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Problema 1. Si consideri un sistema a due stati descitto dall’Hamiltoniana

H =

(

E0 −η
−η E0

)

(1)

(i) Rispondere seη può essere complesso (i.e., Imη 6= 0);

(ii) Determinare gli autovalori e gli autotati diH;

(iii) All’istante t = 0, il sistema si trova nello stato

|ψ(0)〉 =
|1〉+ i |2〉√

2
. (2)

Si determinino le probabilitàP1(t), P2(t), che all’istantet il sistema si trovi o nello
stato|1〉 o nello stato|2〉. Fare uno schizzo diP1(t) e P2(t).

Problema 2. Una particella di massam si muove in un potenziale unidimensionale,

V (x) =

{

−gδ(x) x < a,

∞ x ≥ a,
(g > 0). (3)

(Fig. 1). Si vuole studiare la proprietà di un eventuale stato legato di energia negativa.

(i) Trovare l’equazione che implicitamente determina l’energia di uno stato legato con
E < 0. Dalla condizione di esistenza di una soluzione di questa equazione, trovare la
condizione (sui parametri,m, g, a) perché il sistema abbia uno stato legato di energia
negativa;

(ii) Discutere il limitea → ∞;

(iii) Dire se esistono degenerazioni di autostati di energia nello spettro continuo (E ≥ 0).
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Figura 1:
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Soluzione

Problema 1.

(i) No. Seη fosse complessoH non sarebbe Hermitiano. Si noti che non è possibile
rendere reali gli elementi non diagonali con una ridefinizione dei vettori di base,
poiché l’(12) elemento e l’(21) elemento acquisterebbero fasi opposte. Un’altra
maniera ancora: gli autovalori di energia sono complessi, con η complesso.

(ii) Supponendo cheη > 0,

|−〉 =
|1〉+ |2〉√

2
; E− = E0−η, (4)

è lo stato fondamentale;

|+〉 =
|1〉− |2〉√

2
; E+ = E0 + η, (5)

è lo stato eccitato.

(iii) L’inverso di

|1〉 =
|−〉+ |+〉√

2
; |2〉 =

|−〉− |+〉√
2

. (6)

ψ(0) =
|1〉+ i |2〉√

2
=

|−〉+ |+〉+ i( |−〉− |+〉)
2

=
(1+ i) |−〉+(1− i) |+〉

2
⇒

ψ(t) =
(1+ i)e−iE−t/h̄ |−〉+(1− i)e−iE+t/h̄ |+〉

2

= e−iE0t/h̄ (1+ i)eiηt/h̄ |−〉+(1− i)e−iηt/h̄ |+〉
2

= e−iE0t/h̄ (1+ i)eiηt/h̄ (|1〉+ |2〉)+ (1− i)e−iηt/h̄ (|1〉− |2〉)
2
√

2

= e−iE0t/h̄ (cosηt
h̄ −sinηt

h̄ ) |1〉+ i(cosηt
h̄ +sin ηt

h̄ ) |2〉√
2

(7)

Perciò (Fig. 2)

P1(t) =
1
2

(cos
η t
h̄

−sin
η t
h̄

)2 =
1−sin2ηt

h̄

2
; (8)

P2(t) =
1
2

(cos
η t
h̄

+sin
η t
h̄

)2 =
1+sin2ηt

h̄

2
. (9)

Problema 2.

(i) La funzione d’onda ha la forma

ψ(x) =

{

Aeκx, x < 0,

Beκx +C e−κx, x > a.
(10)
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Figura 2:

doveκ =
√

−2mE/h̄2 > 0. La condizione di continuità ax = 0 è

B +C = A, (11)

la condizione di continuità sulla derivata prima ax = 0 è

ψ′
+−ψ′

− = −2mg

h̄2 ψ(0), (12)

cioè,

B−C = (1− 2mg

h̄2 κ
)A. (13)

Combinando queste due si trova

B = (1− mg

h̄2 κ
)A; C =

mg

h̄2 κ
A. (14)

La condizione ax = a è

ψ(a) = Beκa +C e−κa = 0. (15)

SostituendoB eC dalla (14), si ha

1− e−2κa =
h̄2 κ
mg

, (16)

per avere una soluzione conA 6= 0. Dai grafici delle curvey = 1− e−2ax e y = h̄2 x
mg

(Fig. 3) si vede che per̄h
2

2mg < a esiste una soluzione della (16) conκ > 0, mentre

per h̄2

2mg ≥ a l’unica soluzione èκ = 0, che non corrisponde ad uno stato legato.

La (16) può essere scritta alternativamente come:

ξ(1+cothξ) =
2mga

h̄2 , ξ ≡ κa, (17)

da cui segue ugualmente la condizione2mga
h̄2 > 1 per l’esistenza di una soluzione

non banale perκ > 0.

(ii) Nel limite a → ∞, 1− e−2κa → 1, perciò la soluzione è

κ =
mg

h̄2 , (18)

che è ben noto risultato per una singola buca delta.
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(iii) Non esistono degenerazioni.

Per vedere questo fatto, osserviamo che la funzione d’onda ha la forma (conk ≥ 0)

ψ(x) =











Aei k x + Be−i k x, x < 0,

C ei k x + De−i k x, 0 < x < a,

0 x ≥ a.

(19)

La condizione ax = a (ψ = 0) fissa la relazione traC eD; le condizioni ax = 0
determinanoA eB in termini diC, per cui per ognik la soluzione è unica a parte la
normalizzazione.
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Figura 3:
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