
Esercizi 7

Problema 1.

Dovuto alla regola di commutazione non banale

[Ji, Jj ] = iǫijkJk, (1)

le variabili J1, J2 e J3 in generale non possono avere valori simultaneamente definiti. Dire se ci sono

dei casi (o degli stati quantistici) in cui queste variabili hanno i valori definiti comtemporaneamente.

Problema 2.

Un elettrone è nello stato di spin descritto da

|ψ〉 =
(

α

β

)

. (2)

Qual’è la probabilità, in questo stato, che la misura di sx dia il risultato 1
2? Esiste una direzione

spaziale n = (θ, φ) tale che la misura di spin s · n dia il risultato 1
2 con certezza? Quale?

Problema 3.

Si consideri un sistema di due spin (ambedue con spin 1
2 ), descritto dall’Hamiltoniana

H = κ [ sx(1) + sx(2) ] + 2λ sz(1) sz(2)

=
κ

2
[σx ⊗ 1 + 1⊗ σx ] +

λ

2
σz ⊗ σz , (3)

dove κ e λ sono costanti reali, σi sono matrici di Pauli. Determinare gli autovalori e gli autostati di

H .

Problema 4.

La funzione d’onda di una particella, assogettata ad un potenziale V (r) a simmetria centrale è

data da:

ψ(r) = (x+ 2y − 2z)f(r). (4)

i) ψ è un’autofunzione di L
2? Se lo è, con quale valore di ℓ? Altrimenti, quali sono i valori possibili

di ℓ?

ii) Determinare le probabilità per i vari valori possibili del numero quantico azimutalem (autovalore

di Lz).

1



Soluzione

Problema 1.

Nel caso (unico) di stati con J = 0, tutti i componenti Ji hannno valori definiti

Ji|0, 0〉 = 0. (5)

(Lo stato è invariante per rotazione tridimensionale).

Problema 2.

P = |〈sx =
1

2
|ψ〉|2 =

1

2
| (1, 1) ·

(

α

β

)

|2 =
1

2
|α+ β|2. (6)

Per es. P = 1 per |ψ〉 =

( 1√
2

1√
2

)

; P = 1
2 per |ψ〉 =

(

1

0

)

.

Esiste una direzione spaziale n = (θ, φ) tale che la misura di spin s · n dia il risultato 1
2 con

certezza? Quale?

Basta che siano soddisfatte

cos
θ

2
e−iφ/2 = α ei γ ; sin

θ

2
eiφ/2 = β ei γ . (7)

Considerando il rapporto,

tan
θ

2
= |β/α|; θ = 2 tan−1 |β/α|, φ = Arg (β/α). (8)

Problema 3.

Per semplificare le formule redefinisco λ→ 2λ in seguito. Introduco

Stot
i = si(1) + si(2). (9)

sz(1)sz(2) =
(S

(tot)
z )2 − (sz(1))2 − (sz(2))2

2
=

(S
(tot)
z )2

2
− 1

4
; (10)

sx(1) + sx(2) = S(tot)
x (11)

Conviene quindi scrivere direttamente l’Hamiltoniana nella base di stati di spin totale, |S, Sz〉,










|1, 1〉
|1, 0〉
|1,−1〉
|0, 0〉











=











|↑↑〉
|↑↓〉+|↓↑〉√

2

|↓↓〉
|↑↓〉−|↓↑〉√

2











(12)

anziché scriverlo nella base di stati di singoli spin










|↑↑〉
|↑↓〉
|↓↑〉
|↓↓〉











(13)
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e diagonalizzarlo.

Nella base (12)

H =
κ√
2











0 1 0 0

1 0 1 0

0 1 0 0

0 0 0 0











+ 2λ [
1

2











1 0 0 0

0 0 0 0

0 0 −1 0

0 0 0 0











2

− 1

4

(

13×3 0

0 1

)

]

=











λ κ√
2

0 0
κ√
2

0 κ√
2

0

0 κ√
2

λ 0

0 0 0 0











− λ

2

(

13×3 0

0 1

)

(14)

Diagonalizzando la matrice 3× 3, si trova lo spettro

E =
λ

2
, ±1

2

√

λ2 + 4κ2, −λ
2
, (15)

Gli autostati sono (nella base di (12)):











1

0

−1

0











;











√
2κ

−λ+
√
λ2 + 4 κ2

√
2κ

0











;











√
2κ

−λ−
√
λ2 + 4 κ2

√
2κ

0











;











0

0

0

1











. (16)

Alternativamente, potremmo lavorare con la base degli stati di singoli spin, (13). Visto che il

risultato fisico non dipende dalla scelta del sistema di coordinate, si può prendere gli assi tali che

H = κ [ sz(1) + sz(2) ] + 2λ sx(1) sx(2)

=
κ

2
[σz ⊗ 1 + 1⊗ σz ] +

λ

2
σx ⊗ σx, (17)

Allora nella base di stati (13),

H =











κ 0 0 λ
2

0 0 λ
2 0

0 λ
2 0 0

λ
2 0 0 −κ











(18)

La matrice ha la forma blocco-diagonale, con sottomatrici 2 × 2 nelle righe-colonne (1-4) e (2-3).

Con la diagonalizzazione della sottomatrice (2-3) si ha

E = ±λ
2
; (19)

la diagonalizzazione della sottomatrice (1-4) dà:

E = ±
√

λ2

4
+ κ2 = ±1

2

√

λ2 + 4 κ2; (20)
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lo spettro è uguale a quello ottenuto nella prima base. Gli autostati (nella base di autostati s1xs2x)

sono










0

1

1

0











;











0

1

−1

0











;











λ

0

0

−2 κ+
√
λ2 + 4κ2











;











λ

0

0

−2 κ−
√
λ2 + 4κ2











. (21)

Lo stato con E = −λ
2 è lo stato di singoletto di spin anche in questa base. Vedere che gli altri

tre stati sono equivalenti a quelli in Eq.(16) è meno banale. Tuttavia, visto che gli autostati di s1x

sono

| →〉 =
1√
2
(| ↑〉+ | ↓〉); | ←〉 = 1√

2
(| ↑〉 − | ↓〉); (22)

il primo stato nella (22) è:

| →〉 ←〉+ | ←〉 →〉 =
1

2
[ (| ↑〉+ | ↓〉)(| ↑〉 − | ↓〉) + (| ↑〉 − | ↓〉)(| ↑〉+ | ↓〉) ]

= | ↑↑〉 − | ↓↓〉, (23)

che è il primo stato di (16). Analogamente si può dimostrare che gli ultimi due stati della (21) sono

equivalenti al secondo e al terzo stato della (16).

Problema 4.

i)

x = i
Y1,1 − Y1,1√

2
r; y =

Y1,1 + Y1,1√
2

r; z = −i Y1,0 r. (24)

x+ 2y − 2z = [
2 + i√

2
Y1,1 −

2− i√
2
Y1,1 + 2iY1,0 ] r; (25)

... ψ = R(r)[
2 + i√

2
Y1,1 −

2− i√
2
Y1,−1 + 2iY1,0]. (26)

... ℓ = 1; m = 1, 0, 1 (27)

con probabilità 5
18 , 4

9 e 5
18 , rispettivamente.
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