Lezione Speciale 28/03/2017

Approssimazione semi-classica
(WKB approximation)

(Wentzel-Kramers-Brillouin)

e || limite semiclassico della MQ

e Sviluppo in 7 : funzione d’onda semi-classica
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* || limite semiclassica della MQ

Eqg. di Schrodinger:

n v = (~ v ) %)
Mo P\ = 2m g
Il limite /A — (0 non puo essere preso in maniera naiva.
Un hint: particella libera ~ ePr/h A=h/p—0
In generale: WY~ 67;S/h7 S ~ O(ho) (%) 6
Sostituendo i) = Ae™/"  in (*) siha
1 : ‘1con-lacobi
n : %S B _%(VS)Q -V Equazione di Hamilton Jaco
o, VS : : tinuita
h (%(A )+ V(A - ) =20 Equa
VS p
A2 _ 2 _ o2y
V" =p, ==V .
ito
q t . Ancipale di Har™
S = / dt L = / dt{z pig; — H} = Z / dq;p; — / dt H Fuﬂl_‘oxz g\ass'\c’c\)
i G e
8S/dqz — Pi, —8S/dt:H

Quindi: S= l'azione classica!



Funzione d’onda semi-classica (Sviluppo in h)

h2

2m

" = (E = V()

O

(x) = exp (Z%) :

o0 A k 7 A 2
a(af;):Z(;) ak:00+;01+(€> oo+ ... . =

k=0
. \assicO)
(0/)2 —iho" =p?(z), p?(x) =2m (E —V(z)), (\m\)“\so -
2@ = 0= [ p@ds s (o) = +vEm(E- V(@) ()
1 1
o= —gerol = 01— —51o8(0);
1 n—1
07’1:—206 <;0‘;€0‘% k—|—07’{1> : n > 2

Ma in (*) p prende i segni +/-, E<V o E>V =



w(ﬁlf) — bl L 6% fxwo p(x) dx n b2 i 6_% fxwo p(z) da |

\/Z_? \/]—) ? & 6 . \104005\,

® p(x) reale (E>V): nelle regioni classicamente accessibile;

® p(x) immaginario (p(x) — i|p(x)|) (E < V): nelle regioni classicamente inaccessibile;

Ma Papprossimazione semiclassica

(')’ —iho" = p*(x), richiede che
h|0-” <K (O' )2 -------------- >
1. p 1 d\ h
2 p? < ~ 4 dx <L p’

I'approssimazione non e valida vicino ai punti di ritorno classici (p=0).

Q:

Come trovare la connessione tra la funzione d’onda valida a E>V e
quella a E<V, attraveso la regione dove I'approssimazione fallisce ???
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¥ Attorno ad un punto di ritorno classico ( p(x) ~ 0, x~ a)

(5]

e

Utilizzare P'approssimazione lineare invece: i.e.,

E-V(x) =c.(x-a) = ¢ z
Risolvere esattamente I'eq. di Schroedinger;
h? 7
—5 U = (B = V(o) V' + B a— )y =0

d*p/dz? —2p=0;  (z—a=pB"32);

Le soluzioni sono le funzioni di Airy, Ai(z) e Bi(z)

Bi(z)
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V(x)
(*) Approssimazione
lineare

E-V(x) = c. (x-a)
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Ai, Bi = Airy functions



® Raccordare 'andamento asintotico della soluzione centrale x ~a

2|7 2 4 T , 11
os(=|z|¥2 = X Ai(z =2
(05(3| | 4) 2— — 00 1( ) 2—00 \/E 2
('l'l.'l2a)

3

|_"lT .2 3/2 w .
S o VA D B A > —
sin(=|z| 4) — i( — =

(11.12b)

T 3
con le soluzioniWKB a |x-a| piccolo, con
2

| 2 :
h,x"f%\/—z . wl(a,r) = 7 = —=|z

—=f(a — x)

p=hpa—=x)
2
_."3(417 - (l.)

ﬁ.b’%\/z; w(a,x) = 3

|—

|

(%

p=nhp(x—a)

From eqn (11.12) it follows that the two independent solutions are

i (11.13a)

1
— COS (|w(a,.1,) — Z) —— -
| (11.13b)

VP
-

sin (|w(a, x) 1




p(x) = v/2m(E — V(z))

p(x)| = v2m(V(z) - E)



Quantizzazione di Bohr-Sommerfeld

(%)

cfr. Bohr-Sommerfeld originale

Osservazioni:
e Ogni stato quantistico “occupa” il volume AqAp ~ 21h

e per Oscilatore armonico il risultato e esatto! Ma w.f.!?
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e (*) OK per n >>1: molte oscillazioni, A\ ben definita

© per Oscilatore quartico D= \/Qm(E _ 5564) *




The quartic potential

A less trivial case concerns the quartic potential, U = %x‘l:
h? d?v
- =F 11.45

By making a transformation z = Az, with A\ = (h?/mg)'/% we see that
eqn (11.45) transforms into

1 4 € 2/3 —1/3
saE vt 3= E(m) o (L)

The eigenvalues of eqn (11.46) do not depend on any parameter, and
hence it suffices to study it and put at the end

2\ 2/3
En:<h—) g3 <. (11.47)

m 2

For eqn (11.46) the turning points are z = +a = +¢'/* and the quanti-
zation condition can be written as®

—:—\/‘2/ Vi (B) ar=2avzr
I—lB(lﬁ):—%_08740192
1708 =55

from which
4/3
— | Zata)
S bY; 2 ’

A comparison between the WKB results here and the exact levels (which
can be found by the variational method discussed in the previous chap-
ter) is shown below:

En gWhEB dc/e

1.06036 0. 867 15 0.18222
3.79967 3.75192  0.01257
7.45570 7.41399  0.00559
11.64475 11.61153 0.00285
16.26183 16.23361 0.00173
21.23837 21.21365 0.00116

TR W RO S

5B(p, q) is Euler’s beta function.
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Esempio: decadimento @ (modello semplice)

Vo
E
————— 2(Z-2)/r
~U,
I'=h~y = f P
fy :N X P’ """"" — N7y = T
L 1 é . L 1 A ikr_ —i1kr
W = —47T . sin(kr) = o= 2ir [6 e ] ¢ mmm - P> 0/27“0

P = exp |—20(rg,71)] = exp {—% /Tl \/Zm(Z(Z ; 2)e” E)dr
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THE END



