
Esercizi 9

Problema

Una particella di spin 1/2 si muove in una dimensione, con l’Hamiltoniana,

H =
1

2
[ p2 +W (x)2 + h̄ σ3

dW (x)

dx
], (1)

dove p = −ih̄(d/dx); W (x) è una funzione reale, e σ3 è una matrice di Pauli. Si suppone che

|W | → ∞ per x→ ±∞, per cui lo spettro è puramente discreto.

(i) Per W (x) = ωx, dove ω è una costante reale positiva, si trovi lo spettro, i.e., i livelli energetici

e la loro degenerazione.

(ii) Per generico W (x) dimostrare le seguente identità:

Q2
1 = Q2

2 = H, (2)

dove

Q1 ≡ 1√
2

(σ1p+ σ2W (x)) ; Q2 ≡ 1√
2

(σ2p− σ1W (x)) . (3)

(iii) Calcolare i seguenti commutatori e “anticommutatori”,

{Q1, Q2} ≡ Q1Q2 +Q2Q1; [Q1, H ]; [Q2, H ];

[σ3, H ]; [σ3, Q1]; [σ3, Q2], {σ3, Q1}; {σ3, Q2}, (4)

(iv) Dimostrare che per uno stato qualsiasi vale

〈ψ|H |ψ〉 ≥ 0. (5)

Si dimostri dunque che per l’energia dello stato fondamentale vale E0 ≥ 0.

(v) Si dimostri che la condizione necessaria e sufficiente per E0 = 0 è che esista una soluzione

normalizzabile di

pψ0(x) = −iW (x)σ3 ψ0(x). (6)

Di conseguenza, si dimostri che per W (x) di Fig.1 A esiste uno stato fondamentale con E0 = 0

mentre per W (x) di Fig.1 B non esiste.

(vi) Dimostrare che tutti gli stati con E 6= 0 sono doppiamente degeneri, mentre lo stato con E = 0

(se esiste) è singolo.

Nota: Q1, Q2 sono esempi di operatori di supersimmetria. Questo sistema (meccanica quantistica

supersimmetrica in una dimensione - Witten (1981)) illustra bene l’uso e la potenza di una simmetria.
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Figure 1: W(x)

Soluzione

Problema

(i) In questo caso

H =
1

2
[ p2 + ω2 x2 + h̄ σ3 ω ]. (7)

Gli autostati dell’energia possono essere scelti come autostati di σ3. Ovviamente

En = ω h̄ (n+ 1), n = 0, 1, 2, . . . , (8)

per gli stati di spin “up”, mentre

En = ω h̄ n, n = 0, 1, 2, . . . (9)

per gli stati di spin “down”. Lo stato fondamentale è perciò

ψ0 =

(

0

ψ(0)(x)

)

, E0 = 0. (10)

Tutti gli stati con E > 0 sono doppiamente degenere,

ψn,1, ψn,2 =

(

ψ(n−1)(x)

0

)

,

(

0

ψ(n)(x)

)

, n = 1, 2, . . . , (11)

con

En = ω h̄ n, (12)

dove ψ(n)(x) indica la funzione d’onda dell’n-simo livello dell’oscillatore armonico unidimen-

sionale.
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(ii) Per esempio

Q2
1 =

1

2
[ p2 +W 2 + σ1 σ2 pW + σ2 σ1W p ]. (13)

Ma

σ1 σ2 = −σ2 σ1 = i σ3 (14)

mentre

[ p,W ] = −ih̄W ′ (15)

per cui Q2
1 = H .

(iii)

(iv)

〈ψ|H |ψ〉 = ||Q1|ψ〉||2 ≥ 0. (16)

Per lo stato fondamentale, H |ψ0〉 = E0|ψ0〉, perciò E0 ≥ 0. Segue inoltre che

E0 = 0 (17)

se e solo se

Q1|ψ0〉 = 0. (18)

(v) La condizione necessaria e sufficiente per E0 = 0 è quindi che esista una soluzione normalizzabile

di

Q1|ψ0〉 = 0. (19)

Moltiplicando l’equazione con σ1 da sinistra, questo è equivalente a

pψ0(x) = −iW (x)σ3 ψ0(x). (20)

Questa equazione può essere integrata facilmente:

ψ(0 ↑)(x) = e
σ3

∫

x

0

dx W (x)/h̄
ψ(0 ↑)(0) = e

∫

x

0

dx W (x)/h̄
ψ(0 ↑)(0), (21)

oppure

ψ(0 ↓)(x) = e
σ3

∫

x

0

dx W (x)/h̄
ψ(0 ↓)(0) = e

−
∫

x

0

dx W (x)/h̄
ψ(0 ↓)(0), (22)

Nel caso di Fig. 1,
∫ x

0

dxW (x) → ∞, x→ ±∞ : (23)

la funzione d’onda
(

0

ψ(0 ↓)(x)

)

(24)

è normalizzabile.

Nel caso di Fig. 2,
∫ x

0

dxW (x) → ∞, x→ ∞, (25)

∫ x

0

dxW (x) → −∞, x→ −∞. (26)

In questo caso né ψ(0 ↑)(x) né ψ(0 ↓)(x) è normalizzabile: non esiste nessun stato fondamentale

con E0 = 0. In tal caso, lo stato fondamentale ha E0 > 0, ed è doppiamente degenere (vedi il

punto (vi) sotto).
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(vi) Supponiamo di prendere l’autostato di H con l’energia En come un autostato anche di σ3 con

σ3 = 1:

H |n, ↑ 〉 = En |n, ↑ 〉. (27)

Visto che Q1 commuta con H , lo stato Q1|n, ↑ 〉 è anche esso un autostato di H con lo stesso

autovalore, i.e.,

H [Q1 |n, ↑ 〉 ] = Q1 [H |n, ↑ 〉 ] = En [Q1 |n, ↑ 〉 ]. (28)

D’altra parte, poiché Q1 anticommuta con σ3, lo stato Q1|n, ↑ 〉 è un autostato di σ3 ma con

l’atovalore −1:

σ3Q1 |n, ↑ 〉 = −Q1 σ3 |n, ↑ 〉 = −Q1 |n, ↑ 〉. (29)

A parte la normalizzazione, perciò, esso è |n, ↓ 〉. La normalizzazione è facile da determinare:

||Q1 |n, ↑ 〉||2 = 〈n, ↑ |Q2
1|n, ↑ 〉 = 〈n, ↑ |H |n, ↑ 〉 = En, (30)

dunque

Q1 |n, ↑ 〉 = ±
√

En |n, ↓ 〉. (31)

Il segno è convenzionale.

Poiché Q2
1 = H , gli stati (Q1)

n |n, ↑ 〉 sono proporzionali o a |n, ↑ 〉 o a |n, ↓ 〉.
Considerazione dello stato Q2|n, ↑ 〉 porta alla stessa conclusione. Siccome a fisso autovalore di

σ3, il teorema di non degerazione degli autovalori per i sistemi unidimensionali garantisce che

l’autostato di H è non degenere, risulta che lo stato Q2|n, ↑ 〉 e Q1|n, ↑ 〉 sono proporzionali.

Tutti gli stati con En 6= 0 sono dunque doppiamente degeneri.

Infine, per lo stato con E0 = 0, l’azione di Q1,2 annichila lo stato | 0, ↑ 〉 o | 0, ↓ 〉 (vedi la (31)),

uno stato fondamentale con E0 = 0, se esiste, è singolo.

Per la completezza, la discussione sopra può essere fatta alternativamente assumendo che

l’autostato dell’energia |En〉 sia un autostato anche di Q1 (o di Q2), anziché di σ3. In questo

caso, l’operatore σ3 trasforma tra i due stati di un dato livello energetico. Lo stato fondamen-

tale singolo, se esiste, è un autostato anche di Q1 con l’autovalore nullo.

4


