una modifica diℓ, ℓ → β,
dove

β(β +1) = ℓ(ℓ+1)+
2m f

h̄2 . (7)

Risolvendo si ha la soluzione positiva

β =
1
2

[−1+

√

(2ℓ+1)2+
8m f

h̄2 ]

4



(iii) Si ha

Ek,ℓ = − h̄2

2m
(

k+ 1
2

[

1+
√

(2ℓ+1)2+ 8m f
h̄2

])2

Ripristinando le costanti dimensionali (me2

h̄2 = 1),

Ek,ℓ =− e2

2rB

(

k+
1
2

[

1+

√

(2ℓ+1)2+
8m f

h̄2

])−2

, k= 0,1,2, . . . , ℓ = 0,1,2, . . . .

Per f = 0, il risultato è

Ek,ℓ = − e2

2rB (k+ ℓ+1)2

che coincide con i livelli di Bohr se si identifica

n = k+ ℓ+1, n = 1,2, . . . .

Per f piccolo, i livelli energetici sono dati approssimativamente da

Ek,ℓ ≃− e2

2rBn2

(

1− 4m f

n(2ℓ+1) h̄2

)

, (8)

i.e.,

ε(n, ℓ) = − 4m

n(2ℓ+1)h̄2 .

(i) La degenerazione∝ n2 dell’atomo di idrogeno viene eliminata parzialmente: l’u-
nica degenerazione che resta è quella dovuta all’invarianza per rotazione, 2ℓ+1
per stati conℓ definito.

(ii) Tutti i livelli si innalzano un poco.

(iii) Secondo la (8) l’incremento dell’energia (quindi lo spostamento) dal livello di
Bohr, è più grande per gli stati di momenti angolari orbitali più bassi, e per le
orbite più basse. Ambedue i fatti si comprendono dalla forma del potenziale
aggiuntivo,∝ 1

r2 , e dall’andamento della funzione radiale vicino all’origine,

∼ rℓ, tenendo conto della figura della modifica del potenziale (punto (i)) (vedi
la Fig.2). L’effetto di tale modifica (piccola) del potenziale, importante solo
vicino all’origine, è meno rilevante per gli stati con la funzione d’onda più
piccola ar ∼ 0, i.e, gli stati conℓ o n grandi. E vice versa.

•
•
•

n

L=0

L=1

L=n-1

Figura 2:
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