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• Il limite semiclassica della MQ
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Funzione d’onda semi-classica  (Sviluppo in ℏ)

266 The semi-classical approximation

Consider the one-dimensional Schrödinger equation for a particle mov-
ing in a potential V (x):

− !2

2m
ψ′′ + V (x)ψ = E ψ . (11.1)

It is clear that the limit ! → 0 is a singular one: in this limit the
order of the differential equation changes and therefore the classes of
the functions which satisfy it. Actually in this particular case one passes
from a differential to an algebraic equation.

The hint for the correct procedure comes from the simplest of cases:
free particles. In these cases the eigenfunction of Schrödinger’s equation
is also an eigenfunction of the momentum, and has the form of a plane
wave,

ψ(x) = eipx! .

For ! → 0, at fixed p, the function oscillates more and more rapidly, the
wavelength λ = h/p tending to zero. It is this rapid oscillation which
produces the factor !−1 each time the derivative acts, and cancels the
factor !2 in front of the kinetic term. We can talk about the limit ! → 0
of a more general wave function, only by considering the corrections
to such a behavior, forced upon us by the structure of Schrödinger’s
equation, eqn (11.1).

It is therefore natural to seek for an approximation by setting

ψ(x) = exp
(
i
σ

!

)
, (11.2)

and assuming that σ, and not ψ itself, is a function expandable in !:

σ(x) =
∞∑

k=0

(
!

i

)k

σk = σ0 +
!

i
σ1 +

(
!

i

)2

σ2 + . . . . (11.3)

The factor 1/i in eqn (11.3) is introduced conventionally, to simplify the
expressions somewhat. Subsituting eqn (11.2) into eqn (11.1), one finds
that

(σ′)
2 − i ! σ′′ = p2(x) , (11.4)

where we have defined the “classical momentum”

p2(x) = 2 m (E − V (x)) ,

which for E > V (x) indeed represents the classical momentum of the
particle. Equation (11.3) is equivalent to the original equation (11.1): it
is an equation of the first order1 but non-linear, in y = σ′. One of the

1 This procedure of substituting the
function ψ by an unknown function y
related to the former by

ψ = exp

„Z x

y(ξ) dξ

«

is quite a standard one. The resultant
equation is known as Riccati’s equa-
tion.

two integration constants of eqn (11.1) is just the integration constant
appearing in the passage from y to σ. Substituting the expansion (11.3)
in eqn (11.4) we find, to the 0-th order, that

(σ′
0)

2
= p2 ; σ0 = ±

∫
p(x)dx ; p(x) = +

√
2 m (E − V (x)) .
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11.1 The WKB approximation 267

Two possible signs of the square roots correspond to two linearly inde-
pendent solutions. To the order !n, we find that

n∑

k=0

σ′
kσ′

n−k + σ′′
n−1 = 0 , (11.5)

by setting the coefficients of each power of ! to zero. Equation (11.5)
gives a recursive expression for σn; indeed σ′

n appears only in two terms,
multiplied by σ′

0:

σ′
1 = − 1

2σ′
0

σ′′
0 ⇒ σ1 = −1

2
log(p) ; (11.6a)

σ′
n = − 1

2σ′
0

(
n−1∑

k=1

σ′
kσ′

n−k + σ′′
n−1

)

; n ≥ 2 . (11.6b)

By choosing, for instance, the solution σ′
0 = +p(x), one finds explicitly

that

σ′
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2p

[
σ′

1
2
+ σ′′

1

]
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1
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8

p′2
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2 p1/2

d2

dx2
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2p
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1σ
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2

d

dx
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2
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To the order ! or !2 we have, respectively,

ei σ
! ≃ 1√

p(x)
exp

(
i

∫ x

x0

[
1

!
p(x)

]
dx

)
;

ei σ
! ≃ 1

√
p(x)e−!2

σ′
2

p

exp

(
i

∫ x

x0

[
1

!
p(x) + !

1

2 p1/2

d2

dx2
p−1/2

]
dx

)
.

From eqn (11.6b) it follows that:

1) The terms σn with even n are odd in p, and eqn (11.3) implies
that for real p(x) it contributes to the phase of the wave function.

2) The odd terms σn are even in p, and contribute to the amplitude
of ψ.

The WKB approximation consists in keeping the dominant terms of the
expression,

ψ(x) = b1
1
√

p
e

i
!

R x
x0

p(x) dx + b2
1
√

p
e−

i
!

R x
x0

p(x) dx ; (11.7)

x0 is an arbitrary reference point, and the coefficients b1 and b2 vary
with x0. If the approximation were uniformly (in x) valid, we would
have found an approximate solution of the problem.

To see the condition of validity of the formula, let us rewrite it as

exp

(
i

∫ x

x0

σ′
)

= exp

(
i

∫ x

x0

(σ′
0 − i! σ′

1 − !2σ′
2 + . . .)

)
.
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 🔵   p(x)  reale  (E> V):  nelle regioni classicamente accessibile; 

 🔵   p(x) immaginario  (p(x)  → i |p(x)| )   (E <  V):  nelle regioni classicamente inaccessibile; 
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The approximation is good if the inequalities

!2 |σ′
2|

|σ′
0|

≪ !
|σ′

1|
|σ′

0|
≪ 1 ,

are met. The second inequality can be rewritten, by using eqn (11.6),
as (let us assume real p)

1

2
!

p′

p2
≪ 1 ⇒ 1

4π

dλ

dx
≪ 1 ; λ =

h

p
; (11.8)

λ is de Broglie’s wavelength. Inequality (11.8) tells that the approxima-
tion is good when the variation of the wavelength is small compared to
itself (i.e., it has a well-defined wavelength for many oscillations). To
interpret the condition from the particle point of view, we write

p′ =
d

dx

√
2 m (E − V (x)) =

1

2
2 m

V ′

p
= −m

F

p
,

where F is the classical force. Equation (11.8) then imposes the condi-
tion

m !
F

p3
≪ 1 ,

which is certainly violated at the points where either F is too large or p
is too small, in particular, at the classical turning points where p = 0.

Analogous considerations can also be made for the first of inequalities
(11.8). Let us note that inequalities (11.8) impose local constraints, but
the conditions on σ2 may not be sufficient. In classically allowed regions
(where p is real), σ0 and σ2 both form the phase of the function ψ, which
is defined modulo 2π. It can therefore happen that even if σ′

2 ≪ σ′
0 the

effects due to σ′
2 are more important than those due to σ′

0. The validity
of the WKB approximation therefore requires that

∫ x

x0

!3σ′
2 dx ≪ 1 ,

quite independently of the classical turning points or the singularities of
the potential.

The presence of the classical turning points in general, near which the
WKB approximation breaks down, introduces a partition of the region
of the coordinates, in each of which approximate formulas such as (11.3)
are valid. Precisely because these formulas cannot be extrapolated up
to near the partition points, the problem of establishing the correct
connection formulas between expressions (11.7) valid in the neighboring
regions is a nontrivial one.

11.1.1 Connection formulas

Let us consider first the case of a single turning point. Let x = a be
a root of the equation E − V (x) = 0. To fix the idea, let us suppose
that V (x) > E for x > a. The situation is schematically illustrated in

...    l’approssimazione non è valida  vicino ai punti di ritorno classici (p=0).  

  Come trovare la connessione tra la funzione d’onda valida a E>V e
quella a E<V,  attraveso la regione dove l’approssimazione fallisce ???

N.B.  onde piane 

per V=cost. 

Q: 



IDEA!!!    ☼ ♛  



♛ Attorno ad un punto di ritorno classico ( p(x) ~  0,   x~ a)

🔵   Utilizzare  l’approssimazione  lineare  invece:   i.e.,  

E-V(x) = c. (x-a)  =  c  z

🔵   Risolvere esattamente l’eq. di Schroedinger;   

� ~2

2m

 

00 = (E � V (x))  

00 + �

2(a� x) = 0

d

2
 /dz

2 � z = 0 ; (x� a = �

�2/3
z) ;

Le soluzioni sono  le funzioni di Airy,    Ai(z) e Bi(z)  
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Ai, Bi = Airy functions

(*)

(*) Approssimazione
lineare

E-V(x) = c. (x-a)
          = c z

E

V(x) 



🔵   Raccordare l’andamento asintotico della soluzione centrale  x ~a  

con le soluzioni WKB  a  |x-a|  piccolo,  con

😃
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|p(x)|dx , |p(x)| =
p
2m(V (x)� E)



Quantizzazione di Bohr-Sommerfeld
I

dq p = 2⇡~ (n +
1
2
) = h (n +

1
2
)

cfr.  Bohr-Sommerfeld originale
 Osservazioni: 

🔵  per Oscilatore armonico  il risultato è esatto!  Ma  w.f. ?

(*)

🔵  (*)  OK per n >>1:  molte oscillazioni,      ben definita�

🔵  per Oscilatore quartico
p =

r
2m(E � g

2
x

4)
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and the reduced wave function,

ϕ = ex/2u → e(ℓ+1)x = rℓ+1 ,

which is the correct behavior at r → 0.
The Langer correction can be applied in the case of any spherically

symmetric potential.

11.2.6 Examples

The harmonic oscillator
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Fig. 11.5 The WKB wave function
(full curve) and the exact wave

function (dashed line) for the n = 0
and n = 10 states of a harmonic

oscillator.

As is well known the application of the WKB formula to the harmonic
oscillator gives

!

(
n +

1

2

)
=

1

π

√
2mE a

∫ 1

0

√
1 − z2 dz =

2E

ωπ

π

2
=

E

ω
,

as the exact answer for the energy levels. The details are left to the
reader as an exercise.

Less known perhaps is the result for the wave function. Figure 11.5
shows a comparison between the exact wave function and the semi-
classical one, for the ground state and for the state n = 10: it is evident
that the approximation is surprisingly good for n = 10 already, except,
of course, near the turning points.

For reference, here is the explicit form of the WKB wave function:

C =

r

4m
T

; a =

r

2E
mω2

; E = !ω
“

n +
1
2

”

; p(x) =
√

2mE

r

1 − x2

a2
,

and

0 < x < a : ψ(x) =
C

p

p(x)
cos
“ 1

!

Z x

−a

p(x) dx − π
4

”

=
C

p

p(x)
cos

„

2π
4

„

n +
1
2

«

− π
4

+

Z x

0

p(x)

!
dx

«

=
C

p

p(x)
cos

 

nπ
2

+
E
!ω

"

arcsin
“x

a

”

+
x
a

r

1 − x2

a2

#!

;

a < x : ψ(x) =
C

2
p

p(x)
exp

 

− E
!ω

"

x
a

r

x2

a2
− 1 − argcosh

“x
a

”

#!

.

eqn (11.8).
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Fig. 11.6 A uniform WKB
approximation for the first few states

of an anharmonic oscillator.

The discontinuities at the classical turning points reflect the general con-
straint, A more refined (uniform) approximation can be performed; see note-
book NB-11.9. In this uniform approximation the WKB approximation uni-
formly approximate the wave function, even at the classical transition points.
An example for a quartic oscillator is given in Figure 11.6.
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The quartic potential

A less trivial case concerns the quartic potential, U = g
2x4:

− !2

2m

d2ψ

dx2
+

1

2
gx4ψ = Eψ . (11.45)

By making a transformation x = λz, with λ = (!2/mg)1/6 we see that
eqn (11.45) transforms into

−1

2

d2ψ

dz2
+

1

2
z4ψ =

ϵ

2
ψ ;

ϵ

2
= E

( m

!2

)2/3
g−1/3 . (11.46)

The eigenvalues of eqn (11.46) do not depend on any parameter, and
hence it suffices to study it and put at the end

En =

(
!2

m

)2/3

g1/3 ϵ

2
. (11.47)

For eqn (11.46) the turning points are z = ±a = ±ε1/4 and the quanti-
zation condition can be written as5 5B(p, q) is Euler’s beta function.

n +
1

2
=

1

2π

√
ε 2

∫ a

−a

√
1 −

(z

a

)4
dx =

2

π
a
√

ε I ,

I =
1

4
B

(
1
4 , 3

2

)
=

√
π Γ

(
1
4

)

8 Γ
(

7
4

) = 0.874 019 2 . . . ,

from which

εn =

[
π

2I
(n +

1

2
)

]4/3

.

A comparison between the WKB results here and the exact levels (which
can be found by the variational method discussed in the previous chap-
ter) is shown below:

n εn εWKB
n δε/ε

0 1.060 36 0.867 15 0.182 22
1 3.799 67 3.751 92 0.012 57
2 7.455 70 7.413 99 0.005 59
3 11.644 75 11.611 53 0.002 85
4 16.261 83 16.233 61 0.001 73
5 21.238 37 21.213 65 0.001 16

As may be seen, the approximation steadily improves for large n but is
already quite reasonable even for the ground state.

11.3 The tunnel effect

One of the most characteristic phenomena in quantum mechanics is the
tunnel effect: in classical terms, this is the transition of a particle be-
tween two zones separated by a portion of space which is classically

 🔴  
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the time interval t is given by

Pi(t) = e−γt . (11.56)

The quantity τ = 1/γ is called the mean lifetime. Often the notation
Γ = !γ ≡ !/τ is used: Γ has the dimension of energy and is known as
the level width.

As an application of our semi-classical formulas, let us consider the α
decay of nuclei. The α particle is the helium nucleus composed of two
protons and two neutrons:

m(α) c2 − 2 (mp + mn) c2 ≃ −26.06 MeV . (11.57)

In atomic mass units, u ≃ 931.494 MeV/c2:

mp = 1.007 276 470 u ; mn = 1.008 664 904 u ; m(α) ≃ 4.003 90 u .

In a crude approximation one can consider a model of the nucleus in
which a particle α moves in a mean field due to other nucleons (protons
and neutrons). The latter may be approximated by a spherically sym-
metric square potential of depth −U0 and width r0, of the order of the
range of the nuclear forces. Besides the nuclear forces there are repul-
sive Coulomb forces between the α particle and the rest of the nucleus
of charge Z −2. The situation is sketched in Figure 11.11. A look at the
figure shows that the α particle can be bound inside such a nucleus with
E > 0 thanks to the Coulomb barrier. These states can, however, only
be meta-stable: the α particle can tunnel through the Coulomb barrier
and the nucleus will disintegrate. The decay rate can be estimated by
using the semi-classical approximation as follows. If P is the tunneling
probability through the barrier, the probability of decay per unit time
will be

V0

E

!U0

2!Z!2"#r

Fig. 11.11 Potential for an α particle,
schematized as a spherical well plus

the Coulomb repulsion.

γ = N × P ,

where N is the number of times α hits the barrier per second. A sta-
tionary state can be seen classically as a periodic motion with period T :
a particle hits one of the box walls with frequency 1/T , so that

Γ = ! γ =
!

T
P . (11.58)

A more formal but equivalent demonstration of N = 1/T is the following.
Consider an S wave (reduced) radial function χ = A sin(kr). Using the nor-
malization to fix A,

1 =

Z r0

0

A2 sin2(kr) ∼ A2

2
r0 ⇒ A2 =

2
r0

we see that the complete function is

ψ =
1√
4π

A
r

sin(kr) =
1√
4π

A
2i r

h

eikr − e−ikr
i

. (11.59)

Esempio: decadimento α  (modello semplice)
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This solution describes expanding and contracting spherical waves. The flux
density is

j =
!

2m i
[ψ∗

∇ψ − ψ∇ψ∗] .

By using the expanding wave in eqn (11.59) we find that the flux through a
surface of radius r0 is

jr =
!

m
k

1
4π

A2

4r2
, Φ = 4πr2 jr =

! k
m

A2

4
=

! k
m

1
2r0

=
v

2r0
,

where ! k/m = v is the velocity of the particle. Finally v/2r0 = 1/T .

Z(A) T1/2 E(MeV) Z(A) T1/2 E(MeV)

Po(212) 3.0 × 10−7 s 8.95 Th(219) 0.11 × 10−6 s 9.34

Po(214) 1.5 × 10−4 s 7.83 Th(220) 10. × 10−6 s 8.79

Po(215) 1.8 × 10−3 s 7.50 Th(221) 2.8 10−3 s 7.98

Po(216) 0.158 s 6.89 Th(224) 1.05 s 7.085

Th(212) 0.03 s 7.92 Th(225) 8.72 m 6.47

Th(213) 0.14 7.69 Th(226) 30.6 m 6.28

Th(214) 0.10 s 7.68 Th(227) 18.72 d 5.92

Th(215) 1.2 s 7.46 Th(228) 1.91 y 5.38

Th(217) 0.25 × 10−3 s 9.25 Th(229) 7340 y 4.91

Th(218) 0.11 × 10−6 s 9.67 Th(230) 77 × 103 y 4.65

Th(232) 14.1 × 109 y 3.98

Table 11.1 Examples of α decays. Listed in the Table are the parent nuclei, half-
decay time (s = seconds, m = minutes, d = days, y = years), and the energy of α in
MeV. For some nuclei the average energy is given.

The tunneling probability P in eqn (11.58) is the transmission coeffi-
cient through the barrier. The turning points are r0 and r1, where

2(Z − 2)e2

r1
= E =

p2

2m
, ⇒ r1 =

2(Z − 2)e2

E
,

and P is given by

P = exp [−2σ(r0, r1)] = exp

[

−2

!

∫ r1

r0

√

2m (
2(Z − 2)e2

r
− E) dr

]

.

To simplify this further let us write the Coulomb interaction as C/r,
where

C = 2 (Z − 2) e2 .
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Z(A) T1/2 E(MeV) Z(A) T1/2 E(MeV)

Po(212) 3.0 × 10−7 s 8.95 Th(219) 0.11 × 10−6 s 9.34

Po(214) 1.5 × 10−4 s 7.83 Th(220) 10. × 10−6 s 8.79

Po(215) 1.8 × 10−3 s 7.50 Th(221) 2.8 10−3 s 7.98

Po(216) 0.158 s 6.89 Th(224) 1.05 s 7.085

Th(212) 0.03 s 7.92 Th(225) 8.72 m 6.47

Th(213) 0.14 7.69 Th(226) 30.6 m 6.28

Th(214) 0.10 s 7.68 Th(227) 18.72 d 5.92

Th(215) 1.2 s 7.46 Th(228) 1.91 y 5.38

Th(217) 0.25 × 10−3 s 9.25 Th(229) 7340 y 4.91

Th(218) 0.11 × 10−6 s 9.67 Th(230) 77 × 103 y 4.65

Th(232) 14.1 × 109 y 3.98

Table 11.1 Examples of α decays. Listed in the Table are the parent nuclei, half-
decay time (s = seconds, m = minutes, d = days, y = years), and the energy of α in
MeV. For some nuclei the average energy is given.

The tunneling probability P in eqn (11.58) is the transmission coeffi-
cient through the barrier. The turning points are r0 and r1, where

2(Z − 2)e2

r1
= E =

p2

2m
, ⇒ r1 =

2(Z − 2)e2

E
,

and P is given by

P = exp [−2σ(r0, r1)] = exp

[

−2

!

∫ r1

r0

√

2m (
2(Z − 2)e2

r
− E) dr

]

.

To simplify this further let us write the Coulomb interaction as C/r,
where

C = 2 (Z − 2) e2 .

 🔴  



292 The semi-classical approximation

By changing the variable as r = r1x and noting that
√

2 m C r1 = 2 C/v,
we see that the integral becomes
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√

r1 2mC
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.

As r0/r1 ≪ 1 in many applications, let us expand this as follows:

I ≃ 2C

v
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π
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√
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)
=

πC

v
− 2

√
2Cmr0 ,

and one finds that

P = exp

(
−2π C

!v
+ 4

√
2 Cmr0

!

)
.

Denoting by q1, q2 the charges in units of e and the fine-structure con-
stant by α = e2/!c, the dependence is of the type

P ∝ exp

[
−2πα q1q2

v/c

]
. (11.60)

The strong (exponential) dependence on the velocity, and hence on the
energy of the α particle, is characteristic of this type of decay. This
means that a small variation of the energy corresponds to a considerable
difference in the life-time. This prediction is met by the experimental
data shown in Table 11.1.

Figure 11.12 shows as an illustration the quantity log(Γ) as a function
of 2πC/!v for the two families of polonium (Po) and of thorium (Th):
the agreement is quite reasonable.
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Fig. 11.12 log(Γ) as a function of
2πC/!v for polonium and thorium.
The dashed line represents the slope

deduced from eqn (11.60).

In the following section eqn (11.58) will be obtained from a more
formal approach, due to Gamow and Siegert.

11.3.3 The Gamow–Siegert theory

Equation (11.56) would be satisfied if a stationary state ψ with a com-
plex energy eigenvalue E − iΓ/2 existed. In this case the probability of
survival would be given as

P (t) = |⟨ψ|ψ(t)⟩|2 =
∣∣∣⟨ψ|e−iEt/!−Γt/2!|ψ⟩

∣∣∣
2

= e−Γt/! , (11.61)

which reproduces exactly eqn (11.56).
Of course, H is self-adjoint and all its eigenvalues are real; on the

other hand, the states in which we are interested are not really stable.
Mathematically H is self-adjoint in the space of functions, which remains
bounded at r → ∞; if we lose this condition, H can formally have
complex eigenvalues. We shall see in Chapter 13 what such a choice
means: for the moment we follow a more intuitive approach due to
Gamow and Siegert.
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This solution describes expanding and contracting spherical waves. The flux
density is
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By using the expanding wave in eqn (11.59) we find that the flux through a
surface of radius r0 is
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where ! k/m = v is the velocity of the particle. Finally v/2r0 = 1/T .

Z(A) T1/2 E(MeV) Z(A) T1/2 E(MeV)

Po(212) 3.0 × 10−7 s 8.95 Th(219) 0.11 × 10−6 s 9.34

Po(214) 1.5 × 10−4 s 7.83 Th(220) 10. × 10−6 s 8.79

Po(215) 1.8 × 10−3 s 7.50 Th(221) 2.8 10−3 s 7.98

Po(216) 0.158 s 6.89 Th(224) 1.05 s 7.085

Th(212) 0.03 s 7.92 Th(225) 8.72 m 6.47

Th(213) 0.14 7.69 Th(226) 30.6 m 6.28

Th(214) 0.10 s 7.68 Th(227) 18.72 d 5.92

Th(215) 1.2 s 7.46 Th(228) 1.91 y 5.38

Th(217) 0.25 × 10−3 s 9.25 Th(229) 7340 y 4.91

Th(218) 0.11 × 10−6 s 9.67 Th(230) 77 × 103 y 4.65

Th(232) 14.1 × 109 y 3.98

Table 11.1 Examples of α decays. Listed in the Table are the parent nuclei, half-
decay time (s = seconds, m = minutes, d = days, y = years), and the energy of α in
MeV. For some nuclei the average energy is given.

The tunneling probability P in eqn (11.58) is the transmission coeffi-
cient through the barrier. The turning points are r0 and r1, where

2(Z − 2)e2

r1
= E =
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2m
, ⇒ r1 =

2(Z − 2)e2
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,

and P is given by

P = exp [−2σ(r0, r1)] = exp

[
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.

To simplify this further let us write the Coulomb interaction as C/r,
where

C = 2 (Z − 2) e2 .
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