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Abstract:

It is proven that the energy of a quantum mechanical harmonic oscillator with

a generically time-dependent but cyclic frequency, ω(t0) = ω(0), cannot decrease on

an average if the system is originally in a stationary state, after the system goes

through a full cycle. The energy exchange always takes place in the direction from

the macroscopic system (environment) to the quantum microscopic system.
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1. The Theorem

Many physical systems reduce effectively to that of a harmonic oscillator with a

time-dependent frequency (we set m = 1),

H(t) =
p2

2
+

1

2
ω(t)2 q2, (1.1)

which is thus of certain interest [1]. In particular, the case of a periodic (cyclic)

variation of ω such that

ω(t0) = ω(0) (1.2)

is of great interest. We shall not specify the time variation of ω(t) otherwise. Suppose

furthermore that the system is initially in one of the stationary states, |ψ〉, with energy

Ein. We prove below, independently of how the system goes through the cycle, that

Efin = Ē(t0) = 〈ψ(t0)|H|ψ(t0)〉 ≥ Ein, (1.3)

i.e. on an average the microscopic system can never give excess energy to the external

environment. Such a result might appear surprising at first sight, since during a

generic time variation of external parameters, the system can either give the energy

away to or absorb it from the environment. Also, such a theorem certainly does not

hold in general in a system with a finite number of independent states, such as a spin
1
2

system in a varying magnetic field.

The proof is easiest in the Heisenberg picture. Heisenberg equations of motion

tell us that q(t), p(t) are linear combinations of q, p; they furthermore preserve the

commutation relation (we set ~ = 1)

[q(t), p(t)] = i. (1.4)

In other words the time evolution is described by an Sp(2) transformation

y(t)α = Sαβ(t) y(0)β, SαβSγδεβδ = εαγ SεST = ε, (1.5)

where we wrote yα = (q, p). Or writing

S =

(
a b

c d

)
, a, b, c, d real

the condition (1.5) reduces to

ad− bc = det(S) = 1. (1.6)
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The energy expectation value at time t is given by

Ē(t) = 〈ψ|H(t)|ψ〉 =
1

2
〈ψ|p(t)2 + ω(t)2q(t)2|ψ〉. (1.7)

At the end of a cycle (we set ω(0) = 1),

Efin =
1

2
〈ψ|pH(t0)

2 + qH(t0)
2|ψ〉. (1.8)

By using Eq. (1.5) and by defining

D =
1

2
(qp+ pq)

the quadratic form becomes

(S11q + S12p)
2 + (S21q + S22p)

2 =

= (S2
11 + S2

21)q
2 + (S2

12 + S2
22)p

2 + 2(S11S12 + S21S22)D.

By using the Virial theorem

1

2
〈ψ|p2|ψ〉 =

1

2
〈ψ|q2|ψ〉 =

1

2
Ein (1.9)

and the fact (valid for real wave functions) that

〈ψ|D|ψ〉 = 0 (1.10)

the final energy is given by

Efin =
1

2
Ein

[
S2

11 + S2
21 + S2

12 + S2
22

]
. (1.11)

The problem is then to find the minimum of a quadratic form Q = a2 + b2 + c2 + d2

under a constraint ad − bc = 1. Upon introduction of a Lagrange multiplier, the

extremum of a2 + b2 + c2 + d2 + 2λ(ad− bc− 1) is given by 1

λ = −1, a = d, b = −c, S =

(
a b

−b a

)
, a2 + b2 = 1,

that is, when S is orthogonal. In that case the quadratic form takes the value 2 and

therefore in general

Efin =
1

2
EinQ ≥ Ein. (1.12)

1As the set of the evolution matrices is unbounded, this extremum can only be a minimum. In
an alternative proof given in (C.2) this fact is evident.
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Remarks

Let us make some remarks and discuss to which extent our theorem can be generalized.

In the adiabatic limit, the system “follows” the variation of the spectrum while

staying in the “initial” eigenstate, and comes back to the original state, so we expect

Ef → Ein. In the sudden limit, the wave function does not make it to change as the

external parameter goes through a (too) quick cyclic variation, so that Ef → Ein

again. These two extreme cases are obviously included as special cases and do satisfy

our theorem, but the point is that the latter holds for any periodic time variation of

the external parameters (mass, frequencies, etc).

Our result is valid also in the case of a forced oscillator. Consider

H =
1

2
(p2 + ω(t)2q2)− κ(t) q, (1.13)

where κ(t) is an arbitrary function with κ(0) = κ(T ) = 0. The Heisenberg equations

are

ṗ = i [H, p] = −ω2 q + κ, q̇ = i [H, q] = p (1.14)

so

q̈ = −ω2q + κ̇. (1.15)

Let us now consider a solution Qc(t) of (1.15) with the boundary condition

Qc(0) = Q̇c(0) = 0;

it follows immediately that q is a sum of the homogeneous solution plus the particular

one Qc

qH(t) = Qc(t) + q
(κ=0)
H (t), pH(t) = Q̇c(t) + p

(κ=0)
H (t). (1.16)

One has then

Ef = E
(κ=0)
f +

1

2

(
Q2 + Q̇2

)
+ (Qc〈q(κ=0)

H (t)〉+ Q̇c〈p(κ=0)
H (t)〉).

As the expectation values of qH and pH vanish in the initial stationary state it follows

that

Ef = E
(κ=0)
f +

1

2

(
Q2 + Q̇2

)
≥ Ei, (1.17)

where the result of the preceding paragraphs has been used.
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In perturbation theory the theorem can be easily seen to be valid. By writing

ω(t)2 x2 = ω2
0 x

2 + δω(t)x2, δω(t0) = δω(0) = 0, the first-order transition probability

Pfi =
1

~2

∣∣∣∣∫ t0

0

dt
δω(t)

2
ei ωfi t (x2)fi

∣∣∣∣2 (1.18)

is larger for the process n→ n+ 2 than for n→ n− 2, hence 〈H〉 ≥ Ein.

In perturbation theory, one can actually verify the theorem for a more general

class of perturbing potentials. Indeed, it can be easily seen that for any perturbation

of the form,

∆V (t, x) = δω(t)xN , δω(t0) = δω(0) = 0, (1.19)

the theorem is valid, as |(xN)n+m,n| ≥ |(xN)n−m,n| (m > 0). This would suggest that

actually the theorem holds for a wider class of periodic potentials, V (t0, x) = V (0, x)

(i.e., not only for harmonic oscillators).

The theorem does not hold for a generic initial pure state. Since in some cases the

final energy expectation value (i.e., in the pure state U(t0) |ψ(0)〉) is strictly higher

than the initial value (Sec. 2.), it suffices to consider the time-reversed process of

such an evolution (by time-reversing the external variations also), to find a counter

example to the theorem 2. On the other hand, for an initial state which is not an

eigenstate of energy, the operational meaning of the theorem itself would become

somewhat unclear.

This fact does not however mean that the theorem is inapplicable for any pure

initial state which is not an energy eigenstate: our assumption (an initial stationary

state) is sufficient but not necessary. In fact, we have found another sufficient condi-

tion: for initial states of the form ψ =
∑

n anψn, n = n0 + 4m, m ∈ Z, with a fixed

n0, the theorem can be shown to hold by a slight generalization of the proof given

here.

A somewhat related issue concerns a system which goes through many cycles. Our

theorem holds in this case as a multiple cyclic variation is a cyclic one. On the other

hand, if Ēn = 〈H〉n denotes the energy expectation value computed after the system

has done n cycles, no claim is being made on the relative magnitudes among Ēn’s,

e.g., Ē1 ≤ Ē2 ≤ . . ., which certainly is false in general.

Nevertheless, a cumulative effect does take place: the maximum of the average

energy gain factor, R ≡ 〈ψ|H|ψ〉/Ein, which occurs at appropriately tuned variation

2We thank Tomas Tyc for a useful communication on this point.
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parameters, becomes exponentially large when the system undergoes many cycles, as

can be verified by studying explicit examples (see the point (iii) in Section 2). This

might suggest a possibility for some physical application of our theorem.

The energy gain factor R is universal, in the sense that it does not depend on the

particular initial stationary state chosen (it depends of course on the parameters of

external variations). This may have to do with the peculiarity of harmonic oscillators.

Note that the (classical) canonical equations of motion and Heisenberg equations

have the same form, and the evolution matrix S are the same in both cases. As a

result, an analogous theorem holds in classical mechanics, if one takes an average over

random initial values (p, q) over a given (fixed-energy) trajectory.

Finally, the theorem (obviously) applies to a system of N independent oscillators

H =
N∑

i=1

[
p2

i

2
+

1

2
ωi(t)

2 q2
i ], (1.20)

with arbitrary, periodic variations of ω, ωi(t0) = ωi(0), if the initial state is in a

stationary state |n1, n2, . . . , nN〉.

There is in fact an important case in which the theorem applies for a initial

mixed state. Consider the N oscillator system of (1.20) and suppose that the system

is originally in the thermal equilibrium with a heat bath at temperature T . The

theorem then clearly applies in a statistical and quantum average sense. (Section 3.)

For an interacting N oscillator system, instead, the generalization is not obvious.

We content ourselves with a slightly weaker theorem here: the number of the phonons

in the system can be shown not to decrease on an average (Appendix C).

2. Example: Inverse Linear Variation of the Frequency

Consider the oscillator Eq.(1.1) with frequency varying as

ω(t) =
ω0

λ(t)
, λ(t) = 1 + v t, (2.1)

where ω0 adn v are constants. From Heisenberg equations one gets

d2q

dλ2
+ Ω2 q

λ2
= 0, Ω =

ω0

v
.
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By setting q(t) = λ(t)β, one gets a characteristic equation

β (β − 1) + Ω2 = 0,

with solutions

β1,2 =
1

2
± δ, δ ≡

√
1

4
− Ω2, (2.2)

so that the general solution of the Heisenberg equations reads

qH = c1λ
β1 + c2λ

β2 , pH = v
(
c1β1λ

β1 + c2β2λ
β2
)
. (2.3)

By imposing the initial condition one finds

qH(t) =
1

2 δ

{(
β2 λ

β1 − β1 λ
β2
)
q +

1

v

(
λβ2 − λβ1

)
p

}
,

pH(t) =
v

2 δ λ

{
β1 β2

(
λβ2 − λβ1

)
q +

1

v

(
β2 λ

β2 − β1 λ
β1
)
p

}
. (2.4)

As a check, consider the adiabatic limit, v → 0, Ω →∞. One has β1,2 ' ±i ω0/v, so

that

λβ1,2 → (1 + v t)∓iω0/v → e∓i ω0 t,

and

qH(t) → q

2
(e−iω0t + eiω0t) +

p

2iω0

(−e−iω0t + eiω0t) = q cosω0t+
p

ω0

sinω0t

which is the correct result.

Writing Eqs.(2.4) in the form of Eq.(1.5) with S = S(ω0, v, λ) one gets, by inserting

this in Eq.(1.7) and by using the Virial theorem,

〈ψ|H|ψ〉 =
1

2
E0

[
1

λ2
(S2

11 + S2
12) + S2

21 + S2
22

]
=

=
E0

2

λ2δ + λ−2δ + 2(4δ2 − 1)

4λδ2
. (2.5)

At time t, λ = 1 + v t, the energy mean value (2.5) can be larger or smaller than

the original energy depending on the sign of the velocity v (hence whether the scale

factor λ is smaller or larger than unity).

However, as we are most interested in cyclic variations of ω, let us consider the

the evolution from the original frequency ω0 to a final frequency ω0

λ
, and then back
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to ω0. The second half of the evolution is simply described by the transformation

S = S(ω0

λ
,−v, 1

λ
) so that the total evolution is described by the Heisenberg evolution(

qH(t0)

pH(t0)

)
= Scyc

(
qH(0)

pH(0)

)
, Scyc ≡ S(

ω0

λ
,−v, 1

λ
) · S(ω0, v, λ) (2.6)

where S is defined by Eq.(2.4).

The results for more general frequency variations are given in Appendix A and in

Appendix B.

In the case of the linear variation (2.5), (2.6), we have analysed numerically the

energy gain factor R(ω0, v, λ) = 〈ψ|H|ψ〉/E0 = 1
2
Tr [Scyc (Scyc)T ] for various values

of ω0, v and λ, λ being the scale factor (ω = ω0/λ) at the moment of the maximal

contraction (λ < 1) or expansion (λ > 1). We find R(ω0, v, λ) ≥ 1 always as expected,

but find also that:

(i) At fixed λ, R(ω0, v, λ) → 1 both in the adiabatic (v → 0) and impulse approxi-

mation (v →∞) limits, as expected;

(ii) There are various resonance effects at small v (see Fig. 1); in particular, as a

function of the velocity v at a fixed λ, R reaches a maximum of order of O(1/λ)

(for λ < 1) or O(λ) (for λ > 1), and then rather smoothly approaches the

impulse-approximation value 1 asymptotically;

(iii) When the system goes through N cycles, the maximal energy gain factor (which

occurs at certain critical velocity) behaves as R ∝ (1/λ)N or R ∝ λN , a huge

factor if λ is large;

(iv) There are values of (v, λ) at which R attains values either exactly equal to or

very close to unity (Fig. 1).

(v) As a function of λ, the maximum of R grows indefinitely as λ→ 0 or as λ→∞.

3. Planck Distribution inside an Oscillating Cavity

As a possible physical application of our considerations, let us consider the black

body spectrum confined in a perfectly reflecting three-dimensional box of linear di-

mension L. The electromagnetic field energy is described by the Hamiltonian per
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Figure 1: Energy gain factor as a function of v for fixed λ(= 10), at small and large v.

unit volume

H =
∑
k

(
c2

4
p2

(1) + k2q2
(1)

)
+
∑
k

(
c2

4
p2

(2) + k2q2
(2)

)
,

where kn ≡ πn/L. At temperature T the energy distribution is

u(ν) dν =
8π

c3
hν

ehν/kT − 1
ν2 dν. (3.1)

Suppose that at certain moment the box starts to contract or expand with a

constant linear velocity. How does the energy distribution change with the linear size

of the box?

At time t = 0 various modes are distributed according to the Planck distribution,

(3.1). Each mode simply transforms as in Eq.(2.4): (|δ| � 1, δ = i|δ|),

En → 〈H〉 =
En

2

λ2δ + λ−2δ + 2(4δ2 − 1)

4λδ2
' En

λ
(3.2)

Since

ω =
π|n|c
L0

, L(t) = L0(1 + v t), |V | = L0 |v| � c,

Ω =
ω

v
=
π|n|c
|V |

� 1, δ =

√
1

4
− Ω2 ' i

π|n|c
|V |

(3.3)

the process is adiabatic for all modes. The distribution remains Planckian; each mode

is either red-shifted (in an expanding box) or shifted towards ultraviolet (a contracting

box), simply by the scale factor λ.

In fact, the system is not so interesting as an application of the general theorem

mentioned in Section 1, as it is entirely adiabatic; the only reason we discuss it here

is its possible relevance to the so-called sonoluminescence phenomenon.
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In the single-bubble sonoluminescence [2], a gas bubble trapped in a liquid is

made oscillating radially by acoustic waves, and at the moments its radius attains

the minimum the bubble emits pulse of light in the visible to ultraviolet wavelength

range. In a typical experiment, the linear dimension of the bubble contracts up to

a factor of λ = 10−4: this is compatible with the observed increase of an effective

temperature of a factor 104 or more. The energy density increases according to the

Stefan’s law,

U = σ T 4; σ = 7.64 · 10−15 erg cm−3 K−4 (3.4)

but since the volume itself decreases by a factor λ3 the total energy of blackbody

radiation increases only by a factor 1
λ
. It is possible that this excess energy is released

in the form of visible light pulse at each cycle 3.

4. Conclusion

A harmonic oscillator with a time-dependent frequency (or an ensemble of such

oscillators) experiences a full cycle, with the system originally in a stationary state.

After the cycle, the energy expectation value is predicted never to decrease, inde-

pendently of the way the parameters vary with time during the cycle. The theorem

deals with an apparently simple system familiar to everybody; nevertheless it involves

various subtle issues as discussed here, and to the best of our knowledge, has not been

discussed before, at least in this form.

Our result is somewhat reminiscent of the law of entropy increase, but concerns

the evolution of quantum mechanical pure states, and no information loss is implied.

A generic non-adiabatic “disturbance” by the external force always does work on the

microscopic system on an average, increasing its energy. The energy flow is always in

the direction from the macroscopic system to the microscopic one. In other words,

the quantum mechanical harmonic oscillator cannot act as a perpetual machine, nor

produce a net energy gain. A spaceship cannot continue her journey forever, getting

its energy supply from the inexhaustible zero-point energy of the vacuum [3].

3In an experiment at Laurence Livermore Ntional Laboratory [2] 105− 106 photons are observed
within a pulse, with the energy of order of 10−7 erg which seems to be compatible with such a rough
estimate. Note also that the visible lights correspond to the effective temperature of T = 104 − 105

or to the energy for a single photon of order of hν ∼ kT ∼ 10−12 erg.
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Appendix A General Power Dependent Frequencies

Consider a case of a generic power-behaved frequency,

H(t) =
1

2m
p2 +

1

2
mω2

0 z
k−2 x2, z = 1 + vt. (A.1)

For k = 0 we recover the case discussed in the text. In the following, we shall set

m = 1, ω0 = 1. Note that v has the dimension of a frequency, so that to recover the

dependence on ω0 it suffices to replace it by v/ω0. The Heisenberg equation of motion

gives

q̈H + zk−2qH = 0.

Multiplying this by 1/v2 one gets

d2

dz2
qH +

1

v2
zk−2qH = 0. (A.2)

Its general solution is of the form,

qH(t) = A
√
zJ1/k(

2

kv
z

k
2 ) +B

√
zY1/k(

2

kv
z

k
2 ) (A.3)

where J, Y are the Bessel functions of the first and second kind, respectively. Differ-

entiation with respect to time yields

pH(t) = v
d

dz
qH(t).

The coefficients A and B are determined by imposing the initial conditions

qH |z=1 = q, pH |z=1 = p :

A = − π

kv

[
q · (Y1+ 1

k
(

2

kv
) + (p− vq) · Y 1

k
(

2

kv
)

]
;

B =
π

kv

[
q · (J1+ 1

k
(

2

kv
) + (p− vq) · J 1

k
(

2

kv
)

]
. (A.4)
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The expression for

E(t) = 〈0|1
2
pH(t)2 +

1

2
zk−2qH(t)2|0〉. (A.5)

is quite complicated but can be analyzed numerically. We note that:

1) The case k = −2 reduces to the known result;

2) The behavior is qualitatively similar for all k, with a phase of monotonous

increase following the initial, oscillating phase, as a function of v (see Fig. 2);

3) At fixed final “physical scale”, zfin = λ−
2

k−2 , zk−2
fin = λ−2, the asymptotic

behavior in v turns out to be always the same as in the case k = −2, i.e.,

Ef '
ω

4
(1 +

1

λ2
). (A.6)

This assertion is based on a graphical evidence (see Fig. 2), for the moment 4.

5 10 15 20

10

15

20

25

Figure 2: Energy as a function of v for a fixed λ = 1/10, with k = −2,−3,−4. Expected asymptotic
value is 1/4(1 + 100) = 25.25.

Appendix B Exponential Dependence

As a second example, let us consider the Hamiltonian,

H =
1

2
p2 +

1

2
e2vt q2. (B.1)

4For generic order, the functions J, Y have essential singularities at v = ∞, which prevent us
from analyzing either adiabatic or large v limit analytically.
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The Heisenberg equation is

q̈H + e2vtqH = 0.

Changing the variable to τ = vt one has

d

dτ 2
qH +

1

v2
e2vtqH = 0

which has

qH(t) = AJ0(
1

v
evt) +B Y0(

1

v
evt)

pH(t) =
dqH
dt

= −AevtJ1(
1

v
evt)−B evt Y1(

1

v
evt) (B.2)

as general solutions. As before the coefficients are determined by the initial condition:

A = − π

2v

[
p Y0(

1

v
) + q Y1(

1

v
)

]
, B =

π

2v

[
p J0(

1

v
) + q J1(

1

v
)

]
.

The mean energy can be computed as in the preceding cases.

E(t) =
π2z2

16π2

{
−2J0(

z

v
)Y0(

z

v
)

[
J0(

1

v
)Y0(

1

v
) + J1(

1

v
)Y1(

1

v
)

]
+J2

0 (
z

v
)

[
Y 2

0 (
1

v
) + Y 2

1 (
1

v
)

]
+ J2

1 (
z

v
)

[
Y 2

0 (
1

v
) + Y 2

1 (
1

v
)

]
+2J1(

z

v
)Y1(

z

v
)

[
J0(

1

v
)Y0(

1

v
) + J1(

1

v
)Y1(

1

v
)

]
+

+

[
J2

0 (
1

v
) + J2

1 (
1

v
)

] [
Y 2

0 (
z

v
) + Y 2

1 (
z

v
)
]}

(B.3)

where z = evt. It is also possible to get the asymptotic behavior in v at fixed z:

Eas =
1

4
(1 + z2)− 1

16v2
(z2 − 1)2, (B.4)

which is compatible with (A.6) as z = 1/λ.

Appendix C Creation and Annihilation Operators

The whole problem can be analyzed by use of creation and annihilation operators.

We introduce at each instance the variables qi(t), pi(t) in which the frequency is

diagonal, ωij(t) = δijωi(t); then define ai(t), a
†
i (t) in the standard manner in terms of
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qi(t), pi(t). The time evolution introduces a linear transformation among ai(t), a
†
i (t),

which has a general form,

a†i → Aika
†
k +Bikak, ai → A∗

ikak +B∗
ika

†
k.

The coefficients must be such that the canonical commutation relations are preserved

(in a matrix form):

AA† −BB† = 1, ABT −BAT = 0. (C.1)

For a single oscillator, the theorem of Section 1. can be immediately proven:

Ef =
ω

2
+ ω 〈n|(a′)†a′|n〉 =

ω

2
+ ω 〈n|(|A|2 + |B|2)a†a|n〉 =

=
ω

2
+ n (1 + 2|B|2)ω ≥ ω (n+

1

2
) = Ein. (C.2)

For N oscillators which are originally in a stationary state (ignoring the zero point

energy),

Ei = 〈Ψ|
∑

i

ωia
†
iai|Ψ〉 =

∑
i

ωini;

Ef = 〈Ψ|
∑

i

ωia
′†
ia

′
i|Ψ〉 = 〈Ψ|

∑
i

ωi(Aika
†
k +Bikak)(A

∗
i`a` +B∗

i`a
†
`)|Ψ〉 =

=
∑
i,k

ωi(AikA
∗
iknk +BikB

∗
ik(nk + 1)).

For the diagonal matrices A e B (uncoupled oscillators), (C.2) trivially generalizes.

For coupled oscillators, the generalization is not obvious.

We content ourselves here with a somewhat weaker result: it states that the

occupation number (number of phonons) does not diminish under cyclic variations of

frequency. Indeed,

Ni = 〈Ψ|
∑

i

a†iai|Ψ〉 =
∑

i

ni;

Nf = 〈Ψ|
∑

i

a′
†
ia

′
i|Ψ〉 = 〈Ψ|

∑
i

(Aika
†
k +Bikak)(A

∗
i`a` +B∗

i`a
†
`)|Ψ〉 =

=
∑
i,k

(AikA
∗
iknk +BikB

∗
ik(nk + 1)).

Eq.(C.1) implies ∑
i

AikA
∗
ik =

∑
i

BikB
∗
ik + 1,

13



therefore

Nf =
∑

k

nk +
∑
i,k

BikB
∗
ik(2nk + 1) ≥ Ni. (C.3)

This (more general) result perhaps explains the physical meaning of our result on the

energy expectation value.
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