
Esercizi 8

Problema 1.

Un sistema di due spin (s1 = 1
2 , s2 = 1

2 ) è descritto dall’Hamiltoniana,

H = λ s1 · s2. (1)

Determinare gli autovalori e le autofunzioni di H .

Problema 2.

Un sistema di due particelle (ambedue di spin 1
2 ) è nello stato singoletto di spin totale, Stot = 0.

Si misurano una componente dello spin 1 lungo la direzione a e quella dello spin 2 lungo il vettore

b, a
2 = b

2 = 1. Calcolare il valor medio,

〈(a · σ(1))(b · σ(2))〉.

Problema 3.

Un sistema analoga a quello del problema 2 ma con spin totale, Stot = 1, Stot,z = 0 :

(1) Calcolare il valor medio,

〈(a · σ(1))(b · σ(2))〉.
(2) Supponiamo invece che l’osservatore sia in grado di misurare soltanto lo spin 1. Spiegare che in

questo caso la particella 1 appare come stato misto. Calcolare la matrice densità.

Problema 4.

Una particella A di spin 3
2 e parità intrinseca (+), nello stato |S, Sz〉 = |32 , 1

2 〉, a riposo decade

spontaneamente in due particelle B e C, di spin-parità (1/2)+ e (0)− rispettivamente. Nel decadi-

mento sia il momento angolare che la parità sono conservati.

i) Dire qual’è il valore di ℓ, dove ℓ è il momento angolare orbitale del moto relativo tra B e C.

ii) Esprimere la funzione d’onda dello stato finale in termini di funzioini armoniche sferiche, di

funzioni di spin di B e di una funzione radiale.

iii) Determinare la distribuzione angolare della particella C (nel sistema di centro di massa di B e

C).

iv) Si misura la componente sz dello spin di B, con un apparecchio à la Stern-Gerlach, posto nella

direzione (θ, φ). Dire qual’è la probablità che lo spin risulti “up”.
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Soluzione

Problema 1.

λ s1 · s2 =
λ

2
[S2

tot − s
2
1 − s

2
2 ] =

λ

2
[S2

tot −
3

2
] =

{

λ
4 , Stot = 1,

− 3 λ
4 , Stot = 0.

(2)

Problema 2.

Metodo brutale:

〈(a · σ(1))(b · σ(2))〉 = 〈↑↓ − ↓↑√
2

|
(

a3 a1 − ia2

a1 + ia2 −a3

)

⊗
(

b3 b1 − ib2

b1 + ib2 −b3

)

| ↑↓ − ↓↑√
2

〉 (3)

Calcolatelo esplicitamente come e.g.

〈 ↑↓|
(

a3 a1 − ia2

a1 + ia2 −a3

)

⊗
(

b3 b1 − ib2

b1 + ib2 −b3

)

| | ↑↓〉

= 〈 ↑|
(

a3 a1 − ia2

a1 + ia2 −a3

)

|↑〉 · 〈 ↓ |
(

b3 b1 − ib2

b1 + ib2 −b3

)

|↓〉 = −a3b3, (4)

etc. Il risultato è: −a · b.

Metodo elegante: Visto che lo stato è singoletto, (s1 + s2)|〉 = 0,

〈(a · σ(1))(b · σ(2))〉 = −〈(a · σ(1))(b · σ(1))〉 = −aibj 〈σ(1)
i σ

(1)
j 〉

= −aibj
2

〈[σ(1)
i σ

(1)
j + (j ↔ i)]〉 = − a · b 〈1〉 = − a · b. (5)

Problema 3.

i) Il metodo brutale dà: a · b − 2a3b3.

Metodo elegante?

ii)

〈O(1)〉 = 〈↑↓ + ↓↑√
2

|O(1)| ↑↓ + ↓↑√
2

〉 =
1

2
[ 〈↑ |O(1)| ↑〉 + 〈↓ |O(1)| ↓〉] = Tr{O(1)ρ}; (6)

ρ =
1

2

(

1 0

0 1

)

; ρ2 6= ρ. (7)

Problema 4.

i) La conservazione della parità dà

+1 = (+1)(−1)(−)ℓ, (8)

i.e. ℓ deve essere dispari. La conservazione del momentop angolare comporta:

ℓ = 1, 2. (9)

Perciò ℓ = 1.
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ii) Dalla tabella di coefficienti di Clebsch-Gordan,

|3
2
,
1

2
〉 =

1√
3
|1, 1〉|1

2
,−1

2
〉 +

√

2

3
|1, 0〉|1

2
,
1

2
〉 (10)

i.e.,

ψ(r) = R(r) [
1√
3
Y1,1(θ, φ)|↓〉 +

√

2

3
Y1,0(θ, φ)|↑〉 ]. (11)

iii)

Y1,1 = −i
√

3

8π
sin θ eiφ, Y1,0 = i

√

3

4π
cos θ, (12)

... |ψ|2dΩ = [
1

3
|Y1,1(θ, φ)|2 +

2

3
|Y1,0(θ, φ)|2 ] dΩ =

1 + 3 cos2 θ

8π
dφ sin θ dθ. (13)

Si noti che
∫

|ψ|2dΩ = 2π

∫

1 + 3 cos2 θ

8π
sin θ dθ = 1. (14)

iv) Alla direzione (θ, φ) la funzione d’onda di spin normalizzata è

N [Y1,1(θ, φ)|↓〉 +
√

2Y1,0(θ, φ)|↑〉 ] =
Y1,1(θ, φ)|↓〉 +

√
2Y1,0(θ, φ)|↑〉

√

|Y1,1|2 + 2|Y1,0|2
(15)

P↑ =
2|Y1,0|2

|Y1,1|2 + 2|Y1,0|2
=

4 cos2 θ

sin2 θ + 4 cos2 θ
=

4 cos2 θ

1 + 3 cos2 θ
; (16)

P↓ =
|Y1,1|2

|Y1,1|2 + 2|Y1,0|2
=

sin2 θ

sin2 θ + 4 cos2 θ
=

sin2 θ

1 + 3 cos2 θ
. (17)
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