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Problema

Un atomo di idrogeno nello stato fondamentale è sottosposto ad una radiazione elettro-
magnetica a partire dat = 0; si chiede di studiare il processo di ionizzazione (l’effetto
fotoelettrico) in teoria delle perturbazioni. L’Hamiltoniana è

H =
(p̂+ e

c A)2

2m
− e2

r
. (1)

(i) Al primo ordine inA e nella gauge∇ ·A = 0, si scriva la precedente Hamiltoniana come
somma della Hamiltoniana dell’atomo di idrogeno e del potenziale di perturbazione,
V . Qual’è la forma diV?

(ii) Supponiamo che il campo di radiazione sia dato da,

A = A0 εeik·r−iωt + c.c. , ω = kc, (2)

doveA0 può essere espresso in termini dell’intensità di luceI,

A2
0 =

2πc
ω2 I =

2πc
ω2 Nωh̄ , (3)

e ε è il vettore di polarizzazione. Si verifichi che la (2) soddisfi la condizione di
gauge∇ ·A = 0, e si scriva l’operatore di perturbazioneF̂ , dove

V = F̂ e−iωt + h.c. , (4)

in termini diA0,m,e,ε. Si dica quali tensori sferici sono contenuti nell’operatore F̂.

(iii) Sotto certe condizioni il fattoreeik·r nel potenziale di perturbazione può essere ap-
prossimato da

eik·r ≃ 1 . (5)

Assumendo la (5) - si dica per qualiω essa è valida - si determini la distribuzione
angolare dell’elettrone finale senza fare il calcolo della probabilità di transizioni,
basandosi esclusivamente su un argomento generale di simmetrie. Si assuma che il
fotone incidente viaggi nella direzione di ˆz e sia polarizzato linearmente in direzione
x̂. Si descriva come cambierebbe la risposta se la (5) non fossepiù valida ma se la
deviazione da 1 fosse piccola.

(iv) Assumendo che la condizione Eq. (5) sia soddisfatta (e con leproprietà di luce men-
zionate), si calcoli la probabilità di ionizzazione per intervallo unitario del tempo. Si
assumano le funzioni d’onda iniziale e finale dell’elettrone

ψi =
2r−3/2

B√
4π

e−r/rB ; ψ f = eip·r/h̄. (6)

Formulario:

La densità di stati:

dΦ =
d3p

(2πh̄)3 =
mpdEdΩ
(2πh̄)3 (7)

Formula di Fermi:

dw f i =
2π
h̄
|F̂f i|2δ(E f −Ei−ωh̄)dΦ (8)
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Soluzione (il punto (iii) migliorato da alcuni di voi)

(i)
V =

e
2mc

(A · p̂+ p̂ ·A) =
e

mc
A · p̂ , (9)

N.B.
p̂ ·A = −ih̄(∇ ·A)+A · p̂ = A · p̂ . (10)

utilizzando la condizione,
∇ ·A = 0 . (11)

(ii)
∇ ·A ∝ k · ε , (12)

che è nullo poiché il vettore di polarizzazione è perpendicolare alla direzione della
propagazione.

F̂ =
eA0

mc
eik·r ε · p̂ . (13)

Sviluppandoeik·r e scegliendok = (0,0,k), ε = (1,0,0) (per es.), si trovano gli
operatori,

px, pxz, pxz2, . . . , pxzn, . . . . (14)

si vede che i tensori sferici contenuti in̂F sono di rango, 1,2,3,4, . . ., ma non c’è
nessun componente di rango 0 (scalare).

N.B. ε e k, anche se sono vettori, sono semplicemente numeri e vanno considerati
tali, come operatori.

(iii) La (5) è valida se|k · r | ≪ 1. Visto che nel calcolo della probabilità di transizione|r |
è limitato dal raggio di Bohr,rB, la condizione è che

k =
ω
c
≪ 1

rB
, ω ≪ c

rB
, λ =

2π
k

≫ 2πrB. (15)

D’altronde per ionizzare l’atomo si richiede un’energia sufficientemente grande,

E = ωh̄ > | e2

2rB
|, (16)

Si vede che l’energia minima del fotone necessaria per la ionizzazione è compatibile
con la condizione (15), ma per radiazione con la frequenza troppo alta l’approssima-
zioneeik·r ≃ 1 non sarà più valida.

Assumendo la (15), l’operatorêF è:

F̂ =
eA0

mc
p̂x = T 1

1 −T 1
−1 . (17)

dove abbiamo introdotto un tensore sferico di rango 1 perF̂ . La probabiltà di
transizione è data dalla formula di Fermi,

w =
2π
h̄
|F̂f i|2δ(E f −Ei −ωh̄)dΦ , F̂f i = 〈 f |F̂ |i〉 . (18)

Visto che lo stato iniziale è uno statoS (ℓ = m = 0), segue dal teorema di Wigner-
Eckart applicato all’elemento di matrice〈 f |F̂ |i〉 che lo stato finale è nello statoψ f ∝
Y1,1−Y1,−1. La distribuzione angolare dell’elettrone finale è quindi

dP = cost.|Y1,1−Y1,−1|2dΩ =
3
4π

dΩ sin2 θcos2 φ . (19)
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N.B. Per vedere questo risultato più chiaramente,

〈p|F̂ |100〉 ∝
Z

d3r e−ip·r/h̄ p̂x e−r/rB (20)

dove

eip·r/h̄ = eikrcosθ =
∞

∑
ℓ=0

(2ℓ+1)iℓ jℓ(kr)Pℓ(cosθ). (21)

doveθ è l’angolo tra la direzione dip e quella dir . Usiamo ora

eik·r = 4π
∞

∑
ℓ=0

iℓ jℓ(kr)
ℓ

∑
m=−ℓ

Yℓm(Ωr̂ )Y
∗
ℓm(Ωp̂) , (22)

doveΩp̂ eΩr̂ indicano le variabili angolari associate ak = p/h̄ andr . Ora l’integrale
angolare in (20) dà

Z

dΩr̂ Y ∗
ℓm(Ωr̂ ) p̂x e−r/rB = c(δℓ,1δm,1− δℓ,1δm,−1) (23)

dove abbiamo fatto uso del teorema di Wigner-Eckart. Segue che la distribuzione
finale dell’elettrone è data da

dP =
3
4π

dΩp̂ sin2 θp̂ cos2 φp̂ ∝ |Y1,1(Ωp̂)−Y1,−1(Ωp̂)|2 Ωp̂ ∝ p2
x dΩp̂ (24)

come annunciato prima, (19).

Tenendo conto di un piccolo termine in

F̂ =
eA0

mc
eik·r ε ·p ∼ eA0

mc
(px + ipxkz+ . . .) (25)

lo stato finale avrà una piccola componente∝ (Y1,1−Y1,−1)Y1,0,

ψ f inale = c0(Y1,1−Y1,−1)+ c1(Y1,1−Y1,−1)Y1,0 . (26)

La distribuzione angolare avrà dunque un piccolo termine di interferenza,

dP = |c0|2|Y1,1−Y1,−1|2 +2ℜ(c0c∗1)(Y1,1−Y1,−1)
2Y1,0

∝ sin2 θcos2 φ(A + B cosθ)dΩ (27)

con
∣

∣

∣

∣

B
A

∣

∣

∣

∣

= O(krB) . (28)

Cioè una piccola parte∝ sin2 θ cosθ cos2 φ sovrapposta alla distribuzione dominante,
∝ sin2 θ cos2 φ.

(iv)

F̂f i = 〈 f |F̂ |i〉 =
eA0

mc
2r−3/2

B√
4π

Z

d3r e−ip·r/h̄ p̂x e−r/rB

=
eA0

mc
2r−3/2

B√
4π

px

Z

d3r e−ip·r/h̄ e−r/rB (29)

L’integrale è facile da calcolare: (k = p/h̄, rB → 1):
Z

d3r e−ip·r/h̄ e−r/rB =

Z

d3r e−ik·r e−r =
2π
−ik

Z ∞

0
drr(e−ikr − eikr)e−r

=
8π

(1+ k2)2 = r3
B

8π
(1+ k2r2

B)2
(30)
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dove nell’ultimo membro abbiamo ripristinatorB.

Perciò

F̂f i = 4
√

4πr3/2
B

eA0

mc
px

(1+ p2r2
B/h̄2)2

|
p=
√

2m(ωh̄−e2/2rB)
. (31)

dw f i =
2π
h̄
|F̂f i|2

mpdΩ
(2πh̄)3 = C

p p2
x

(1+ p2r2
B/h̄2)4

dΩ , (32)

dove la costanteC è data da

C = |4
√

4πr3/2
B

eA0

mc
|2 2π

h̄
m

(2πh̄)3 (33)

L’unico integrale non banale da fare è

Z

d cosθdφ sin2 θ cos2 φ =
4π
3

. (34)

Si noti che la distribuzione angolare dell’elettrone finalenella (32) è effettivamente
in accordo con quanto ci si aspetta dal teorema di Wigner-Eckart (19).
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