

Approssimazione semi-classica (WKB approximation)

(Wentzel-Kramers-Brillouin)

- Il limite semiclassico della MQ
- Sviluppo in \hbar : funzione d'onda semi-classica
- Formula di connessione
- Applicazione 1: stati legati e quantizzazione di Bohr-Sommerfeld
- Applicazione 2: effetto tunnel.

• Il limite semiclassica della MQ

Eq. di Schrödinger:

$$i\hbar \frac{\partial}{\partial t} \psi(\mathbf{r}) = \left(-\frac{\hbar^2}{2m} \nabla^2 + V \right) \psi(\mathbf{r}) \quad (*)$$

Il limite $\hbar \rightarrow 0$ non può essere preso in maniera naïva.

Un hint: particella libera $\sim e^{i\mathbf{p} \cdot \mathbf{r}/\hbar}$ $\lambda = h/p \rightarrow 0$

In generale: $\psi \sim e^{iS/\hbar}$, $S \sim O(\hbar^0)$ (**)

Sostituendo $\psi = A e^{iS/\hbar}$ in (*) si ha

$$\hbar^0 : \frac{\partial}{\partial t} S = -\frac{1}{2m} (\nabla S)^2 - V$$

$$\hbar^1 : \frac{\partial}{\partial t} (A^2) + \nabla (A^2 \frac{\nabla S}{m}) = 0$$

Equazione di Hamilton-Jacobi

Equazione di continuità

$$A^2 = |\psi|^2 = \rho, \quad \frac{\nabla S}{m} = \frac{\mathbf{p}}{m} = \mathbf{v}$$

$$S = \int dt L = \int dt \left\{ \sum_i p_i \dot{q}_i - H \right\} = \sum_i \int^q dq_i p_i - \int^t dt H$$

Funzione principale di Hamilton
(l'azione classica)

$$\frac{\partial S}{\partial q_i} = p_i, \quad -\frac{\partial S}{\partial t} = H$$

Quindi: $S =$ l'azione classica!

Funzione d'onda semi-classica (Sviluppo in \hbar)

$$-\frac{\hbar^2}{2m}\psi'' = (E - V(x))\psi$$

$$\psi(x) = \exp\left(i\frac{\sigma}{\hbar}\right),$$

$$\sigma(x) = \sum_{k=0}^{\infty} \left(\frac{\hbar}{i}\right)^k \sigma_k = \sigma_0 + \frac{\hbar}{i} \sigma_1 + \left(\frac{\hbar}{i}\right)^2 \sigma_2 + \dots \Rightarrow$$

$$(\sigma')^2 - i\hbar\sigma'' = p^2(x), \quad p^2(x) = 2m(E - V(x)), \quad (\text{impulso classico})$$

$$\Rightarrow (\sigma'_0)^2 = p^2; \quad \sigma_0 = \pm \int p(x)dx; \quad p(x) = +\sqrt{2m(E - V(x))}. \quad (*)$$

$$\sigma'_1 = -\frac{1}{2\sigma'_0}\sigma''_0 \quad \Rightarrow \quad \sigma_1 = -\frac{1}{2}\log(p);$$

$$\sigma'_n = -\frac{1}{2\sigma'_0} \left(\sum_{k=1}^{n-1} \sigma'_k \sigma'_{n-k} + \sigma''_{n-1} \right); \quad n \geq 2.$$

$$\Rightarrow e^{i\frac{\sigma}{\hbar}} \simeq \frac{1}{\sqrt{p(x)}} \exp\left(i \int_{x_0}^x \left[\frac{1}{\hbar} p(x)\right] dx\right); \quad \hbar^0 \quad \hbar^1$$

Ma in (*) p prende i segni +/-, $E < V \circ E > V \Rightarrow$

$$\psi(x) = b_1 \frac{1}{\sqrt{p}} e^{\frac{i}{\hbar} \int_{x_0}^x p(x) dx} + b_2 \frac{1}{\sqrt{p}} e^{-\frac{i}{\hbar} \int_{x_0}^x p(x) dx};$$

N.B. onde piane
per $V=\text{cost.}$

- $p(x)$ reale ($E > V$): nelle regioni classicamente accessibile;
- $p(x)$ immaginario ($p(x) \rightarrow i |p(x)|$) ($E < V$): nelle regioni classicamente inaccessibile;

Ma l'approssimazione semiclassica

$$(\sigma')^2 - i \hbar \sigma'' = p^2(x), \quad \text{richiede che}$$

$$\hbar |\sigma''| \ll (\sigma')^2 \quad \text{----->}$$

$$\frac{1}{2} \hbar \frac{p'}{p^2} \ll 1 \Rightarrow \frac{1}{4\pi} \frac{d\lambda}{dx} \ll 1; \quad \lambda = \frac{\hbar}{p};$$

∴ l'approssimazione non è valida vicino ai punti di ritorno classici ($p=0$).

Q:

Come trovare la connessione tra la funzione d'onda valida a $E > V$ e quella a $E < V$, attraverso la regione dove l'approssimazione fallisce ???

WKB

JK

NO

WKB
OK

NO

WKB
OK

$$B \frac{1}{\sqrt{p_1}} e^{\frac{i}{\hbar} \int p_1 dx}$$

$$\frac{1}{\sqrt{p_1}} A e^{\frac{i}{\hbar} \int p_1 dx} + \frac{1}{\sqrt{p_1}} e^{-\frac{i}{\hbar} \int p_1 dx}$$

$$C \frac{1}{\sqrt{p_1}} e^{-\frac{i}{\hbar} \int p_1 dx}$$

FORMULE DI CONNESSIONE

$$+ B e^{-\frac{i}{\hbar} \int p_1 dx} + A e^{-\frac{i}{\hbar} \int p_1 dx} e^{\frac{i}{\hbar} \int p_1 dx}$$

IDEA!!!

Attorno ad un punto di ritorno classico ($p(x) \sim 0, x \sim a$)

- Utilizzare l'approssimazione lineare invece: i.e.,

$$E - V(x) = c \cdot (x - a) = c \cdot z$$

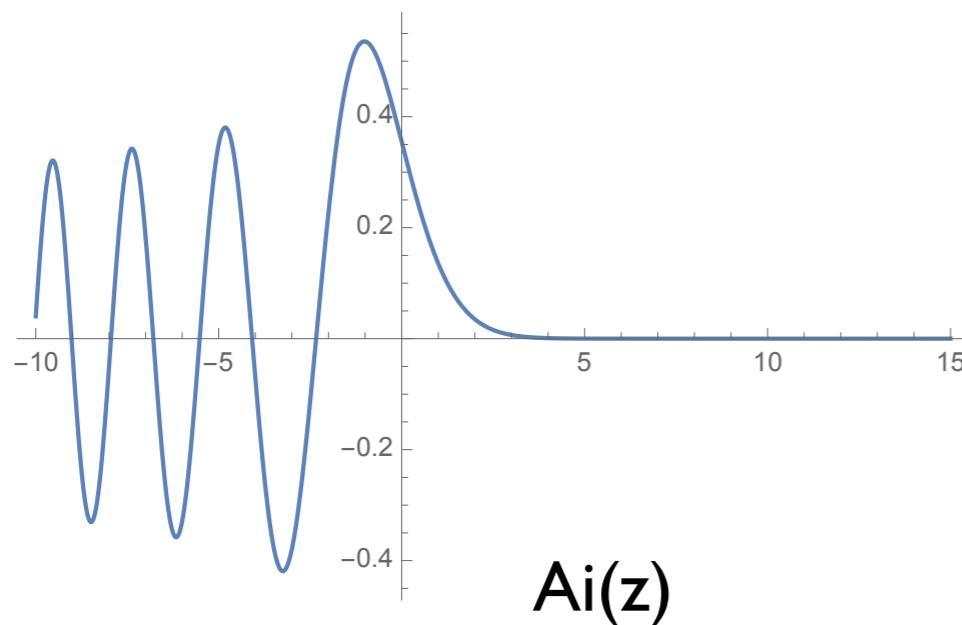
- Risolvere esattamente l'eq. di Schroedinger;

$$-\frac{\hbar^2}{2m} \psi'' = (E - V(x))\psi \quad \psi'' + \beta^2(a - x)\psi = 0$$

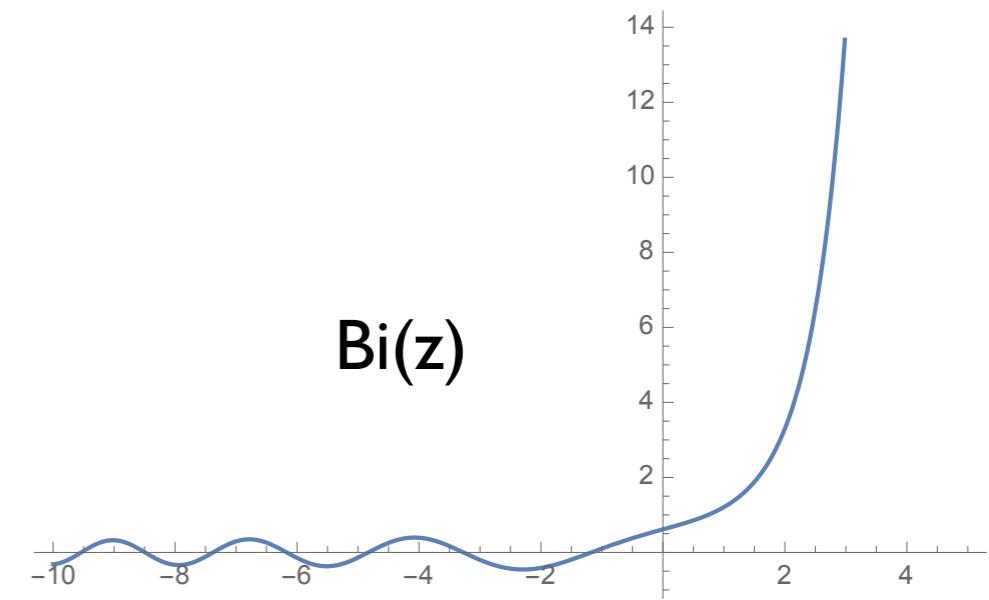
$$d^2\psi/dz^2 - z\psi = 0 ; \quad (x - a = \beta^{-2/3} z) ;$$

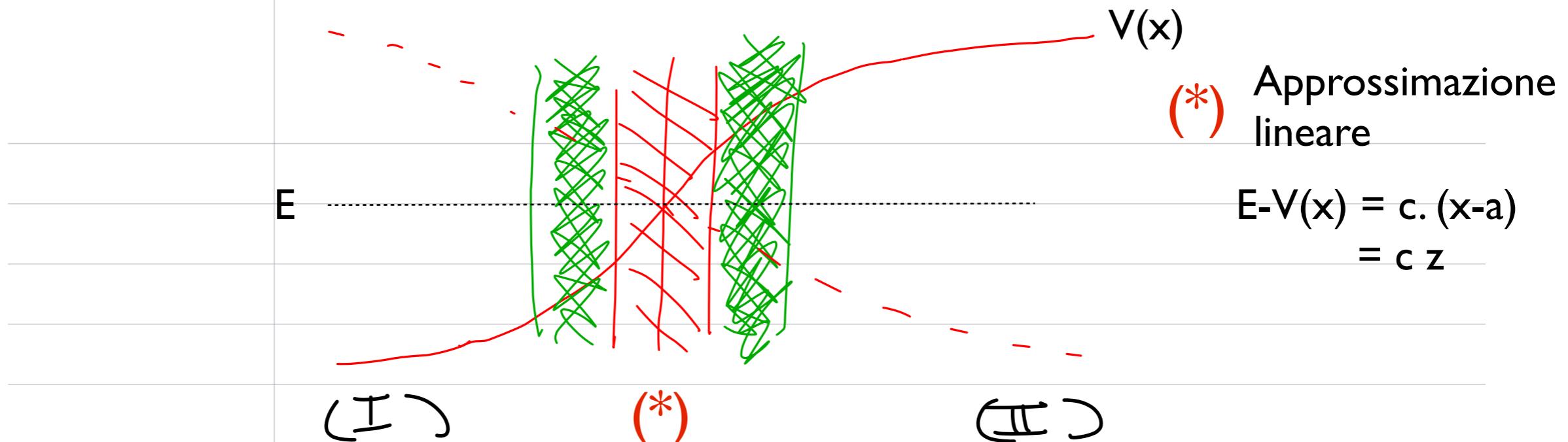
Campo elettrico costante
in 1D

Le soluzioni sono le funzioni di Airy, $Ai(z)$ e $Bi(z)$



$Bi(z)$





$$C_1 \frac{1}{\sqrt{P}} e^{\frac{i}{h} \int P dx} + C_2 \frac{1}{\sqrt{P}} e^{-\frac{i}{h} \int P dx}$$

$$\Downarrow$$

$$\psi^{(2)}(z) = B_i(-z)$$

$$c_1' \frac{1}{\sqrt{|p|}} e^{-\frac{i}{\hbar} \int p} + c_2' \frac{1}{\sqrt{|p|}} e^{\frac{i}{\hbar} \int p}$$

La relazione $(c_1, c_2) \Leftrightarrow (c'_1, c'_2)$ può essere determinata dalle regioni di compatibilità (zone verdi).

Ai, Bi = Airy functions

- Raccordare l'andamento asintotico della soluzione centrale $x \sim a$

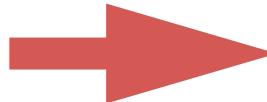
$$\frac{|z|^{-\frac{1}{4}}}{\sqrt{\pi}} \cos\left(\frac{2}{3}|z|^{3/2} - \frac{\pi}{4}\right) \xleftarrow[z \rightarrow -\infty]{} \text{Ai}(z) \xrightarrow[z \rightarrow \infty]{} \frac{1}{\sqrt{\pi}} \frac{1}{2} z^{-1/4} e^{-\frac{2}{3}|z|^{3/2}} ; \quad (11.12a)$$

$$-\frac{|z|^{-\frac{1}{4}}}{\sqrt{\pi}} \sin\left(\frac{2}{3}|z|^{3/2} - \frac{\pi}{4}\right) \xleftarrow[z \rightarrow -\infty]{} \text{Bi}(z) \xrightarrow[z \rightarrow \infty]{} \frac{1}{\sqrt{\pi}} z^{-\frac{1}{4}} e^{+\frac{2}{3}|z|^{3/2}} . \quad (11.12b)$$

con le soluzioni WKB a $|x-a|$ piccolo, con

$$p = \hbar \beta (a-x)^{\frac{1}{2}} = \hbar \beta^{\frac{1}{3}} \sqrt{-z} ; \quad w(a,x) = -\frac{2}{3} \beta (a-x)^{\frac{3}{2}} = -\frac{2}{3} |z|^{\frac{3}{2}} ;$$

$$\tilde{p} = \hbar \beta (x-a)^{\frac{1}{2}} = \hbar \beta^{\frac{1}{3}} \sqrt{z} ; \quad \tilde{w}(a,x) = \frac{2}{3} \beta (x-a)^{\frac{3}{2}} = \frac{2}{3} |z|^{\frac{3}{2}} .$$



From eqn (11.12) it follows that the two independent solutions are

$$\frac{1}{\sqrt{p}} \cos\left(|w(a,x)| - \frac{\pi}{4}\right) \xleftarrow[x \rightarrow -\infty]{} \psi \xrightarrow[x \rightarrow \infty]{} \frac{1}{2} \frac{1}{\sqrt{\tilde{p}}} e^{-|\tilde{w}|} ; \quad (11.13a)$$

$$-\frac{1}{\sqrt{p}} \sin\left(|w(a,x)| - \frac{\pi}{4}\right) \xleftarrow[x \rightarrow -\infty]{} \psi \xrightarrow[x \rightarrow \infty]{} \frac{1}{\sqrt{\tilde{p}}} e^{+|\tilde{w}|} . \quad (11.13b)$$

$$w(a,x)=\frac{1}{\hbar}\int_a^xp(x)dx\;,\qquad p(x)=\sqrt{2m(E-V(x))}$$

$$\tilde{w}(a,x)=\frac{1}{\hbar}\int_a^x|p(x)|dx\;,\qquad |p(x)|=\sqrt{2m(V(x)-E)}$$

Quantizzazione di Bohr-Sommerfeld



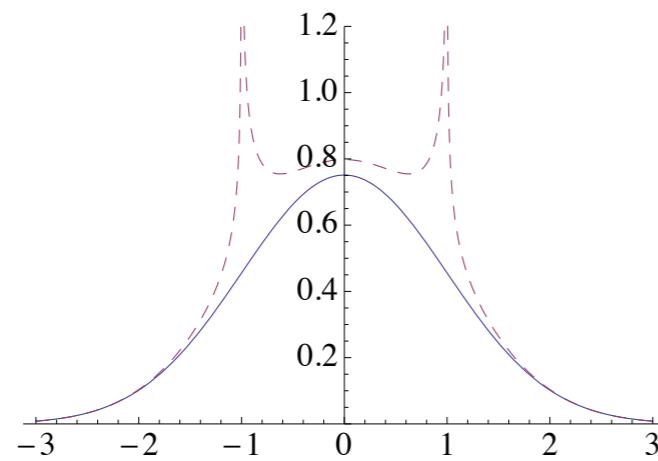
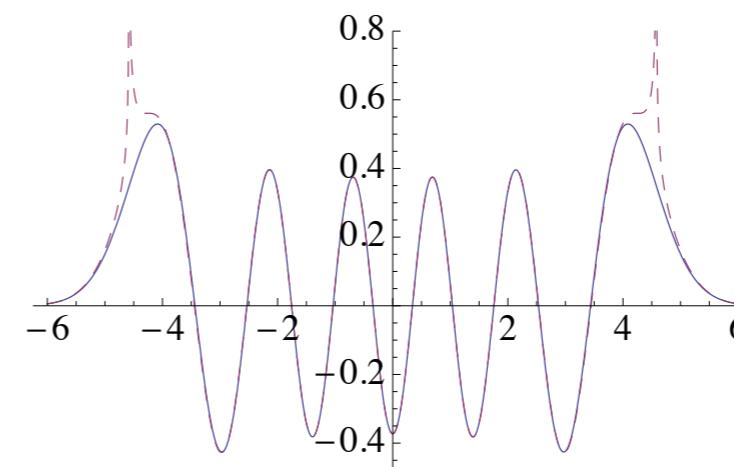
Stati legati

$$\oint dq p = 2\pi\hbar \left(n + \frac{1}{2}\right) = h \left(n + \frac{1}{2}\right) \quad (*)$$

cfr. Bohr-Sommerfeld originale

Osservazioni:

- Ogni stato quantistico “occupa” il volume $\Delta q \Delta p \sim 2\pi\hbar$
- per Oscilatore armonico il risultato è esatto! Ma w.f.?



- (*) OK per $n \gg 1$: molte oscillazioni, λ ben definita
- per Oscilatore quartico

$$p = \sqrt{2m(E - \frac{g}{2}x^4)}$$

The quartic potential

A less trivial case concerns the quartic potential, $U = \frac{g}{2}x^4$:

$$-\frac{\hbar^2}{2m} \frac{d^2\psi}{dx^2} + \frac{1}{2} gx^4 \psi = E\psi. \quad (11.45)$$

By making a transformation $x = \lambda z$, with $\lambda = (\hbar^2/mg)^{1/6}$ we see that eqn (11.45) transforms into

$$-\frac{1}{2} \frac{d^2\psi}{dz^2} + \frac{1}{2} z^4 \psi = \frac{\epsilon}{2} \psi; \quad \frac{\epsilon}{2} = E \left(\frac{m}{\hbar^2} \right)^{2/3} g^{-1/3}. \quad (11.46)$$

The eigenvalues of eqn (11.46) do not depend on any parameter, and hence it suffices to study it and put at the end

$$E_n = \left(\frac{\hbar^2}{m} \right)^{2/3} g^{1/3} \frac{\epsilon}{2}. \quad (11.47)$$

For eqn (11.46) the turning points are $z = \pm a = \pm \varepsilon^{1/4}$ and the quantization condition can be written as⁵

$$n + \frac{1}{2} = \frac{1}{2\pi} \sqrt{\varepsilon} 2 \int_{-a}^a \sqrt{1 - \left(\frac{z}{a} \right)^4} dx = \frac{2}{\pi} a \sqrt{\varepsilon} I,$$

$$I = \frac{1}{4} B \left(\frac{1}{4}, \frac{3}{2} \right) = \frac{\sqrt{\pi} \Gamma \left(\frac{1}{4} \right)}{8 \Gamma \left(\frac{7}{4} \right)} = 0.8740192\dots,$$

⁵ $B(p, q)$ is Euler's beta function.

from which

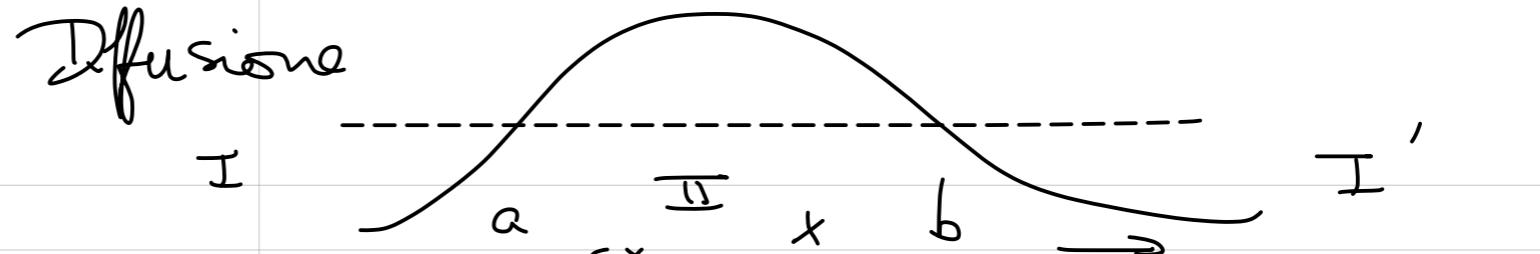
$$\varepsilon_n = \left[\frac{\pi}{2I} \left(n + \frac{1}{2} \right) \right]^{4/3}.$$

A comparison between the WKB results here and the exact levels (which can be found by the variational method discussed in the previous chapter) is shown below:

n	ε_n	ε_n^{WKB}	$\delta\varepsilon/\varepsilon$
0	1.060 36	0.867 15	0.182 22
1	3.799 67	3.751 92	0.012 57
2	7.455 70	7.413 99	0.005 59
3	11.644 75	11.611 53	0.002 85
4	16.261 83	16.233 61	0.001 73
5	21.238 37	21.213 65	0.001 16

Effetto Tunnel

Diffusione



$$x \rightarrow \infty \quad \psi^{(I')} \sim \frac{1}{\sqrt{p}} e^{\frac{i}{\hbar} \int_a^x dx \phi(x)} = \psi^{(1)} + \psi^{(2)} \quad (\bullet)$$

$$= \frac{C}{\sqrt{p}} e^{\frac{i}{\hbar} \int_a^x dx \phi(x) - i \frac{\pi}{4}}$$

$$\xrightarrow[\substack{\text{F.C.} \\ (A) - (B)}]{} \psi^{(I)} = C \left(\frac{1}{2} \frac{i}{\hbar} k e^{-\frac{|k|}{\hbar} x} - \frac{i}{|p| \frac{1}{\hbar}} e^{\frac{|k|}{\hbar} x} \right)$$

$$\simeq -i \frac{C}{|p| \frac{1}{\hbar}} e^{\frac{|k|}{\hbar} x} = -i \frac{C}{|p| \frac{1}{\hbar}} e^{\frac{i}{\hbar} \int_a^b dx |p(x)|}$$

$$= -i \frac{C}{|p| \frac{1}{\hbar}} e^{\frac{i}{\hbar} \int_a^b dx |p|} e^{-\frac{i}{\hbar} \int_a^x dx |p|}$$

$$\xrightarrow[\substack{\text{F.C.} \\ (A)}]{} \psi^{(I)} = -i \frac{C}{\sqrt{p}} 2 \cos \left(\int_a^x dx |p| - \frac{\pi}{4} \right) \cdot e^{\frac{i}{\hbar} \int_a^b dx |p|}$$

$$= \left(-i C e^{\frac{i}{\hbar} \int_a^b dx |p|} \right) \left(\frac{1}{\sqrt{p}} e^{\frac{i}{\hbar} \int_a^x dx |p| + \frac{\pi}{4} i} + \frac{1}{\sqrt{p}} e^{-\frac{i}{\hbar} \int_a^x dx |p| + i \frac{\pi}{4}} \right)$$

Onda in c

Onda riflessa

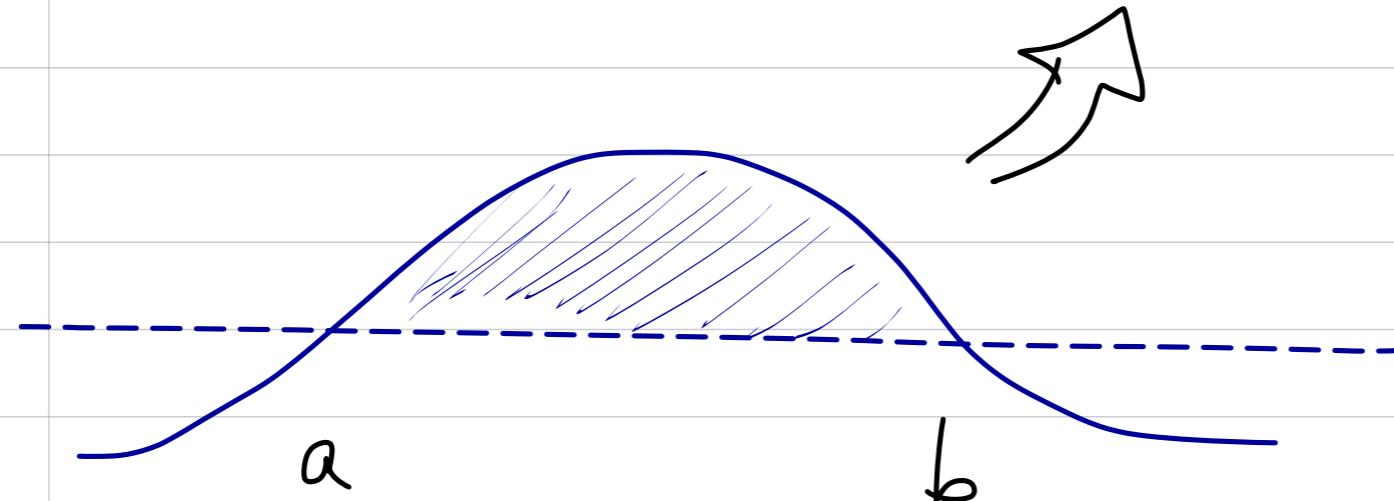
Dividendo tutto con $C \cdot e^{\frac{i}{\hbar} \int_a^b dx |p|} \sim 1$ ha:

$$\psi(x) \xrightarrow{x \rightarrow -\infty} \frac{1}{\sqrt{p}} e^{\frac{i}{\hbar} \int_a^x dx |p| + \frac{\pi}{4} i} + \frac{1}{\sqrt{p}} e^{-\frac{i}{\hbar} \int_a^x dx |p| + i \frac{\pi}{4}}$$

$$\xrightarrow{x \rightarrow +\infty} i \left(e^{-\frac{i}{\hbar} \int_a^b dx |p|} \right) \cdot \frac{1}{\sqrt{p}} e^{\frac{i}{\hbar} \int_a^x dx |p| - i \frac{\pi}{4}}$$

Onda trasmessa

$$\therefore P^{\text{transm}} = J_I / J_{I_p} = e^{-\frac{2}{\hbar} \int_a^b dx |p|}$$

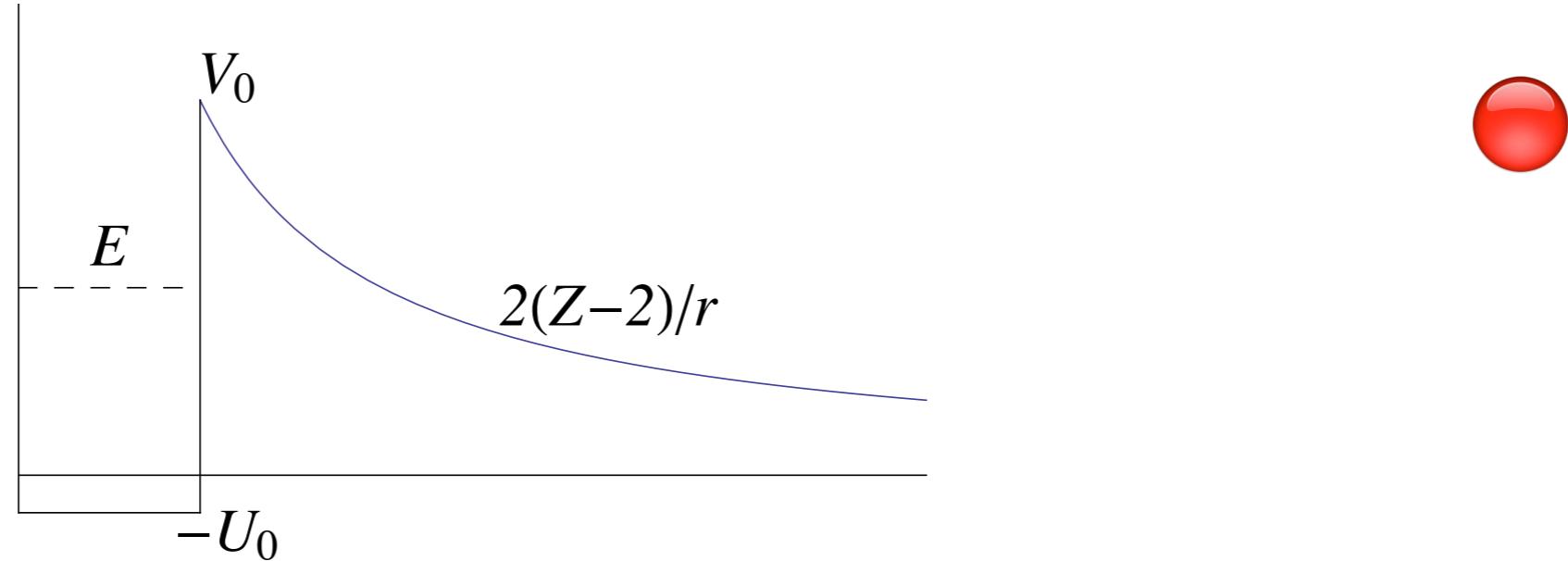


Effetto tunnel \sim

$$e^{-\frac{2}{\hbar} \int_a^b dx |p|}$$

↑
azione ridotta

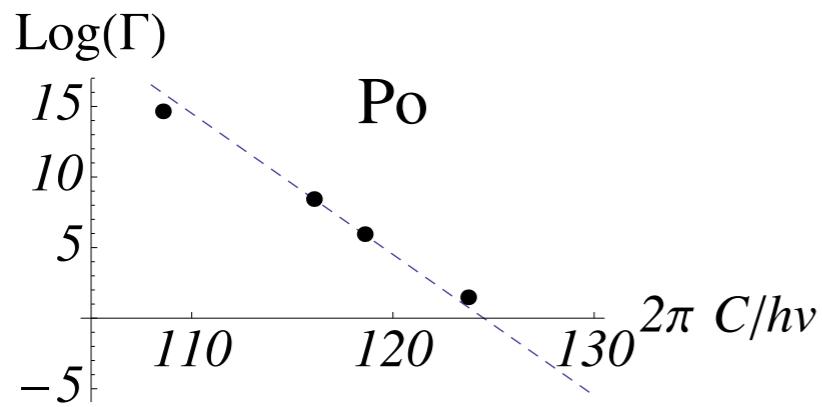
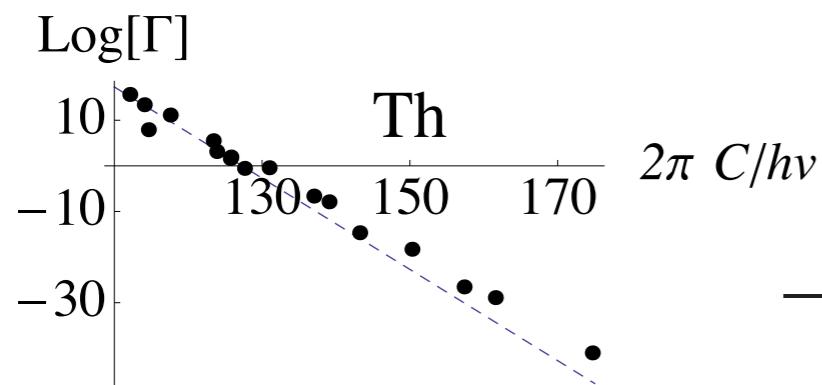
Esempio: decadimento α (modello semplice)



$$\gamma = \mathcal{N} \times P , \quad \xrightarrow{\hspace{1cm}} \quad \Gamma = \hbar \gamma = \frac{\hbar}{T} P .$$

$$\psi = \frac{1}{\sqrt{4\pi}} \frac{A}{r} \sin(kr) = \frac{1}{\sqrt{4\pi}} \frac{A}{2i r} \left[e^{ikr} - e^{-ikr} \right] . \quad \xrightarrow{\hspace{1cm}} \quad v/2r_0 = 1/T .$$

$$P = \exp[-2\sigma(r_0, r_1)] = \exp \left[-\frac{2}{\hbar} \int_{r_0}^{r_1} \sqrt{2m \left(\frac{2(Z-2)e^2}{r} - E \right)} dr \right] .$$



Z(A)	$T_{1/2}$	$E(\text{MeV})$	Z(A)	$T_{1/2}$	$E(\text{MeV})$
Po(212)	3.0×10^{-7} s	8.95	Th(219)	0.11×10^{-6} s	9.34
Po(214)	1.5×10^{-4} s	7.83	Th(220)	$10. \times 10^{-6}$ s	8.79
Po(215)	1.8×10^{-3} s	7.50	Th(221)	2.8×10^{-3} s	7.98
Po(216)	0.158 s	6.89	Th(224)	1.05 s	7.085
Th(212)	0.03 s	7.92	Th(225)	8.72 m	6.47
Th(213)	0.14	7.69	Th(226)	30.6 m	6.28
Th(214)	0.10 s	7.68	Th(227)	18.72 d	5.92
Th(215)	1.2 s	7.46	Th(228)	1.91 y	5.38
Th(217)	0.25×10^{-3} s	9.25	Th(229)	7340 y	4.91
Th(218)	0.11×10^{-6} s	9.67	Th(230)	77×10^3 y	4.65
			Th(232)	14.1×10^9 y	3.98

THE END