Meccanica Quantistica

Compitino I (8/11/2013)

Problema 1

Si consideri una particella di massa m vincolata a muoversi nel segmento —a <
z < a, cioe soggetta ad un potenziale

[ o Jz|>a
v ={ o 112 )
(a) Si scrivano gli autovalori e gli autostati della Hamiltoniana

2

p
H=—+YV,
2m O(z)

(b) Tl potenziale (1) & simmetrico per paritd, © — —z. Si determini la con-
seguenza di questo fatto sulle proprieta delle autofunzioni di H sotto parita

P
Pip(z) = ()

Si specifichi la risposta in particolare nel caso dello stato fondamentale e
del primo eccitato.

(c) Si consideri ora 'aggiunta del potenziale (Fig. 1)
Vi(e) =gd(z);  ¢>0, (2)

a (1). Risulta che una parte dello spettro del punto (a) resta invariato, in
presenza del termine (2). Dire per quali livelli succede questo, e spiegare
il motivo.

(d) Si provi a valutare Penergia dello stato fondamentale del sistema con V4
per g molto grande (in un’approssimazione valida all’ordine di O(1/g)) e
commentare brevemente il risultato.

Problema 2

Si consideri un oscillatore armonico di massa m e frequenza angolare w pertur-
bato, in modo tale che ’Hamiltoniana sia

p* 1
H= o o + imw2z2 (3)



1) Si calcoli lo spettro dell’Hamiltoniana.

3) Lo stesso per 'operatore z.

)
2) Determinare il valore medio dell’operatore p sullo stato fondamentale.
)
4)

All’istante t = 0, la particella e in uno stato descritto dalla funzione d’onda

Polz) = Ne = /%, (4)

()

e la costante di normalizazzione. Studiando 1’evoluzione temporale del
sistema (con H) determinare la densita di probabilita per vari valori di «,
all’istante, ¢t = Z.
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Soluzioni

Problema 1
a, b) Le soluzioni sono quelle di una particella libera in una buca di larghezza
2a, con origine della buca in x = —a quindi
bue) = E st @) k=D w12 ()
n(x) =/ — sin(k, (x +a)); n=—, n=12..
a 2a
Gli autovalori dell’energia sono
h? snm\2
= —(—) =1,2,...
2m ( 2a ) "

Per n dispari o pari si ha rispettivamente

Yast1(z) = \/g sin(%x +7s + g) = (—1)5\/2005(%55)
as(x) = \/g Sin(%x + 7s) = (_1)5\/2 Sin(%x) .

Le soluzioni con n dispari, n = 1, 3,5, ... corrispondono a funzioni pari in
x, mentre quelle con n pari, n = 2,4,6, ... a funzioni dispari in z. Quindi
si hanno alternativamente soluzioni pari e dispari, come aspettato.

Infatti, € conseguenza dell’invarianza per parita dell’Hamiltoniana e della
non degenerazione degli stati legati, che ogni autofunzione ha la parita
definita. Comibinando con il teorema di oscillazione, poi, si avvince che lo
stato fondamentale & pari, mentre il primo eccitato e dispari, come dalla

(5)-

In presenza della funzione § gli autovalori sono determinati dalle condizioni
al bordo e dalla discontinuita della derivata prima della funzione d’onda
nell’origine:

P(=a)=0;  ¢P(a)=0 (¥'(0%) —'(07)) = Bu(0)

|~

Le soluzioni dispari (in z) precedenti sono ancora soluzioni del problema
perche, essendo ¥(0) = 0, si ha che la derivata prima & continua, e si
ritorna al caso di una buca di potenziale senza §.

Per le funzioni pari si avra sicuramente nelle due zone del potenziale:
vy, = Bsin(k(x +a)); r = Asink(x —a)
per soddisfare le condizioni in x = +a. L’energia si scrive

272
E:hk
2m




La continuita della funzione impone, se 1(0) # 0 (come deve essere per le
funzioni pari)

B=-A.

La condizione per la derivata si scrive allora

% (Ak cos(ka) + Ak cos(ka)) = —BA sin(ka)
dove mg
ﬁ = ﬁ ’
cioe
—k cot(ka) = 5. (6)

Per 8 = 0 (senza il potenziale delta a x = 0), si ha ka multiplo dispari
di 7/2 (k = mn/2a, n dispari) e si riottengono le soluzioni pari del caso
precedente, come e giusto.

Per 8 — o0, ka avvicina ad un multiplo di 7, cioé un multiplo pari di
m/2 e quindi si ottengono le stesse energie degli stati dispari della buca,
in questo limite gli autovalori diventano doppiamente degeneri.

Questo appare in contraddizione con il teorema di “non degenerazione”,
ma in realta, anche la funzione d’onda pari si annulla all’origine in questo
limite, (le soluzioni dispari si annullano per conto loro), quindi il sistema
si riduce effettivamente in due buche identiche separate.

Per valutare I'energia del fondamentale per g grande scriviamo la con-
dizione nella forma

ka

Ba
Per 8 — oo la (prima) soluzione & ka = m, poniamo ka = 7 + y e svilup-
piamo in y, ci aspettiamo y = O(1/8a).

= —tan(ka)

1 h?
THY Ly o yel T o gl m
Ba a a

Ba

Quindi Ienergia dello stato fondamentale &, approssimativamente

K2 2p2 2 2R2 2h?
o e P2 w2
2m 2ma? Ba 2ma? gma

da paragonare con ’energia del primo stato eccitato

n o, R

by 5

= 2m" " Sz

Come si vede € un caso estremamente semplificato del meccanismo che
produce lo splitting tra un sistema degenere di due buche (esempio am-
moniaca).



Problema 2

a) Completando il quadrato ’Hamiltoniana si scrive

2 1 2

p 2 a o a
H=—+—- — R 7
2m + 2mw (@ mw2) 2mw? (7)
Cambiando variabile a
a
Z =T — X9, To = )
mw

si ha di nuovo un oscillatore armonico,

2
_p 1 e L
—2m+2mwz 2 mw?

a meno di una costante additiva sulla Hamiltoniana. Si noti che

9_90
0z Oz

quindi 'impulso p resta invariato in questo cambio della variabile. (Infatti,
[z,p] = ih) Gli autovalori dell’energia sono quindi

1 2
By =hw(n+ =) — —

9 *W, TLZO,l,...

b) L’autofunzione ¢ reale (a meno eventualemente di una fase costante) quindi
il valor medio di p & nullo.

¢) 11 valor medio di = si pud calcolare a partire dal valor medio di z (nullo
nello stato fondamentale)

(olelo) = (Yolzlbo) + —s = —2

mw mw?
d) La funzione d’onda iniziale &
¥(z,0) = Ne~(zHeo/d

i.e., € un Gaussiano centrato a z = —xg. Sviluppando in autostati di H,
(7),
Y(z,0) = Zan Yn(2) .
n

Questa evolve come

1 a?

1/)(Z,t) _ efiEot/h ;an e~ iwnt "/)n(z) 7 Ey = 5“1717 W



Dopo un mezzo periodo classico di tempo, si ha

Bz, E) = e PN ay (<) (2) = e M (=2, 0) = e O e (em e/

ed & la stessa distribuzione Gaussiana di Yy ma centrata a z = xg, i.e., a
T = 2x9. La distribuzione ¢ data da

Pda = [h(z, £)de = (2)"% § 2020 dg )



