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Abstract:

It is proven that the energy of a quantum mechanical harmonic oscillator with
a generically time-dependent but cyclic frequency, w(tg) = w(0), cannot decrease on
an average if the system is originally in a stationary state, after the system goes
through a full cycle. The energy exchange always takes place in the direction from

the macroscopic system (environment) to the quantum microscopic system.
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1. The Theorem

Many physical systems reduce effectively to that of a harmonic oscillator with a
time-dependent frequency (we set m = 1),
21
H(t) = %+§w(t)2q2, (1.1)

which is thus of certain interest [1]. In particular, the case of a periodic (cyclic)

variation of w such that
w(to) = w(0) (1.2)

is of great interest. We shall not specify the time variation of w(t) otherwise. Suppose
furthermore that the system is initially in one of the stationary states, 1)), with energy

E;,,. We prove below, independently of how the system goes through the cycle, that

Ejin = E(to) = (¥(to) | H[1(t0)) > Ein, (1.3)

i.e. on an average the microscopic system can never give excess energy to the external
environment.  Such a result might appear surprising at first sight, since during a
generic time variation of external parameters, the system can either give the energy
away to or absorb it from the environment. Also, such a theorem certainly does not
hold in general in a system with a finite number of independent states, such as a spin

% system in a varying magnetic field.

The proof is easiest in the Heisenberg picture. Heisenberg equations of motion
tell us that ¢(t), p(t) are linear combinations of ¢, p; they furthermore preserve the

commutation relation (we set A = 1)
a(t), p()] = . (1.4)
In other words the time evolution is described by an Sp(2) transformation
Y0 = Sas® 905, SupSosems = oy S5t =, (L5)

where we wrote y, = (¢, p). Or writing

S = <a b) , a,b,c, d real
c d

the condition (1.5) reduces to
ad — bc = det(S) = 1. (1.6)
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The energy expectation value at time ¢ is given by
_ 1
E(t) = WHD) = 5(lp()* +w(t)’q(t)’[¢). (1.7)
At the end of a cycle (we set w(0) = 1),
1
Efin = 5@/"1911(??0)2 + qu (to)*[1). (1.8)
By using Eq. (1.5) and by defining
1
D = S(ap+pq)
the quadratic form becomes

(S11q + 512p>2 + (S91q + 522]))2 =
= (ST + S5)@% + (St + S5)p” + 2(S11512 + S2159) D.

By using the Virial theorem
1 1 1
SWI*[Y) = 5 (Wl¢*[¥) = 5 Bin (1.9)
2 2 2
and the fact (valid for real wave functions) that
(Y|D[y) =0 (1.10)
the final energy is given by
1
Efin = 5 Ein [S1 + 551 + Sty + 53] . (1.11)
The problem is then to find the minimum of a quadratic form Q = a? + b* + ¢® + d?
under a constraint ad — bc = 1. Upon introduction of a Lagrange multiplier, the
extremum of a® + b* + ¢ + d? + 2\ (ad — be — 1) is given by *

b
A=—1, a=d, b= —c, S:<a >, a+ v =1,
—b a

that is, when S is orthogonal. In that case the quadratic form takes the value 2 and

therefore in general
1

L As the set of the evolution matrices is unbounded, this extremum can only be a minimum. In

an alternative proof given in (C.2) this fact is evident.
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Remarks

Let us make some remarks and discuss to which extent our theorem can be generalized.

In the adiabatic limit, the system “follows” the variation of the spectrum while
staying in the “initial” eigenstate, and comes back to the original state, so we expect
E; — Ei,. In the sudden limit, the wave function does not make it to change as the
external parameter goes through a (too) quick cyclic variation, so that Ey — Ej,
again. These two extreme cases are obviously included as special cases and do satisfy
our theorem, but the point is that the latter holds for any periodic time variation of

the external parameters (mass, frequencies, etc).

Our result is valid also in the case of a forced oscillator. Consider
1

H=5(p" +w(t)’q") —x(1) g (1.13)

where k() is an arbitrary function with x(0) = x(7") = 0. The Heisenberg equations
are
p=ilHpl=-w?q+r  G=i[Hq=p (1.14)

SO

§=—w’q+F. (1.15)

Let us now consider a solution Q.(¢) of (1.15) with the boundary condition
Qe(0) = Qc(0) = 0;

it follows immediately that ¢ is a sum of the homogeneous solution plus the particular

one Q.
an(t) = Qu(t) + aiy " (t),  pult) = Qclt) +pi (). (1.16)

One has then
By = By 4+ 0 (@ +Q7) + (Qulaly ™) + Qs (1),

As the expectation values of gy and py vanish in the initial stationary state it follows
that )
By =B+ 2 (Q*+Q?) 2 B, (1.17)

where the result of the preceding paragraphs has been used.



In perturbation theory the theorem can be easily seen to be valid. By writing
w(t)?x? = w2 22 + dw(t) 2%, dw(ty) = dw(0) = 0, the first-order transition probability

2

to
/ dtéwT(t) et (2%) i (1.18)
0

1

is larger for the process n — n + 2 than for n — n — 2, hence (H) > E;,.

In perturbation theory, one can actually verify the theorem for a more general
class of perturbing potentials. Indeed, it can be easily seen that for any perturbation
of the form,

AV (t,x) = dw(t) 2", dw(ty) = dw(0) =0, (1.19)

the theorem is valid, as |(2™)pimn| > (@™ )n_ma| (m > 0). This would suggest that
actually the theorem holds for a wider class of periodic potentials, V (o, z) = V(0, z)

(i.e., not only for harmonic oscillators).

The theorem does not hold for a generic initial pure state. Since in some cases the
final energy expectation value (i.e., in the pure state U(tg)|¢(0))) is strictly higher
than the initial value (Sec. 2.), it suffices to consider the time-reversed process of
such an evolution (by time-reversing the external variations also), to find a counter

2. On the other hand, for an initial state which is not an

example to the theorem
eigenstate of energy, the operational meaning of the theorem itself would become

somewhat unclear.

This fact does not however mean that the theorem is inapplicable for any pure
initial state which is not an energy eigenstate: our assumption (an initial stationary
state) is sufficient but not necessary. In fact, we have found another sufficient condi-
tion: for initial states of the form ¢ = )" a,¥n, n = ng+ 4m, m € Z, with a fixed
ng, the theorem can be shown to hold by a slight generalization of the proof given

here.

A somewhat related issue concerns a system which goes through many cycles. Our
theorem holds in this case as a multiple cyclic variation s a cyclic one. On the other
hand, if E,, = (H),, denotes the energy expectation value computed after the system
has done n cycles, no claim is being made on the relative magnitudes among E,,’s,

e.g., Ey < FEy<.. ., which certainly is false in general.

Nevertheless, a cumulative effect does take place: the maximum of the average

energy gain factor, R = (¢ |H |1}/ E;,, which occurs at appropriately tuned variation

2We thank Tomas Tyc for a useful communication on this point.
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parameters, becomes exponentially large when the system undergoes many cycles, as
can be verified by studying explicit examples (see the point (iii) in Section 2). This

might suggest a possibility for some physical application of our theorem.

The energy gain factor R is universal, in the sense that it does not depend on the
particular initial stationary state chosen (it depends of course on the parameters of

external variations). This may have to do with the peculiarity of harmonic oscillators.

Note that the (classical) canonical equations of motion and Heisenberg equations
have the same form, and the evolution matrix S are the same in both cases. As a
result, an analogous theorem holds in classical mechanics, if one takes an average over

random initial values (p, ¢) over a given (fixed-energy) trajectory.
Finally, the theorem (obviously) applies to a system of N independent oscillators

H=3 124 Luare) (1.20)

1=1

with arbitrary, periodic variations of w, w;(tg) = w;(0), if the initial state is in a

stationary state |nqy,ng, ..., ny).

There is in fact an important case in which the theorem applies for a initial
mixed state. Consider the NV oscillator system of (1.20) and suppose that the system
is originally in the thermal equilibrium with a heat bath at temperature 7. The

theorem then clearly applies in a statistical and quantum average sense. (Section 3.)

For an interacting /N oscillator system, instead, the generalization is not obvious.
We content ourselves with a slightly weaker theorem here: the number of the phonons

in the system can be shown not to decrease on an average (Appendix C).

2. Example: Inverse Linear Variation of the Frequency

Consider the oscillator Eq.(1.1) with frequency varying as

A(t) =1+ vt, (2.1)

d*q 5 q
W—FQE—O, 9_7



By setting ¢(t) = A\(t)?, one gets a characteristic equation

B(B—1)+9*=0,

51,2:%i5, 55\/;1—92, (2.2)

so that the general solution of the Heisenberg equations reads

with solutions

g = A\t + e\, P = (clﬁl)ﬁl + CQﬂQ)\ﬁQ) ) (2.3)

By imposing the initial condition one finds

qu(t) = 2_1(5{(52)\51—ﬁ1/\ﬂ2)q+%()xﬁz—)\ﬁl)p}7
pu(t) = %L/\ {5152 (A% =27 q+%(52)\ﬂ2 — B A7) p}. (2.4)

As a check, consider the adiabatic limit, v — 0, 2 — co. One has ;2 ~ Fiwy/v, so
that
)\61,2 N (1 _|_Ut)zpzwo/v _ eq:z’wot’

and

g
2

b (—e ™0t 4 ™0h) = g coswyt + L sin wot

(e—zw0t+ezw0t)_|_ :
21wy Wo

qu(t) —

which is the correct result.

Writing Eqgs.(2.4) in the form of Eq.(1.5) with S = S(wp, v, A) one gets, by inserting
this in Eq.(1.7) and by using the Virial theorem,

1 1
(VIH|p) = §E0 E(S% +5%) + 55 + 85| =
Eg A% + X720 4+ 2(46% — 1)
= 5 DR : (2.5)

At time ¢, A = 1 + vt, the energy mean value (2.5) can be larger or smaller than
the original energy depending on the sign of the velocity v (hence whether the scale
factor A is smaller or larger than unity).

However, as we are most interested in cyclic variations of w, let us consider the

the evolution from the original frequency wy to a final frequency =%, and then back



to wp. The second half of the evolution is simply described by the transformation

S =5(%,—v 1) so that the total evolution is described by the Heisenberg evolution

D)
qu(to)  aeye qu(0) e — ayWo 1
(pH<to> ) 0 (mo) ) o SV =S e ) - Sleo v ) (2.6)

where S is defined by Eq.(2.4).

The results for more general frequency variations are given in Appendix A and in

Appendix B.

In the case of the linear variation (2.5), (2.6), we have analysed numerically the
energy gain factor R(wo,v, ) = (¢|H|¢)/Ey = 5 Tr[ S (S¥¢)T'] for various values
of wg, v and A, X being the scale factor (w = wp/\) at the moment of the maximal
contraction (A < 1) or expansion (A > 1). We find R(wp, v, \) > 1 always as expected,
but find also that:

(i) At fixed A, R(wp,v,A) — 1 both in the adiabatic (v — 0) and impulse approxi-

mation (v — oo) limits, as expected;

(ii) There are various resonance effects at small v (see Fig. 1); in particular, as a
function of the velocity v at a fixed A, R reaches a maximum of order of O(1/)\)
(for A < 1) or O(A\) (for A > 1), and then rather smoothly approaches the

impulse-approximation value 1 asymptotically;

(iii) When the system goes through N cycles, the maximal energy gain factor (which
occurs at certain critical velocity) behaves as R oc (1/A\)Y or R o< A, a huge

factor if A is large;

(iv) There are values of (v, A\) at which R attains values either exactly equal to or

very close to unity (Fig. 1).

(v) As a function of A, the maximum of R grows indefinitely as A — 0 or as A — oc.

3. Planck Distribution inside an Oscillating Cavity

As a possible physical application of our considerations, let us consider the black
body spectrum confined in a perfectly reflecting three-dimensional box of linear di-

mension L. The electromagnetic field energy is described by the Hamiltonian per
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Figure 1: Energy gain factor as a function of v for fixed A(= 10), at small and large v.

unit volume
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H=3 7P HKan +2 TP tKay |
Kk Kk

where k,, = 7mn/L. At temperature T' the energy distribution is

8 hv

u(v)dv = B T ]

V2 dv. (3.1)

Suppose that at certain moment the box starts to contract or expand with a
constant linear velocity. How does the energy distribution change with the linear size
of the box?

At time ¢t = 0 various modes are distributed according to the Planck distribution,
(3.1). Each mode simply transforms as in Eq.(2.4): (|| > 1, § =il|d|),

BN AN +240° 1) B,

E H ~ — 2
n = (H) =5 ANG? ) (3:2)
Since in|
v 7TLnC7 L(t) = Lo(14+vt), |V]=Lop| <c,
0
w mnle 1 nfc
_ 1 0=/ —O2 ~ ;" 3.3
N T 1 v (33)

the process is adiabatic for all modes. The distribution remains Planckian; each mode
is either red-shifted (in an expanding box) or shifted towards ultraviolet (a contracting

box), simply by the scale factor A.

In fact, the system is not so interesting as an application of the general theorem
mentioned in Section 1, as it is entirely adiabatic; the only reason we discuss it here

is its possible relevance to the so-called sonoluminescence phenomenon.
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In the single-bubble sonoluminescence [2], a gas bubble trapped in a liquid is
made oscillating radially by acoustic waves, and at the moments its radius attains
the minimum the bubble emits pulse of light in the visible to ultraviolet wavelength
range. In a typical experiment, the linear dimension of the bubble contracts up to
a factor of A = 10~%: this is compatible with the observed increase of an effective
temperature of a factor 10* or more. The energy density increases according to the
Stefan’s law,

U=0T" o0=764-10""ergcm 3 K™ (3.4)

but since the volume itself decreases by a factor A\* the total energy of blackbody
radiation increases only by a factor % It is possible that this excess energy is released

in the form of visible light pulse at each cycle 3.

4. Conclusion

A harmonic oscillator with a time-dependent frequency (or an ensemble of such
oscillators) experiences a full cycle, with the system originally in a stationary state.
After the cycle, the energy expectation value is predicted never to decrease, inde-
pendently of the way the parameters vary with time during the cycle. The theorem
deals with an apparently simple system familiar to everybody; nevertheless it involves
various subtle issues as discussed here, and to the best of our knowledge, has not been

discussed before, at least in this form.

Our result is somewhat reminiscent of the law of entropy increase, but concerns
the evolution of quantum mechanical pure states, and no information loss is implied.
A generic non-adiabatic “disturbance” by the external force always does work on the
microscopic system on an average, increasing its energy. The energy flow is always in
the direction from the macroscopic system to the microscopic one. In other words,
the quantum mechanical harmonic oscillator cannot act as a perpetual machine, nor
produce a net energy gain. A spaceship cannot continue her journey forever, getting

its energy supply from the inexhaustible zero-point energy of the vacuum [3].

3In an experiment at Laurence Livermore Ntional Laboratory [2] 10° — 10° photons are observed
within a pulse, with the energy of order of 10~7 erg which seems to be compatible with such a rough
estimate. Note also that the visible lights correspond to the effective temperature of 7' = 10* — 10°
or to the energy for a single photon of order of hv ~ kT ~ 10712 erg.
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Appendix A General Power Dependent Frequencies

Consider a case of a generic power-behaved frequency,

H(t) = ﬁﬁ—l—%mw%zkdﬁ, z =1+ vt. (A.1)
For k = 0 we recover the case discussed in the text. In the following, we shall set
m = 1,wy = 1. Note that v has the dimension of a frequency, so that to recover the
dependence on wy it suffices to replace it by v/wy. The Heisenberg equation of motion
gives

G + 2" %qn = 0.

Multiplying this by 1/v? one gets

d? L s
@QH + ﬁz qu = 0. (A2)
Its general solution is of the form,
2 2
an(t) = AVEL(-22) + BVYiu(s 2% (A.3)

where J, Y are the Bessel functions of the first and second kind, respectively. Differ-
entiation with respect to time yields
pu(t) = vqu(t).
dz

The coefficients A and B are determined by imposing the initial conditions

QH‘zzl =q, pH’z:l =p:

A = —% [q-(ﬁ+;(%)+(p—v(J)-Y,g(%)];
B o= o Ui+ - 02| (A4)
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The expression for
1 1
E(t) = (0|§pH(t)2 + ézk_qu(t)2|0>. (A.5)
is quite complicated but can be analyzed numerically. We note that:

1) The case k = —2 reduces to the known result;

2) The behavior is qualitatively similar for all k£, with a phase of monotonous

increase following the initial, oscillating phase, as a function of v (see Fig. 2);

3) At fixed final “physical scale”, zs, = )\_%, zljfi_nQ = A2, the asymptotic
behavior in v turns out to be always the same as in the case k = —2, 1.e.,
w 1
Er~—(14+—=). A6
20+ 5) (A.6)

This assertion is based on a graphical evidence (see Fig. 2), for the moment *.

25+

20}

15¢

10+

5 10 15 20

Figure 2: Energy as a function of v for a fixed A = 1/10, with k¥ = —2, —3, —4. Expected asymptotic
value is 1/4(1 + 100) = 25.25.

Appendix B Exponential Dependence

As a second example, let us consider the Hamiltonian,
1 1

H = §p2 + 5 €2vt q2. (B].)

4For generic order, the functions J,Y have essential singularities at v = 0o, which prevent us

from analyzing either adiabatic or large v limit analytically.
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The Heisenberg equation is

2ut

Gu +€e"qy = 0.

Changing the variable to 7 = vt one has

d 1
g2+ ﬁe%tqH =0

which has

1 1
qH(t) = A Jg(;evt> + B %(;6“)

dgn

1 1
_ vt — vty vt — vt
e Ae Jl(ve )—Be Yl(ve ) (B.2)

pu(t)
as general solutions. As before the coefficients are determined by the initial condition:

™ ™

A=-Z G+ an)] . =2 [pa) aac)|.

2v 2v v v
The mean energy can be computed as in the preceding cases.

w222

50 = 25 {-2Em0) (A

)+ RG]

[

[SE

1672

(SR

v v
1., 1
)¥o(

HRC) RO O] + 2 1R +126)]

RGO [REWE) A +
+ RO+ 20| [ e (5.3)

(%

where z = e, It is also possible to get the asymptotic behavior in v at fixed z:

E, = 1(1 + 2%) — (2 —1)% (B.4)

4
which is compatible with (A.6) as z = 1/\.

1602

Appendix C Creation and Annihilation Operators

The whole problem can be analyzed by use of creation and annihilation operators.
We introduce at each instance the variables ¢;(t), p;(t) in which the frequency is

diagonal, w;;(t) = 6;;wi(t); then define a;(t), al (t) in the standard manner in terms of
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¢ (1), p;(t). The time evolution introduces a linear transformation among a;(t), a!(t),

[

which has a general form,
aj — Aika,t + Birag, a; — Aja, + B;kkalt.

The coefficients must be such that the canonical commutation relations are preserved

(in a matrix form):

AA" - BB =1,AB" — BAT =0. (C.1)

For a single oscillator, the theorem of Section 1. can be immediately proven:

w w
By = 5 +wl@)dln) =3+ nl(1AF +|Bf)alaln) =
1
— g+n(1+2|B|2)w2w(n+§):Em. (C.2)

For N oscillators which are originally in a stationary state (ignoring the zero point

energy),

E;, = (Y| Zwiajai@) = Zwmi;
Ep = (¥ iwia'jaH% = <Z‘If| > wilAuaj, + Baay)(Ajae + Bia})| V) =
= Y wi(ApAjny + By By (ng + 1)).
ik
For the diagonal matrices A e B (uncoupled oscillators), (C.2) trivially generalizes.
For coupled oscillators, the generalization is not obvious.

We content ourselves here with a somewhat weaker result: it states that the
occupation number (number of phonons) does not diminish under cyclic variations of

frequency. Indeed,
N; = (\If|2a2ai|\11> = Zni;
Ny = (U] dla| ) = (U] Y " (Aal, + Birar)(Ajar + Bial)| V) =

= ) (AwAjni + BuBj(ng +1)).

ik

Eq.(C.1) implies

> ApAy = BuBji +1,
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therefore
Ny=> np+> BuBj(2ns+1) > Ny, (C.3)
k ik
This (more general) result perhaps explains the physical meaning of our result on the

energy expectation value.
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