
Esercizi 5

Problema 1.

Una particella si muove in un potenziale a “valle”,

H =
p2

x

2m
+

p2

y

2m
+ V (x, y ), (1)

dove

V (x, y ) =

{

1

2
mω2x2, 0 ≤ y ≤ a;

∞, y < 0, y > a.
(2)

i) Determinare i livelli di energia e le funzioni d’onda corrispondenti;

ii) Calcolare il valor medio dell’operatore p2 = p2

x + p2

y nello stato fondamentale.

Problema 2.

Una particella di massa m è contenuta in una scatola unidimensionale di lunghezza a e si trova

nello stato fondamentale. All’istante t = 0 si tolgono istantaneamente le pareti.

i) Determinare la funzione d’onda in rappresentazione degli impulsi a tutti gli istanti successivi a

t = 0;

ii) Calcolare la probabilità di trovare l’impulso della particella tra p e p + dp a tutti gli istanti

successivi a t = 0;

iii) Calcolare il valore medio dell’energia a tutti gli istanti successivi a t = 0.

Problema 3.

Un elettrone (considerato qui come una particella carica (carica -e) e senza spin) si muove in

un piano x − y, in campo magnetico costante e uniforme in direzione perpendicolare al piano,

H = (0, 0, B). Studiare lo spettro del sistema, prendendo come potenziale vettoriale,

A = (−B y, 0, 0). (3)
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Soluzione

Problema 1.

i) Separando le variabili

Ψ = ψ(x)φ(y), (4)

si hanno gli autovettori,

Ψk,ℓ = ψk(x)φℓ(y), (5)

ψk(x) = Ck Hk(αx) e−α2x2/2, φℓ(y) =

√

2

a
sin(

πℓy

a
), (6)

ed i corrispondenti autovalori,

Em,n = ωh̄ (k +
1

2
) +

π2h̄2ℓ2

2ma2
, k = 0, 1, 2, . . . , ℓ = 1, 2, . . . (7)

ii) Conviene calcolare

〈0, 1|p2|0, 1〉 = 2m〈0, 1|
p2

2m
|0, 1〉 = 2m〈0, 1|H − V (x, y)|0, 1〉. (8)

Ma

〈0, 1|H |0, 1〉 = E0,1 =
1

2
ωh̄+

π2h̄2

2ma2
; (9)

〈0, 1|V (x, y)|0, 1〉 = 〈0|
1

2
mω2x2|0〉, (10)

dove nel secondo membro della (??) il bra ed il ket si riferiscono all’oscillatore armonico

unidimensionale. Qusto ultimo è dato da

1

2
mω2〈0|x2|0〉 =

1

2
mω2|〈1|x|0〉|2 =

1

2
mω2 ·

h̄

2mω
=

1

4
ωh̄. (11)

... 〈0, 1|p2|0, 1〉 = 2m [
1

2
ωh̄+

π2h̄2

2ma2
−

1

4
ωh̄] =

mωh̄

2
+
π2h̄2

a2
. (12)

Problema 2.

i)

ψ(x)

{

=
√

2

a sin πx
a per 0 ≤ x ≤ a;

= 0 altrove
. (13)

La funzione d’onda nella rappresentazione di p (il componente di Fourier) è:

φ(p) =
1

a

√

π

ah̄

1 + e−i p a/h̄

(π
a )2 − p2

h̄2

. (14)

All’istante t

φ(p, t) = e−i p2t

2mh̄φ(p). (15)
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ii)

dP = |φ(p, t)|2dp = |φ(p)|2dp =
4πah̄3 cos2 pa

2h̄

(a2p2 − h̄2π2)2
dp. (16)

∫

dP = 4π

∫

dz
cos2 z

2

(z2 − π2)2
= 1. (17)

iii)

〈E〉 = E1 =
π2h̄2

2ma2
. (18)

Problema 3.

L’Hamiltoniana è

H =
(p + e

cA)2

2m
=

(px − eB
c y)

2

2m
+

p2

y

2m
. (19)

Poiché H commuta con px, è possibile costruire gli autosati di H ponendo

Ψ(x, y) = ei p x/h̄ψ(y). (20)

ψ(y) soddisfa all’equazione

[
p2

y

2m
+

( eB
c y − p)2

2m
]ψ(y) = Eψ(y), (21)

che è l’equazione di Schrödinger per un oscillatore armonico lineare, con la frequenza di Larmor

ω =
eB

mc
(22)

e con il centro dell’oscillatore a

y =
p c

eB
. (23)

I livelli dell’energia sono

En = ωh̄(n+
1

2
) : (24)

sono indipendenti da p. Questo significa che ogni livelli n è infinitamente degenere, con valore di p,

−∞ < p <∞.

Questi livelli sono noti come livelli di Landau.

La frequenza ω = e B
m c corrisponde a quella del moto circolare nel caso dell’elettrone classico che

entra nel campo magnetico uniforme H,

d

dt
p =

e

c
v × H. (25)

È istruttivo risolvere il problema in un’altra gauge (gauge simmetrica) nella quale

A = (−
B y

2
,
B x

2
, 0). (26)
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