
Meccanica Quantistica

Compitino I (8/11/2013)

Problema 1

Si consideri una particella di massa m vincolata a muoversi nel segmento −a ≤
x ≤ a, cioè soggetta ad un potenziale

V0(x) =

{

∞ |x| > a
0 |x| ≤ a

(1)

(a) Si scrivano gli autovalori e gli autostati della Hamiltoniana

H =
p2

2m
+ V0(x)

(b) Il potenziale (1) è simmetrico per parità, x → −x. Si determini la con-
seguenza di questo fatto sulle proprietà delle autofunzioni diH sotto parità
P

P ψ(x) = ψ(−x)
Si specifichi la risposta in particolare nel caso dello stato fondamentale e
del primo eccitato.

(c) Si consideri ora l’aggiunta del potenziale (Fig. 1)

V1(x) = g δ(x) ; g > 0, (2)

a (1). Risulta che una parte dello spettro del punto (a) resta invariato, in
presenza del termine (2). Dire per quali livelli succede questo, e spiegare
il motivo.

(d) Si provi a valutare l’energia dello stato fondamentale del sistema con V1

per g molto grande (in un’approssimazione valida all’ordine di O(1/g)) e
commentare brevemente il risultato.

Problema 2

Si consideri un oscillatore armonico di massa m e frequenza angolare ω pertur-
bato, in modo tale che l’Hamiltoniana sia

H =
p2

2m
− ax+

1

2
mω2x2 (3)
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1) Si calcoli lo spettro dell’Hamiltoniana.

2) Determinare il valore medio dell’operatore p sullo stato fondamentale.

3) Lo stesso per l’operatore x.

4) All’istante t = 0, la particella è in uno stato descritto dalla funzione d’onda

ψ0(x) = N e−x2/d2

, (4)

dove

N =

(

2

π

)1/4
1√
d

è la costante di normalizazzione. Studiando l’evoluzione temporale del
sistema (con H) determinare la densità di probabilità per vari valori di x,
all’istante, t = π

ω .
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Figure 1:

2



Soluzioni

Problema 1

a, b) Le soluzioni sono quelle di una particella libera in una buca di larghezza
2a, con origine della buca in x = −a quindi

ψn(x) =

√

1

a
sin(kn (x+ a)) ; kn =

nπ

2a
, n = 1, 2, . . . (5)

Gli autovalori dell’energia sono

En =
~

2

2m

(nπ

2a

)2

; n = 1, 2, . . .

Per n dispari o pari si ha rispettivamente

ψ2s+1(x) =

√

1

a
sin(

nπ

2a
x+ πs+

π

2
) = (−1)s

√

1

a
cos(

nπ

2a
x)

ψ2s(x) =

√

1

a
sin(

nπ

2a
x+ πs) = (−1)s

√

1

a
sin(

nπ

2a
x) .

Le soluzioni con n dispari, n = 1, 3, 5, . . . corrispondono a funzioni pari in
x, mentre quelle con n pari, n = 2, 4, 6, . . . a funzioni dispari in x. Quindi
si hanno alternativamente soluzioni pari e dispari, come aspettato.

Infatti, è conseguenza dell’invarianza per parità dell’Hamiltoniana e della
non degenerazione degli stati legati, che ogni autofunzione ha la parità
definita. Comibinando con il teorema di oscillazione, poi, si avvince che lo
stato fondamentale è pari, mentre il primo eccitato è dispari, come dalla
(5).

c) In presenza della funzione δ gli autovalori sono determinati dalle condizioni
al bordo e dalla discontinuità della derivata prima della funzione d’onda
nell’origine:

ψ(−a) = 0 ; ψ(a) = 0
1

2

(

ψ′(0+) − ψ′(0−)
)

= βψ(0)

Le soluzioni dispari (in x) precedenti sono ancora soluzioni del problema
perchè, essendo ψ(0) = 0, si ha che la derivata prima è continua, e si
ritorna al caso di una buca di potenziale senza δ.

Per le funzioni pari si avrà sicuramente nelle due zone del potenziale:

ψL = B sin(k(x + a)) ; ψR = A sin k(x− a)

per soddisfare le condizioni in x = ±a. L’energia si scrive

E =
~

2k2

2m
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La continuità della funzione impone, se ψ(0) 6= 0 (come deve essere per le
funzioni pari)

B = −A .

La condizione per la derivata si scrive allora

1

2
(Ak cos(ka) +Ak cos(ka)) = −βA sin(ka)

dove
β ≡ mg

~2
,

cioè
−k cot(ka) = β. (6)

Per β = 0 (senza il potenziale delta a x = 0), si ha ka multiplo dispari
di π/2 (k = πn/2a, n dispari) e si riottengono le soluzioni pari del caso
precedente, come è giusto.

Per β → ∞, ka avvicina ad un multiplo di π, cioè un multiplo pari di
π/2 e quindi si ottengono le stesse energie degli stati dispari della buca,
in questo limite gli autovalori diventano doppiamente degeneri.

Questo appare in contraddizione con il teorema di “non degenerazione”,
ma in realtà, anche la funzione d’onda pari si annulla all’origine in questo
limite, (le soluzioni dispari si annullano per conto loro), quindi il sistema
si riduce effettivamente in due buche identiche separate.

d) Per valutare l’energia del fondamentale per β grande scriviamo la con-
dizione nella forma

ka

βa
= − tan(ka)

Per β → ∞ la (prima) soluzione è ka = π, poniamo ka = π + y e svilup-
piamo in y, ci aspettiamo y = O(1/βa).

π + y

βa
≃ −y ⇒ y ≃ − π

βa
⇒ k ≃ π

a
(1 − 1

βa
) =

π

a
(1 − ~

2

mag
)

Quindi l’energia dello stato fondamentale è, approssimativamente

E1 =
~

2

2m
k2 ≃ π2

~
2

2ma2

(

1 − 2

βa

)

=
π2

~
2

2ma2

(

1 − 2~
2

gma

)

,

da paragonare con l’energia del primo stato eccitato

E2 =
~

2

2m
k2
2 =

π2
~

2

2ma2
.

Come si vede è un caso estremamente semplificato del meccanismo che
produce lo splitting tra un sistema degenere di due buche (esempio am-
moniaca).
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Problema 2

a) Completando il quadrato l’Hamiltoniana si scrive

H =
p2

2m
+

1

2
mω2(x− a

mω2
)2 − a2

2mω2
(7)

Cambiando variabile a

z = x− x0, x0 ≡ a

mω2

si ha di nuovo un oscillatore armonico,

H =
p2

2m
+

1

2
mω2z2 − 1

2

a2

mω2

a meno di una costante additiva sulla Hamiltoniana. Si noti che

∂

∂z
=

∂

∂x

quindi l’impulso p resta invariato in questo cambio della variabile. (Infatti,
[z, p] = i~) Gli autovalori dell’energia sono quindi

En = ~ω (n+
1

2
) − a2

2mω2
; n = 0, 1, . . .

b) L’autofunzione è reale (a meno eventualemente di una fase costante) quindi
il valor medio di p è nullo.

c) Il valor medio di x si può calcolare a partire dal valor medio di z (nullo
nello stato fondamentale)

〈ψ0|x|ψ0〉 = 〈ψ0|z|ψ0〉 +
a

mω2
=

a

mω2

d) La funzione d’onda iniziale è

ψ(z, 0) = N e−(z+x0)
2/d2

,

i.e., è un Gaussiano centrato a z = −x0. Sviluppando in autostati di H ,
(7),

ψ(z, 0) =
∑

n

an ψn(z) .

Questa evolve come

ψ(z, t) = e−iE0t/~
∑

n

an e
−iωnt ψn(z) , E0 =

1

2
ω~ − a2

2mω2
.
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Dopo un mezzo periodo classico di tempo, si ha

ψ(z, π
ω ) = e−iE0t/~

∑

n

an (−)n ψn(z) = e−iE0t/~ ψ(−z, 0) = e−iE0t/~ N e−(z−x0)
2/d2

,

ed è la stessa distribuzione Gaussiana di ψ0 ma centrata a z = x0, i.e., a
x = 2x0. La distribuzione è data da

P dx = |ψ(z, π
ω )|2dx =

(

2
π

)1/2 1
d e

−2(x−2x0)
2/d2

dx (8)
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