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10 CAPITOLO 1. INTRODUZIONE E CONCETTI PRINCIPALI

1.1 Introduzione

Il comportamento delle particelle quantistiche è in moltiaspetti straordinario, dal punto di
vista delle nostre esperienze quotidiane, siano esse un elettrone, un protone, un atomo o
una molecola. Discuteremo qui alcuni esempi.

1) Diffrazione e Interferenza
L’aspetto più caratteristico del comportamento “non classico” dell’elettrone è quello

della diffrazione e dell’interferenza, ambedue tipico di un’onda.
Come è ben noto, la luce è un’onda, l’onda elettromagnetica, e come tale esibisce molti

fenomeni caratteristici. Prendiamo in esame la famosa esperienza di Young (1801) in cui la
luce di una lampada viene fatta attraversare una doppia fenditura, facendo poi incidere su
uno schermo fotografico. Le immagini di frange di intensitàregolari e alternate osservate in
tale esperimento (Fig. 1.2) possono essere interpretate come conseguenza dell’interferenza
di due raggi, passati da due fenditure diverse. Infatti, se la distanza tra le fenditure, la
distanza tra la fenditura e lo schermo, la posizione verticale del punto sullo schermo sono
date rispettivamente dad, L, x (vedi Fig. 1.1), allora l’angolo della diffrazione è circa
(assumendod ≪ L;x≪ L) θ ∼ x/L, perciò la differenza del percorso tra i due raggi è data
da

∆d ≃ d sinθ ≃ dθ ≃ dx/L.

Se la lunghezza d’onda della luce èλ, la condizione per l’interferenza positiva è

∆d/λ = n, n = 0,1,2, . . . ,

mentre perx tale che
∆d/λ = n+1/2, n = 0,1,2, . . . (1.1)

si avrà interferanza distruttiva. Nell’esperimento di Young,L/d∼ 103; λ∼ 103Å = 10−5cm,
perciò tipicamente la spaziatura delle frange è dell’ordine di 0.1mm.

L
d

x

Figura 1.1: Esperienza di Young

Nel caso di elettroni, un’analoga esperienza è (per motivitecnici) divenuta possibile
solo qualche anno fa (1989).È da notare che tale esperienza è spesso qualificata nei libri

Figura 1.2: La frange di interferenza nell’esperimento à la Young con la luce visibile
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di meccanica quantistica come “Gedanken experiment”, cio`e una esperienza “pensata” o
“ipotetica”. Non lo è più.

La figura presa da un articolo di Tonomura et.al. (Am. Journ. Phys. 57 (1989)117) qui
accanto dimostra una straordinaria somiglianza con la precedente Fig. 1.2 dell’esperienza
di Young. Ad un’analisi più attenta, però, si può cogliere qualche differenza.

La prima differenza riguarda la scala. Nel caso dell’esperienza con la luce visibile la
spaziatura delle frange d’interferenza era dell’ordine del mm, mentre nel caso degli elet-
troni è dell’ordine di 10−4mm. Questa differenza - quantitativa ma non qualitativa - non
è concettualmente essenziale, ma comporta notevoli difficoltà tecniche che sono state le
ragioni per cui questa esperienza è stata realizzata soltanto di recente.

La differenza più importante, apparentemente, è il fattoche gli elettroni sono parti-
celle (mentre la luce è “ovviamente” un’onda ), con la massae la carica elettrica ben de-
finite: infatti non è difficile distinguere i punti lasciatida singoli elettroni sullo schermo
nell’esperienza di Tonomura et. al.
In questo esperimento è stato usato un fa-
scio di elettroni di intensità molto ridotta,
∼ 103/sec. Tenendo conto della velocità me-
dia dell’elettrone,∼ 0.4c, la distanza media
tra due elettroni è circa∼ 150Km, mentre
l’intero apparecchio sperimentale ha una di-
mensione di circa 1.5m. È ragionevole, in
tali condizioni, pensare che gli elettroni arri-
vino “uno ad uno”, senza interagire tra di loro
in maniera significativa. Le cinque immagi-
ni corrispondono, rispettivamente, a 10, 100,
3000, 20000 e 70000 elettroni.
Arriviamo quindi ad una conclusione appa-
rentemente paradossale. Il singolo elettrone
in qualche maniera “vede” le due fenditure, le
sue due fronti d’ona differenti interferiscono!
Questa proprietà è nota come “dualità onda-
corpuscolo”. È di fondamentale importanza
il fatto che tale dualità si riferisce ai singoli
elettroni, e non ad una proprietà collettiva del
fascio degli elettroni.
Con recenti sviluppi tecnologici, anche l’e-
sperienza di Young originale può essere ri-
petuta con un fascio di fotoni molto debole,
di modo che i fotoni arrivino uno a uno. Col
senno di poi, ci si rende conto che non esiste
nessuna differenza sostanziale tra l’esperien-
za di Young con i fotoni e quella di Tonomura
et.al. fatta utilizzando un fascio di elettroni.
Risulta infatti (de Broglie) chetutte le parti-
celle elementari, atomi e molecole, posseg-
gono tale proprietà duale. Come vedremo in
seguito Meccanica Quantistica descrive que-
ste particelle con un linguaggio matematico
coerente e molto elegante.

2) La stabilit à e l’identit à degli atomi.
Il secondo aspetto riguarda la stabilità e l’assoluta identità di atomi (dello stesso tipo).

Consideriamo l’atomo di idrogeno, che è uno stato legato formato da un elettone e un
protone. Il moto dell’elettrone intorno al nucleo è descritto, nella meccanica di Newton,
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dall’equazione,

mr̈ = −e2

r2 +mrθ̇2, (1.2)

dove abbiamo assunto un moto circolare per semplicità. Come è noto l’eq.(1.2) ammette
una soluzione stabile,r = costante. Nel mondo attuale, tuttavia, esistono altri effetti dovuti
alle interazioni elettromagnetiche (la forza statica Coulombiana tenuta in conto nella (1.2)
ne è una delle manifestazioni fra tante). Infatti, secondola teoria classica di Maxwell, una
particella carica in un moto accelerato emette luce e perde l’energia. Per l’elettrone che si
muove con accelerazionev̇ l’energia persa per un intervallo unitario di tempo è:

S=
2
3

e2

c3 (v̇)2 (erg/sec) (1.3)

(vedi Landau-Lifshitz Vol. 2). Supponiamo che la perdita dienergia sia piccola di modo
che l’orbita possa essere considerata approssimativamente circolare, e calcoliamo in quanto
tempo un atomo di raggior ≃ 10−8cm collassa ad un punto.

Poniamo dunque
r(t = 0) = 10−8 cm. (1.4)

Da l’eq(1.2) si ha
e2

r2 ≃ mrθ̇2 = m|v̇|, (1.5)

o

|v̇| = e2

mr2
. (1.6)

Sostituendo questo in (1.3), si trova

S= −dE
dt

=
2e6

3m2c3r4 . (1.7)

Ma per un moto circolare vale la relazione:

E =
1
2

mv2− e2

r
= −e2

2r
, (1.8)

perciò

r2ṙ = − 4e4

3m2c3 . (1.9)

Integrando e ponendor(t) = 0 si ha

r(0)3− 4e4

m2c3 t = 0,

t =
m2c3

4e4 (10−8)3 ≃ 10−10 sec. (1.10)

Secondo la fisica classica dunque un atomo di idrogeno collassa ad un punto in 10−10sec!
Questo non è certamente quello che accade in Natura.

Pur ammettendo che ci possa essere una ragione sconosciuta per cui la (1.3) non si
applichi al mondo atomico - dopottutto la teoria di Maxwell `e stata scoperta nel mondo
macroscopico - e quindi trascurando le difficoltà che ne seguono, c’è un altro problema
molto serio per un modello “planetario” degli atomi come descritto da (1.2). La difficoltà
sta nel fatto che ogni atomo dovrebbe avere un raggio diverso, un raggio che dipende dalla
condizione al contorno (condizione iniziale).

Come vedremo in seguito, in meccanica quantistica tutti i moti (classicamente) priodi-
ci sono “quantizzati”: solo alcuni “stat” sono permessi. Diconseguenza due atomi dello
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stesso tipo (nel loro stato normale) hanno proprietàrigorosamente identiche. La “quantiz-
zazione” del moto risolve in modo naturale anche il problemadell’instabilità dell’atomo
accennato sopra.

È facile capire la ragione per la quale l’eq.(1.2) non può avere una soluzione con un
raggio ben definito (che non dipenda da una condizione iniziale accidentale). Gli unici
parametri che appaiono nell’equazione sonom ee con dimensioni (in unitàcgs)

m= [gr]; e= [gr1/2cm3/2sec−1] :

è ovviamente impossibile formare, tramite una loro combinazione, alcuna costante con la
dimensione di una lunghezza. In Meccanica Quantistica esiste una costante fondamentale
della natura chiamata costante di Planck (¯h) con dimensione

h̄ = [gr·cm2/sec];

questa costante caratterizzerà l’intera costruzione della Meccanica Quantistica.
Infatti, avendo a disposizione anche ¯h, si può trovare un’unica combinazione

rB =
h̄2

me2 (1.11)

chiamato “raggio di Bohr.” Con i valori numerici noti si ottiene

rB ≃ 510−9cm (1.12)

che è ragionevole come grandezza di un atomo.
L’assoluta identità delle proprietà intrinsiche di due atomi (o più in generale, di due

particelle elementari - due protoni, due elettroni, ecc.) della stessa specie, è la base della
regolarità e stabilità del mondo macroscopico (cristalli, sistemi biologici, ecc.) Senza tale
esattezza il fenomeno biologico (riproduzione e metabolismo) sarebbe impossibile. Tale
aspetto del mondo microscopico è in chiaro contrasto, ma incerto senso in armonia, con le
infinite varietà dei fenomeni macroscopici.

3) Effetto Tunnel
Il terzo esempio è il fenomeno della conduzione elettrica.In un modello semplifica-

to l’elettrone nel metallo è rappresentato da una particella che si muove in un potenziale
periodico (Fig.1.3). Secondo la meccanica classica la particella si sposterà nel campo elet-
trostatico ma non riuscirà ad attraversare le barriere di potenziale (se il campo esterno, che
provoca il suo movimento, non è sufficientemente forte). Inmeccanica quantistica, l’e-
lettrone è capace di attraversare la barriera anche se ha energia insufficiente dal punto di
vista classico (“effetto tunnel”), permettendo cosı̀ la conduzione elettrica osservata quoti-
dianamente. L’effetto tunnel è collegato strettamente con la dualità onda-corpuscolo delle
particelle.

e

V(x)

E<Vmax

Figura 1.3: Potenziale periodico

Ricapitolando, la meccanica classica di Newton non può descrivere il mondo regolare
in cui viviamo. Tale struttura richiede l’assoluta identità degli atomi dello stesso tipo, e
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questo è possibile soltanto in Meccanica Quantistica dovel’equazione contiene una nuova
costante fondamentale dimensionale. Inoltre l’elettronee tutte le altre particelle elemen-
tari, nuclei, atomi e molecole esibiscono una doppia caratteristica “onda-corpuscolo”: la
quantizzazione dei moti periodici e il fenomeno del “tunnelling” sono strettamente legati a
questa proprietà. La Meccanica Quantistica descrive questi comportamenti (e molti altri!)
in modo coerente e con un formalismo matematico molto elegante.
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1.2 Complementi di Meccanica Analitica

1.2.1 Formalismo Lagrangiano

L’equazione di Newton per una particella è

dp/dt = F (1.13)

dove p è l’impulso (la quantità di moto);F è la forza cui la particellla in questione è
sottoposta. Nel caso in cui la forza è di tipo conservativo,

F = −∇V (1.14)

doveV è il potenziale. Dalle eqs. (1.13) e (1.14) segue la legge diconservazione dell’ener-
gia totale

E = T +V; T = p2/2m= mṙ2/2 (energia cinetica). (1.15)

Inoltre, se il potenziale è a simmetria sferica,

V(r) = V(r)

è conservato anche il momento angolareL = r ×p.
Nel formalismo Lagrangiano della mecccanica di Newton, la quantità fondamentale è

la Lagrangiana
L = L(qi , q̇i ; t) = T −V

considerata come una funzione delle coordinate generalizzateqi, i = 1,2, . . . ,s, delle loro
derivate temporali ˙qi , e del tempot. Data la Lagrangiana, l’equazione del moto è:

∂L
∂qi

− d
dt

∂L
∂q̇i

= 0, i = 1,2, . . . (1.16)

(eq. di Eulero-Lagrange). L’equazione di Eulero-Lagrangesegue (vedi Appendice) dal
principio di minima azione. Ovvero imponendo che l’azione sia minima rispetto alla varia-
zione arbitraria delle funzioniqi(t), con la condizione che i loro valori, ai tempi iniziali e
finali qi(t1), qi(t2), siano tenuti fissi. In formule:

δS|δq(t1)=δq(t2)=0 = 0, (1.17)

dove

S≡
Z t2

t1
L(qi , q̇i ; t). (1.18)

La dimostrazione ‘e data in Appendice A.

Note: Il valore dell’azione dipende dalla traiettorie, o funzioni, qi(t). In altre parole,S è
unafunzionaledi qi(t), generalizzando il concetto di una funzione.

Osservazioni

• L’equazione di Eulero-Lagrange è invariante (in forma) per cambiamenti arbitrari
delle coordinate generalizzate,qi(t) → Qi(t) = Qi({qi(t)}; t). (Esercizio: verificate-
lo.) Queste trasformazioni sono chiamatetrasformazioni puntuali.

• L’introduzione del concetto dei moti fittizi nel formalismoLagrangiano e la formula-
zione del principio di minima azione, risultano molto proficui per i successivi svilup-
pi in fisica teorica. (Sistemi relativistici, teoria dei campi, il formalismo dell’integrale
sui cammini di Feynman della Meccanica Quantistica, ecc.)
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• La Lagrangiana per un dato sistema fisico non è univoca, ma haun’arbitrarietà del
tipo,

L(q, p; t) → L(q, p; t)′ = L(q, p; t)+
dF(q,t)

dt
. (1.19)

Infatti, l’azione cambia secondo la relazione

S→ S′ = S+F(q2,t2)−F(q1,t1) : (1.20)

ma allora segue, ricordando la condizione al contornoδq1 = δq1 = 0, che

δS′ = δS. (1.21)

Esercizio
Scrivere la Lagrangiana per una particella con carica elettrica q che si muove in un

campo elettromagnetico esterno. Dimostrare che la nota espressione per la forza di Lorentz
segue dall’equazione di Eulero-Lagrange (1.16).
Risposta

L =
mṙ2

2
+

q
c

ṙ ·A −qφ(r). (1.22)

dove

B = ∇×A, E = −∇φ− 1
c

∂A
∂t

. (1.23)

L’ultimo termine è semplicemente l’energia elettrostatica. L’equazione di Eulero-Lagrange
dà

mr̈ i +
q
c

Ȧi = −q∂iφ+
q
c

ṙ j ∂iA j . (1.24)

Scrivendo il primo termine come

mr̈ i +
q
c

ṙ j ∂ jAi , (1.25)

e raccogliendo termini, si ha

mr̈ i = −q∂iφ+
q
c

ṙ j (∂iA j − ∂ jAi) = −q∂iφ+
q
c

ṙ j εi jkBk = −q∂iφ+
q
c

(ṙ ×B)i . (1.26)

Il potenziale vettorialeA e il potenziale scalareφ sono definiti a meno di transforma-
zioni di gauge

A → A + ∇ f ; φ → φ− 1
c

∂ f
∂t

; (1.27)

sotto le qualiE, B sono invarianti, mentre la Lagrangiana di trasforma di

∆L =
q
c

d f(r(t),t)
dt

. (1.28)

In virtù di quanto è stato osservato nell’ultimo punto l’equazione di moto rimane invariante
per tali transformazioni.

1.2.2 Formalismo Hamiltoniano

Nel formalismo Lagrangiano le variabili indipendenti sonole coordinateqi(t), i = 1,2, . . . ,s.
Infatti si ottiene una descrizione completa di un sistema ads gradi di libertà risolvendos
equazioni differenziali del secondo ordine. Nell’equazione di Eulero-Lagrange le derivate
parzali sono prese come seqi e q̇i fossero indipendenti, ma questo è solo un aspetto formale.
Infatti, nel derivare l’equazione di Eulero-Lagrange, le variazioni considerate indipendenti
sono solo leδqi , mentreδq̇i(t) ≡ (d/dt)δqi(t).
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Nel formalismo Hamiltoniano (detto “canonico), il numero delle variabili indipendenti
è raddoppiato (2s). Le coordinateqi e gli impulsi coniugatipi sono ambedue variabili
indipendenti, e in più appaiono in maniera (quasi) simmetrica nell’equazione del moto.
L’Hamiltoniana è definita da: ((1.29) ‘e un esempio ditrasformazione di Legendre.)

H(qi, pi) ≡ ∑
i

pi q̇i −L(qi, q̇i), (1.29)

dove

pi ≡
∂L
∂q̇i

. (1.30)

È inteso che l’eq.(1.30) è risolta per ˙qi :

q̇i = q̇i(p j ,q j)

e che la dipendenza diH da qi, pi al primo membro di (1.29) è intesa in tal senso. Le
equazioni del moto che seguono da (1.29) e dall’equazione diEulero-Lagrange sono:

q̇i =
∂H
∂pi

; ṗi = −∂H
∂qi

, (i = 1, . . .s), (1.31)

(equazioni di Hamilton o equazioni canoniche).

Osservazioni

• Nell’esempio sempliceL = (1/2)mṙ2−V, H è data da

H =
p2

2m
+V :

l’Hamiltoniana rappresenta l’energia del sistema.

• Le equazioni canoniche sono invarianti per una classe moltogrande delle trasforma-
zioni delle variabili

{qi, pi}→ {Qi(q, p),Pi(q, p)},
dettetrasformazioni canoniche.

• Sebbene il numero delle equazioni sia raddoppiato rispettoal formalismo Lagrangia-
no, esse sono ora equazioni differenziali (int) del primo ordine: il numero delle con-
dizioni al contorno (2s) è invariato rispetto al formalismo Lagrangiano (s equazioni
del secondo ordine).

• Lo stato del sistema è specificato da un punto nell’iperspazio 2s− dimensionale
{q, p} ( spazio delle fase); l’evoluzione del sistema è rappresentata dal movimento
del punto in esso.

Esercizio
Scrivere l’Hamiltoniano per una particella carica che si muove in un campo elettroma-

gnetico esternoφ(r),A(r).

Risposta
Il moto di una particella carica (q) in un campo elettromagneticoE, B è descritto

dall’Hamiltoniana
H = [p− q

c
A(r ,t) ]2 +qφ(r ,t)+V(r), (1.32)

doveV è il potenziale meccanico.

B = ∇×A, E = −∇φ− 1
c

∂A
∂t

. (1.33)



18 CAPITOLO 1. INTRODUZIONE E CONCETTI PRINCIPALI

Per transformazioni di gauge (1.27)E, B sono invarianti. L’Hamiltoniana non è invariante,
ma si può dimostrare che esiste una trasformazione canonica (vedi (1.52) sotto) che riporta
le equazioni di moto nella forma originale. (Dimostratelo).

L’equazione di moto che segue è

mr̈ = qE+
q
c

ṙ ×B, (1.34)

con il noto termine di forza di Lorentz. Le interazioni con ilcampo vettoriale, rappresentata
da una sostituzione formalep → p− q

cA(r ,t) nel termine cinetico, è noto come interazioni
(o l’accoppiamento) minimali.

1.2.3 Parentesi di Poisson

L’evoluzione temporale di una variabile generica nel formalismo Hamiltoniano viene ele-
gantemente descritto in termini delleparentesi di Poisson. La parentesi di Poisson tra due
variabili generichef = f (qi , pi ; t),g = g(qi, pi ; t) è definita come

{ f ,g} ≡
s

∑
i=1

(

∂ f
∂qi

∂g
∂pi

− ∂ f
∂pi

∂g
∂qi

)

. (1.35)

L’evoluzione di una variabilef è

d f
dt

=
∂ f
∂t

+
s

∑
i=1

(

∂ f
∂qi

q̇i +
∂ f
∂pi

ṗi

)

=
∂ f
∂t

+
s

∑
i=1

(

∂ f
∂qi

∂H
∂pi

− ∂ f
∂pi

∂H
∂qi

)

=
∂ f
∂t

+{ f ,H}. (1.36)

L’equazione del moto di una quantità fisica qualsiasi è dunque data - a parte la dipen-
denza esplicita dovuta ad eventuali parametri esterni - dalla sua parentesi di Poisson con
l’Hamiltoniana.

Dalle equazioni canoniche seguono le parentesi di Poisson fondamentali:

{qi, p j} = δi j ;

{qi,q j} = 0

{pi, p j} = 0. (1.37)

Alcune proprietà principali della parentesi di Poisson sono:

{ f ,g} = −{g, f};

{qi, f} = ∂ f/∂pi ;

{pi , f} = −∂ f/∂qi;

{ f ,c} = 0 (c = cost.);

{ f1 + f2,g} = { f1,g}+{ f2,g};

{ f1 f2,g} = f1{ f2,g}+ f2{ f1,g} (1.38)

{{ f ,g},h}+{{g,h}, f}+{{h, f},g} = 0 (Identità di Jacobi). (1.39)

Esercizio

i) Dimostrare che sef eg sono costanti del moto, lo è anche{ f ,g}. (Teorema di Poisson).

ii) Dimostrare che il volume nello spazio di fase occupato dastati tra(qi , pi) e (qi +
δqi, pi +δpi) rimane invariante durante l’evoluzione temporale dei sistemi. (Teorema
di Liouville).
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1.2.4 Trasformazioni canoniche

Il formalismo canonico ammette un’ampia classe di variabili. I cambiamenti di variabile
del tipo,

{qi, pi}→ {Qi(q, p; t),Pi(q, p; t)} (1.40)

che lasciano invariata la forma delle equazioni canoniche,i.e., tale che

Q̇i =
∂H̃
∂Pi

; Ṗi = − ∂H̃
∂Qi

, (i = 1, . . .s), (1.41)

seguono dalle equazioni (1.31), sono chiamatetrasformazioni canoniche.
Per studiare quali trasformazioni hanno questa proprietà, e qual’è la relazione tra l’Ha-

miltoniana originale e quella nuova, possiamo ripartire dal metodo variazionale. L’azione
può essere riscritta come

S=

Z

Ldt =

Z

(∑ pi q̇i −H)dt, (1.42)

e l’equazione del moto segue dal principio di minima azione

0 = δS =

Z

[∑
i

(δpi q̇i + pi
d
dt

δqi)−∑
i

(
∂H
∂qi

δqi +
∂H
∂pi

δpi)]dt

=

Z

[∑(q̇i −
∂H
∂pi

)δpi +∑(−ṗi −
∂H
∂qi

)δqi ]dt. (1.43)

Ricordando che, nel formalismo canonico,δqi e δpi sono indipendenti le equazioni cano-
niche seguono da quest’ultimo.

Una trasformazionecanonicadeve essere allora tale che

S =

Z

dt(∑ pi q̇i −H)

=
Z

dt(∑PiQ̇i − H̃ +
dF
dt

) (1.44)

doveF è una funzione delle coordinate, degli impulsi e dit. Supponiamo cheF sia del
tipo,

F = F1(q,Q; t). (1.45)

Poiché
dF1

dt
= ∑

i
(

∂F1

∂qi
q̇i +

∂F1

∂Qi
Q̇i)+

∂F1

∂t
, (1.46)

le relazioni tra le variabili nuove e quelle vecchie si trovano uguagliando i due membri di
(1.44):

pi =
∂F1(q,Q,t)

∂qi
; (1.47)

Pi = −∂F1(q,Q,t)
∂Qi

; (1.48)

H̃(Q,P) = H(q, p)+
∂F1(q,Q,t)

∂t
. (1.49)

L’equazione (1.47) va risolta perpi , dandopi = pi(q,Q; t), mentre la (1.48) dàqi = qi(Q,P; t)
che, sostituito nella prima relazione dàpi = pi(q,Q; t) = p̃(Q,P; t). La (1.49) infine dà la
nuova Hamiltoniana.

In breve, data una arbitraria funzioneF1(q,Q; t), il cambiamento delle variabili e del-
l’Hamiltoniana definito da (1.47), (1.48) e (1.49), è tale che le equazioni in termini di
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nuove variabili sono le (1.41). La funzioneF1(q,Q) è dettafunzione generatricedella
trasformazione.
Esempio:F1 = ∑i qiQi .

In questo caso si ottengonopi = Qi ; ,Pi =−qi; , ∂F1
∂t = 0 e quindiH̃(Qi ,Pi)= H(qi, pi)=

H(−Pi,Qi). È da notare che in questa trasformazione, il ruolo delle coordinate e gli impulsi
è stato scambiato!

Co sono altre specie di trasformazioni canoniche, classificate secondo il tipo della
funzione generatrice usata,

F2(q,P; t); F3(p,Q; t); F4(p,P; t); (1.50)

i.e., secondo la dipendenza da nuove o vecchie variabili. Latrasformazione della seconda
specie può essere introdotta attraverso quella della prima specie,

F2(q,P; t) = F1(q,Q; t)+∑
i

QiPi;

Pi ≡ − ∂F1

∂Qi
. (1.51)

La trasformazione in questo caso è:

pi =
∂F2(q,P,t)

∂qi
;

Qi =
∂F2(q,P,t)

∂Pi
;

H̃(Q,P) = H(q, p)+
∂F2(q,P,t)

∂t
. (1.52)

Esempio 1:F2 = ∑i Φi(q,t)Pi

Questo corrisponde alle trasformazioni puntuali,Qi = Φi(q,t).
Esempio 2:F2 = ∑i qiPi

Questo corrisponde alla trasformazione identica,Qi = qi ; pi = Pi; H̃ = H, come è facile
verificare.
Esempio 3:F2 = ∑i qiPi + εψ(q,P), conε ≪ 1. (Trasformazioni infinitesime)

Le (1.52) danno luogo alla trasformazione (ritenendo fino all’ordine O(ε)),

Qi ≃ qi +
∂ψ
∂Pi

≃ qi +
∂ψ(q, p)

∂pi

pi ≃ Pi +
∂ψ
∂qi

≃ Pi +
∂ψ(q, p)

∂qi
, (1.53)

cioè,

δqi =
∂ψ(q, p)

∂pi
; δpi = −∂ψ(q, p)

∂qi
(1.54)

Osservazione
L’evoluzione temporale di un sistema è descritta dai cambiamenti,

dqi =
∂H
∂pi

dt; dpi = −∂H
∂qi

dt, (1.55)

secondo le equazioni del moto. L’evoluzione dinamica è perciò una successione di tra-
sformazioni canoniche infinitesime, conH (l’Hamiltoniana) come funzione generatrice. In
seguito vedremo che anche in Meccanica Quantistica l’Hamiltoniana (più precisamente la
quantità corrispondente, l’operatore Hamiltoniano) gioca un ruolo centrale nella descrizio-
ne dell’evoluzione temporale del sistema (i.e., l’equazione di Schrödinger.)
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1.2.5 Equazioni di Hamilton-Jacobi

È opportuno menzionare qui un’altra formulazione indipendente della meccanica New-
toniana, che sarà utile per illustrare la relazione tra la Meccanica Classica e la Meccanica
Quantistica. Nel formulare il principio di minima azione, l’azioneSè vista come funzionale
delle traiettorieqi(t). Alternativamente,

S =

Z

dtL =

Z

(∑ pi q̇i −H)dt′

=
Z (qi)

∑
i

pidqi −
Z t

dt′H

= S(qi,t), (1.56)

può essere considerata comefunzionesemplice dei valoriqi , t all’istante finale. La dipen-
denza da essi è

∂S
∂t

= −H(qi, pi); pi =
∂S
∂qi

; (i = 1,2, . . .s) (1.57)

combinando queste equazioni, si ottiene una singola equazione

∂S(q,t)
∂t

+H(qi,
∂S
∂qi

,t) = 0. (1.58)

la (1.58) è chiamataequazione di Hamilton-Jacobi. La funzioneS è chiamata funzione
principale di Hamilton. È notevole il fatto che la singola equazione (che è tuttaviauna
equazione differenziale nonlineare, in generale difficileda risolvere) è equivalente alles
equazioni di Eulero-Lagrange o alle 2s equazioni canoniche. (Vedi Landau-Lifshitz, Vol.1
o Goldstein, “Classical Mechanics.)

1.2.6 Invariante adiabatico

Un concetto importante nelle discussioni generali dei sistemi in cui uno o più parametri
esterni variano lentamente, e che ha giocato un ruolo chiavenello sviluppo della mecca-
nica quantistica, è quello di invariante adiabatico. Consideriamo un sistema con un moto
periodico. La traiettoria nello spazio di fasep(q) - la soluzione delle equazioni del moto
- è una curva chiusa. Consideriamo ora che uno o più parametro del sistemaα varia col
tempo. La traiettoriap(q,α(t)) non sarà più periodico, ma se la variazione diα(t) con t
è sufficientemente adagio, la traiettoria resterà per molti periodi approssimativamente una
curva chiusa. In tal situazione potremmo definire ancora l’integrale su un periodo

I(α) ≡
I

dq p. (1.59)

Si può dimostrare in maniera generale cheI(α) è invariante, ı.e., non dipende dal tempot.
Invece di dimostrare il teorema in generale, consideriamo l’esempio di un pendolo di

massame di braccioL, appesa da una carrucola, di modo che la lunghezza del braccio può
essere modificato tirando su (o lasciando) il filo lentamente. (Fig. ??). Per piccole ampiez-
za, come è noto, l’oscillazione orizzontale del pendolo èapprossimativamente descritta da
un oscillatore armonico (x≡ Lθ)

H =
1
2

mẋ2 +mgL(1−cosθ) =
1
2

mẋ2 +
1
2

mω2 x2 + . . . . (1.60)

dove

ω =

√

g
L

. (1.61)

La soluzione dell’equazione del moto è

x(t) = A sinω t. (1.62)
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L’energia dell’oscillatore è

H = E =
p2

2m
+

1
2

mω2x2 =
1
2

mω2A2. (1.63)

Ora supponiamo di tirare su il filo lentamente. Come varia l’energia e la frequenza?
La variazione della frequenza è data esplicitamente dalla(1.61). La variazione dell’energia
(1.63) è più difficile da vedere, perché siaA cheω variano. Per calcolarla, occore sapere il
lavoro richiesto dalla forza esterna per tale processo.

La tensione del filo è data da

T = mgcosθ ≃ mg− 1
2

mgθ2 + . . . = mg− 1
2

mg
L2 x2 + . . . (1.64)

Facendo uso della soluzione (1.62) si trova perciò

T = mg− mgA2

4L2 .

Il lavoro richiesto per accorciare il braccio del pendolo diδL è dunque

δW = T δL = mgδL− mgA2

4L2 δL. (1.65)

Tuttavia non tutto il lavoro è utilizzato per aumento dell’energia dell’oscillatore: il primo
termine non è altro che il lavoro necessario per aumentare il centro di massa del pendolo
di δL, i.e., per aumentare l’energia di potenziale. L’aumento dell’energia dell’oscillatore
ricercato è dunque

δE = −mgA2

4L2 δL. (1.66)

Segue che

δE = −1
2

δL
L

,
δE
E

= − δL
2L

. (1.67)

Paragonando questo risultato con
δω
ω

= − δL
2L

(1.68)

si ha
E
ω

= const. (1.69)

Per consistenza, riportiamo il valore dell’integrale (1.59) per un oscillatore armonico

I(α) = 2π
E
ω

. (1.70)

1.2.7 Teorema del Viriale

Un teorema di singolare importanza, che ripetutamente appare nei vari problemi di moti
finiti, è il teorema del Viriale. Consideriamo una particella che si muove in un potenziale,
V(r), Dalle equazioni del moto di Newton,

mr̈ = −∇V(r), (1.71)

si ha
mr · r̈ = −r ·∇V(r). (1.72)
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θ

L

Figura 1.4:

Prendiamo ora una media temporale nell’intervallo,(−T/2,T/2) di questa equazione.
Un’integrazione per parti dà

1
T

mr · ṙ |T/2
T/2− mṙ2 = −r ·∇V(r). (1.73)

Se il moto è finito, il primo termine tende a zero nel limiteT → ∞: resta allora il teorema

mṙ2 = r ·∇V(r), (1.74)

cioè il termine cinetico è in media uguale alla media di1
2 r ·∇V(r).



24 CAPITOLO 1. INTRODUZIONE E CONCETTI PRINCIPALI

1.3 Sviluppo Storico: Nascita della Meccanica Quantisti-
ca

In questo capitolo discuteremo brevemente alcuni aspetti dello sviluppo storico che hanno
portato alla scoperta della Meccanica Quantistica: il concetto della dualità onda-corpuscolo
delle particelle elementari e l’idea della quantizzazionedei moti periodici, accennati nel-
l’Introduzione, saranno esposti con più esattezza.

1.3.1 Radiazione del corpo nero e la formula di Planck

Consideriamo un sistema macroscopico descritto dalle variabili canoniche{pi ,qi}, i =
1, . . .s. Il numero di gradi di libertàs è molto grande, tipicamente dell’ ordine diNA ≃
6 ·1023 (il numero di Avogadro). Supponiamo che questo sistema sia in equilibrio con un
serbatoio termico tenuto ad una temperatura fissa,T.

Sia E(q1, p1, . . . ps) l’energia del sistema. Secondo la fisica statistica di Boltzman la
probabilità che il sistema si trovi tra gli stati(q1,q1+dq1), (p1, p1+dp1), . . . (ps, ps+dps)
è data da

P(q1, . . . ps)dq1 · · ·dps =
1

N
e−E(q1,p1,...ps)/kT (1.75)

dovek = 1.380658·10−23J·K−1 è la costante di Boltzman;N è la costante di normaliz-
zazione

N =

Z

· · ·
Z

dq1 · · ·dpse−E/kT, (1.76)

tale che la probabilità totale sia uno.
Dalla legge di Boltzman segue immediatamente la legge diequipartizione: per un

sistema descritto da una Hamiltoniana qualsiasi del tipo

H =
s

∑
i=1

(αi p
2
i + βiq

2
i ), (1.77)

il valor medio di un singolo termine dell’Hamiltoniana è uguale a

< αp2
n >=< βnq2

n >=
1
2

kT, (indip. dan), (1.78)

i.e., ogni grado di libertà del sistema gode in media la stessa frazione1
2kT di energia.

La teoria classica del Calore Specifico è una conseguenza semplice della legge di equi-
partizione. Per esempio, nel caso di un gas ideale monoatomico, αi = 1/2m, βi = 0,
mentre

E = ∑
j

E j ; E j =
(p2

jx + p2
jy + p2

jz)

2m
+

p2
θ + p2

φ/sinθ2

2I

per un gas bi-atomico, dove gli ultimi termini rappresentano i gradi di libertà di rotazione
(il grado di libertà di oscillazione radiale tra le due molecole è qui trascurato). L’energia
totale per una mole è allora

U =
3
2

kTNA =
3
2

RT;

U =
5
2

kTNA =
5
2

RT,

rispettivamente per i gas monotomici e per i gas bi-atomici.NA è il numero di Avogadro,
R= NAk≃ 8.31441·107erg·mol−1K−1 è la costante di gas. Segue che il calore specifico
nei due casi è dato da:

C =
∂U
∂T

=

{

3R/2≃ 2.98, gas monoatomici,

5R/2≃ 4.96 gas biatomici
(1.79)
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(in unità Cal/K/mol).
Questi risultati della teoria classica sono ben verificati sperimentalmente a temperatura

ambiente ma a temperature più basse il calore specifico osservato tende a valori più piccoli.
Lo stesso vale nel caso dei solidi dove il risultato classico, C≃ 3R≃ 5.9 (legge di Dulong-
Petit), è valido solo a temperature ambiente; il calore specifico sperimentale tende a zero a
basse temperature.

Sembra dunque che a basse temperature certi gradi di libert`a “muoiano” o “vengano
congelati” e non prendano la loro parte di energia come ci si aspetterebbe dalla legge di
equipartizione. (Infatti la teoria corretta del calore specifico è stata formulata da Debye e
da Einstein dopo la scoperta del quanto di energia da parte diPlanck (1900).)

Essenzialmente lo stesso problema appariva, in modo più drammatico, negli ultimi de-
cenni del 19-simo secolo, nel cosı̀detto problema “del corpo nero”. Consideriamo una
cavità tenuta ad una temperaturaT. Il suo interno è riempito delle radiazioni elettromagne-
tiche, in equilibrio con il serbatoio termico (la parete della cavità).

Ora, qual’è il colore della radiazione di un corpo nero? Detto in altri termini, quale co-
lore (lunghezze d’onda) di luce si trova in un corpo nero, e con quale intensità relativa? O,
qual’è il calore specifico del “vuoto”, cioè delle radiazioni elettromagnetiche a temperatura
T?

La risposta della fisica classica a questi problemi è la seguente. L’energia del campo
elettromagnetico nel vuoto è (vedi Landau-Lifshitz, Vol.2):

H =
1
8π

Z

V
(E2 +H2)dv. (1.80)

Le soluzioni formali delle equazioni di Maxwell nel vuoto sono

E = −1
c

∂
∂t

A; H = ∇×A (φ = 0), (1.81)

doveA è un potenziale vettoriale arbitrario che soddisfa alle equazioni

∆A − 1
c2

∂2

∂t2A = 0; (1.82)

∇ ·A = 0. (1.83)

La seconda condizione (1.83) è la scelta di gauge per eliminare la ridondanza esistente nella
parametrizzazione dei campi elettromagnetici in termini del potenziale vettoriale.

La soluzione generica di (1.82),(1.83), è un’onda piana del tipo

ε1cos(k · r −ckt)+ ε2sin(k · r −ckt) (1.84)

conk arbitario,k≡ |k|,
ε1 ·k = ε2 ·k = ε1 · ε2 = 0. (1.85)

La soluzione generale è una qualsiasi combinazione lineare di questi oscillatori armonici .
L’Hamiltoniana che dà luogo a una tale combinazione come soluzione, è semplicemente:

H = ∑
k

(

c2

4
p2

(1) +k2q2
(1)

)

+∑
k

(

c2

4
p2

(2) +k2q2
(2)

)

: (1.86)

il sistema è equivalente a due gruppi di oscillatori indipendenti. Le due possibili direzioni
dell’oscillazione corrispondono alle due polarizzazionipossibili della luce, fatto ben noto
empiricamente.

Nelle precedenti equazioni,k sono vettori arbitari: per “contare” i gradi di libertà è
spesso conveniente immaginare che il sistema sia confinato (come lo è nel caso di un corpo
nero finito) in un volume finito e introdurre un’opportuna condizione al contorno, per es.,
periodica. Ad esempio se la cavità è un cubo di latoL, i valori permessi perk sono

kx =
πnx

L
; ky =

πny

L
; kz =

πnz

L
; nx,ny,nz = 0,1,2,3, . . . .∞ (1.87)
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Visto che l’Hamiltoniana del campo della radiazione ha la forma standard (1.77), si
può applicare la legge di equipartizione per calcolare la sua energia. La risposta è sempli-
cemente

U = f kT, f (= il numero dei gradi di libertà) = ∞, (1.88)

perciò

U = ∞; C =
∂U
∂T

= ∞. (1.89)

Dunque secondo la teoria di Maxwell l’energia del campo di radiazione elettromagneti-
ca in un volume finito sarebbe infinita; per aumentare la temperatura di una cavità di un
grado ci vorrebbe un calore infinito. Questi risultati sono in chiara contraddizione con
le più elementari esperienze quotidiane. Più precisamente,U per unità di volume è noto
empiricamente (legge di Stefan):

U = σT4; σ = 7.64·10−15ergcm−3K−4.

Questo è ilproblema del corpo nero.
La causa di questa catastrofe è facile da individuare: secondo la legge classica di equi-

partizione alle luci (o le oscillazioni) di lunghezza d’onda arbitrariamente corta -nx,nynz

arbitrariamente grandi - dovrebbero essere assegnate la stessa partekT dell’energia. I fatti
sperimentali indicano che il numero effettivo di gradi di libertà ad ogni temperatura è in
realtà molto minore.

È istruttivo studiare l’energia del campo elettromagnetico, per intervalli di frequenze,

U =

Z ∞

0
dνu(ν), (1.90)

u(ν)dν è l’energia del campo dovuta alle oscillazioni con frequenze traν e ν+dν. Calco-
liamo orau(ν). Siccome

ν(n) =
|n|c
2L

, (1.91)

segue che

dn=
2Ldν

c
. (1.92)

Ma le componenti din = (nx,ny,nz) sono numeri interi positivi, perciò il numero dei modi
traν e ν+dν è dato da:

N(ν)dν = 2
1
8
(4πn2)dn=

8πL3

c3 ν2dν. (1.93)

Applicando la legge di equipartizione, troviamo un risultato finito per un volume unitario,

u(ν)dν = kTN(ν)dν =
8πkT

c3 ν2dν. (1.94)

(Formula diReyleigh - Jeans).
Osservazioni

• A fissaT, la formula di Reyleigh - Jeans è in accordo con i dati sperimentali a bassa
frequenza.

• L’intervallo di frequenze dove la formula è valida, si allarga verso alte frequenze con
T; in altri termini, aν fissa, la formula è valida ad alte temperature ma fallisce a basse
temperature.̀E chiaro che qui vediamo lo stesso problema che abbiamo incontrato
per la teoria del calore specifico di altre sostanze: ad una data temperatura solo certi
gradi di libertà sono “attivi”; altri sembrano “inattivi”.
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• Facendo l’integrazione (1.94) da 0 a∞ ritroviamo il risultato disatroso che è stato
notato prima (i.e.,∞). È chiaro che la divergenza è dovuta ai modi di frequenza
arbitariamente alta. (Per questo motivo, il problema è a volte chiamatocatastrofe
ultravioletta.)

Il primo passo verso la soluzione è stata compiuto da Wien (1893). Egli notò che i dati
sperimentali mostravano una “legge di scaling:

u(ν)dν =
8π
c3 F(ν/T)ν3dν : (1.95)

con una funzioneF da determinare empiricamente. In altri termini, seu(ν) è noto empi-
ricamente ad una temteratura, siamo in grado di predireu(ν) a qualsiasi altra temperature
usando (1.95). Come è facile verificare, inoltre, la formula di scaling è consistente con la
legge di Stefan.

Anche se Wien non riuscii a calcolareF , egli fu in grado di trovare una formula
approssimata,

F(x) = kβe−βx; β = cost., (1.96)

che è in accordo con i dati ad alta frequenzax= ν/T. Sostituendo questa funzione troviamo
la formula di Wien,

u(ν)dν =
8πkβ

c3 e−βν/Tν3 dν

=
8πhν

c3 e−hν/kTν2 dν, (1.97)

dove
h≡ kβ = 6.626·10−27erg·sec. (1.98)

Abbiamo dunque la formula classica (1.94), valida a basse frequenze, e la formula di
Wien (1.97), valida ad alte frequenze. Fu Planck (1900) a trovare la corretta formula di
interpolazione,

u(ν)dν =
8π
c3

hν
ehν/kT −1

ν2dν. (1.99)

Questa è la celebreformula di Planck. Essa si riduce a (1.94) ed a (1.97), nei limiti,
hν/kT ≪ 1 e hν/kT ≫ 1, rispettivamente. La morale della storia è che per spiegarei
dati sperimentali, nella formula classica (1.94) va fatta la sostituzione,

kT ⇒ hν
ehν/kT −1

. (1.100)

Ma quel’è il significato di questa sostituzione?
Il contributo fondamentale dato da Planck (1900), che segnala nascita della nuova mec-

canica, fu quello di dare la corretta interpretazione a (1.100), i.e., che essa implica l’esisten-
za di unquanto di energia. Ripeteremo ora l’argomentazione di Planck e dimostreremola
formula (1.99), usando l’ipotesi di quanto di energia.

(All’epoca l’esistenza degli atomi, i.e., il fatto che esistesse un’unità di materia, era uni-
versalmente accettato, anch se solo da recente. L’idea di Planck fu quella di generalizzare
tale struttura discreta anche per l’energia elettromagnetica.)

Per ogni frequenza e per ognuna delle due polarizzazioni, l’Hamiltoniana per il campo
elettromagnetico è un semplice oscillatore armonico,

H = aq2 +bp2. (1.101)

L’energia media a temperaturaT è

< E >=
∂

∂(−1/kT)
logN , (1.102)
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N =
Z

dqdpe−(aq2+bp2)/kT =
1√
ab

Z

dxdye−(x2+y2)/kT, (1.103)

dove nella seconda le variabili sono state cambiate ax =
√

aq; y =
√

bp. Cambiando
ulteriormente le variabili a quelle sferiche,E ≡ x2 + y2;θ ≡ tan−1y/x, e notando che
l’integrazione angolare è banale, si ha

< E >=
∂

∂(−1/kT)
logN ′, (1.104)

N ′ =
Z

dEe−E/kT. (1.105)

Se si facesse l’integrazione suE normalmente si avrebbe< E >= kT e ritroveremmo
la formula di Reyleigh-Jeans. Invece, supporremo, con Planck, che per qualche ragione
l’energia possa prendere solo valori discreti,

En = nε, n = 0,1,2,3, . . . (1.106)

In questo caso l’integrale viene sostituito dalla somma,

Z

dE→ ε∑
n

. (1.107)

Di conseguenza si ha

< E >=
∂

∂(−1/kT)
logN ′′, (1.108)

N ′′ = ε∑
n

e−nε/kT =
ε

1−e−ε/kT
. (1.109)

Si ottiene cos ı̀ la formula “quantistica per< E >

< E >=
ε

eε/kT −1
. (1.110)

Se scegliamo come unità (“quanto) di energia

ε = hν, (1.111)

usiamo (1.110) al posto del risultato classicokT per< E >, e alla fine sommiamo sulle
frequenze, otteniamo precisamente la formula di Planck!

Dunque il significato della formula empirica di Planck è questo: l’energia del campo
elettromagnetico è “quantizzata. La luce monocromatica,di frequenzaν (i.e., di lunghezza
d’ondaλ = c/ν) è fatta da un insieme di quanti (che chiameremo “fotoni), ciascuno con
l’energiahν. La legge di equipartizione non è più valida perché i gradi di libertà associati
alle frequenze alte, avendo quanti troppo grandi ad una datatemperatura (hν ≫ kT) non
riescono ad ottenere la loro porzione di energia (kT) ed rimangono effettivamente inattivi.

Un’analoga spiegazione del comportamento del calore specifico di varie sostanze è stata
data da Debye e Einstein.

L’esempio più grande di corpo nero è l’universo stesso: come è noto l’universo di
oggi è riempito di radiazioni microonde (cosmic microwave radiation) corrispondenti al-
la temperatura di circa 2.70K, che è una sorta di radiazione fossile dall’epoca iniziale
dell’espansione dell’universo.
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1.3.2 Effetto fotoelettrico

La soluzione del problema del corpo nero e l’ipotesi del quanto di energia (Planck, 1900)
segnarono la nascita della fisica quantistica, ma dovetteroattendere quasi 10 anni prima di
essere universalmente accettate.

Un’evidenza più diretta della proprietà corpuscolare della luce venne dall’analisi (Ein-
stein, 1905) del cosı̀detto “effetto fotoelettrico (Hertz1887). In questa esperienza, un rag-
gio X (raggio elettromagnetico di alta frequenza) viene fatto incidere sulla superficie di un
metallo alkalino (per es.Li). Dalla superficie del metallo saltano fuori gli elettroni,che
vengono misurati in forma di corrente (Fig.1.5). I fatti empirici principali sono:

(i) l’energia di ciascun elettrone è indipendente dall’intensità della luce;

(ii) al crescere dell’intensità della luce aumenta il numero degli elettroni (i.e., aumenta la
corrente foto-elettrica);

(iii) l’energia di ciascun elettrone dipende dal colore (λ) del raggio;

(iv) la corrente fotoelettrica si accende immediatamente dopo che la superficie viene
illuminata.

È estremamente difficile capire questi fatti nella teoria diMaxwell. (Vedi Tomonaga).
Fu Einstein il primo a osservare che tutte le suddette caratteristiche dell’esperienza trova-
no una spiegazione naturale se si adotta l’ipotesi di quantodi energia di Planck. Infatti
supponiamo che il raggio X sia un fascio di “fotoni, ciascunocon energiahν (ν sarà ugua-
le per tutti se la luce è monocromatica; altrimenti si troveranno diversi tipi di fotoni nel
fascio). Supponiamo inoltre che gli elettroni, originalmente legati agli atomi del metallo,
ricevono tutta l’energia del fotone che li colpisce; se l’energia ricevuta è sufficientemente
grande (i.e., rispetto all’energia di legame) essi salteranno fuori. Questa teoria predice una
semplice relazione tra l’energia massima dell’elettroneE e la frequanza della luceν,

E = hν−A, (1.112)

doveA è una costante che dipende dalla sostanza.

G

X

Li
e

e

Figura 1.5: Effetto fotoelettrico

I dati sperimentali, presi dall’articoli di Millikan (1916) mostrano che la relazione li-
neare predetta da (1.112) è effettivamente osservata; inoltre dall’inclinazione della retta
sperimentale si trova il valore perh:

h≃ 6.65·10−27ergsec, (1.113)
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in ottimo accordo con il valore ottenuto da Wien-Planck (1.98). In questa maniera l’ipotesi
di quanto di energia di Planck per la luce, è stata inequivocabilmente verificata.

Prendiamo nota che il carattere corpuscolare della luce, messo in evidenza dall’anal-
isi dell’effetto fotoelettrico, si manifesta chiaramenteanche nelle diffusioni dei raggi X da
elettroni (Effetto Compton: vedi Problema 2).

1.3.3 Modello atomico di Bohr

Nella discussione dello sviluppo storico che ha portato alla scoperta della nuova mecca-
nica, un successivo passo fondamentale è stato quello compiuto da Bohr (1913). Co-
me era già noto allora, i gas ad alta temperatura emettono luce con spettro caratteristi-
co dell’elemento. (Per es., la lampada al sodio con la caratteristica luce di colore aran-
cione). Per l’idrogeno, lo spettro contiene le linee corrispondenti alle lunghezze d’on-
da, 6562.8,4861.3,4340.5,4101.7, . . . (Å). Per queste linee spettrali, Balmer (1885) aveva
trovato una formula empirica,

λ =
n2

n2−4
λ0, λ0 = 3645.6Å, n = 3,4,5, . . . (1.114)

Più tardi Rydberg aveva scoperto una fomula universale

ν
c

=
1
λ

=
R

(m+a)2 −
R

(m+b)2 ; (1.115)

doveR è una costante universale (i.e., indipendente dall’atomo),

R= 109678cm−1 (1.116)

(chiamatacostante di Rydberg) e a,b sono costanti che dipendono dall’elemento. La
(1.115) rappresentava bene tutte le linee spettrali misurate per vari atomi. Restava da
interpretare e comprendere il significato della formula di Rydberg.

L’idea di Bohr era che l’energia dell’elettrone legato nell’atomo potesse prendere sol-
tanto valori discreti, in analogia con quanto avveniva per l’oscillazione elettromagneti-
ca. Più precisamente, Bohr formulò le seguenti ipotesi sull’atomo (l’insieme di queste era
chiamatomodello di Bohr):

[1] I valori possibili dell’energia di un atomo sono discreti, E1,E2, . . . (Livelli di energia).
Finché l’atomo è in uno dei possibili stati (stati stazionari) non emette luce;

[2] L’atomo emette o assorbe luce quando un elettrone compieuna transizione (un “salto)
da uno stato (n) ad un altro (m); la luce emessa o assorbita in tale transizione ha la
frequenza uguale a,

hν = En−Em, (1.117)

[3] l’elettrone che si trova in uno stato stazionario si muove secondo la Meccanica Classica
(questa ipotesi subirà una sostanziale modifica in Meccanica Quantisticao);

[4] Pern≫ 1, i risultati della nuova meccanica coincidono con quelli ottenuti in Mecca-
nica Classica (Principio di Corrispondenzadi Bohr).

Notiamo che le ipotesi di Bohr eliminano immediatamente (per decreto) la difficoltà
legata alla stabilità dell’atomo, discussa nell’Introduzione. Le ipotesi [1] e [2] permettono
una naturale interpretazione della struttura della formula di Rydberg, attribuendo ai singoli
termini En (livelli di energia), enon alle loro differenze, il significato fondamentale. Con
grande ingegno, combinando le ipotesi sopra descritte, Bohr fu in grado di ottenereEn nel
caso dell’atomo di idrogeno:

En = −Rhc
n2 ; n = 1,2, . . . . (1.118)
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e di calcolare la costante di Rydberg in termini dim, e, c e h:

R=
2π2me4

ch3 ≃ 1.09·105cm−1 (1.119)

in accordo con il suo valore empirico. (Vedi Tomonaga.) Bohrriuscı́ inoltre a determinare
l’ordine di grandezza del raggio dell’atomo di idrogeno

rBohr =
h̄2

me2 ≃ 0.529177·10−8cm (1.120)

(chiamatoraggio di Bohr) dove è stata introdotta una costante legata ah,

h̄≡ h
2π

≃ 1.05·10−27erg·sec. (1.121)

Siah cheh̄ sarà chiamata costante di Planck.
L’esistenza di stati stazionari discreti (livelli di energia) in atomi è stata verificata in

un’elegante serie di esperienze fatte da Franck e Hertz (1913).

1.3.4 Condizione di quantizzazione di Bohr e Sommerfeld; Onda di
de Broglie

La correttezza dell’idea di quantizzazione fu dunque inequivocabile dopo il lavoro di Planck
(quantizzazione dell’energia elettromagntica); quello di Einstein-Debye (quantizzazione
dell’oscillazione atomico/molecolare nella teoria del calore specifico) e ora quello di Bohr
(quantizzazione del moto degli elettroni nell’atomo), ma la formulazione corretta della
Meccanica Quantistica dovette attendere i lavori di Heisenberg e Schrödinger (1924).̀E
di un certo interesse storico, tuttavia, ricordare due altri contributi importanti dell’epoca
“pre-meccanica-quantistica.

Bohr e Sommerfeld tentarono di formulare l’idea della quantizzazione in modo uni-
versale, di modo che essa fosse applicabile a tutti i moti classici finiti (periodici). Essi
ipotizzarono la regola,

I

pdq= nh (n = 0,1,2, . . .) (1.122)

(condizione di quantizzazione di Bohr e Sommerfeld) doveq e p si riferiscono a una coppia
arbitraria di variabili canoniche, e l’integrale va calcolato su un periodo classico.
Osservazioni:

• La limitazione ai moti finiti (periodici) è importante. Nonvi è nessuna indicazione
empirica che i moti non periodici siano quantizzati, fatto che troverà conferma in
Meccanica Quantistica.

• Per l’oscillatore armonico la (1.122), in accordo con l’ipotesi di Planck, dà il risultato
En = nωh̄ = nhν, che per l’esattezza differisce da quello corretto della Meccanica
Quantistica solo per una costante.

• Per l’atomo di idrogeno, la (1.122) dà il risultato corretto, ottenuto da Bohr.

• Come è noto,
H

pdqè “un invariante adiabatico”. In altri termini, se uno o pi`u para-
metri presenti nel sistema variano lentamente col tempo, l’integrale per un periodo di
moto rimane invariante. Si noti che per le variazioni sufficientemente lenti, il moto
del sistema è approssimativamente periodico per molti periodi, e perciò l’nitegrale
H

pdqè ben definito. Il fatto che
H

pdqè invariante adiabatico, è fondamentale per la
consistenza della condizione di Bohr-Sommerfeld, (1.122). Altrimenti, non avreb-
be senso proporre tale condizione come condizione universale. Basti pensare due
sistemi che differiscono poco nei parametri (massa, profondità del potenziale, etc.).
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• In generale, la (1.122) non è esatta in Meccanica Quantistica, ma risulta essere
approssimativamente valida nel limite semi-classico (vedi dopo).

L’ultimo tassello mancante, per cosı̀ dire, alla formulazione della Meccanica Quantisti-
ca fu il concetto che la dualità onda - corpuscolo, scopertaper la luce e successivamente
per gli elettroni (per es. l’esperienza di Davisson-Germer(1927)), fosse in realtà valida
per tutte le particelle elementari (de Broglie, 1925). In particolare, ad ogni particella di
impulsop, va associata una sorta di onda (onda di de Broglie) di lunghezza d’onda

λ =
h
p

(1.123)

(de Broglie). Questa relazione, pur semplice, è di fondamentale importanza. de Broglie
fu in grado di dare una “derivazione della formula di Bohr e Sommerfeld a partire dal-
la (1.123). Inoltre, la consistenza dell’ipotesi (1.123) implica che ad ogni particella va
associato un “pacchetto d’onda. La velocità della particella va associata alla velocità di
gruppo di quest’ultimo (e non la velocità di fase). In altreparole il lavoro di de Broglie
offrı́ una prima chiave per interpretare e quantificare l’inconsueta idea della dualità onda -
corpuscolo.

1.3.5 Problemi

1. Si consideri un pendolo semplice (peso sorretto da una fune di massa trascurabile)
sostenuto da una carrucola. Si dimostri che, se quando la fune viene tirata molto
lentamente mentre il pendolo è in oscillazione, la quantità E/ν si mantiene costante
(invariante adiabatico), doveE è l’energia dell’oscilazione (i.e., senza l’energia di
potenziale).

2. Effetto Comptone cinematica relativistica. Si consideri lo scattering di un raggio X
su un elettrone in quiete. Il raggo X di lunghezza d’ondaλ è considerato come un

X

X φ

ψ
e

Figura 1.6: Effetto Compton

fascio di fotoni, ciascuno con energiahν e impulsop = hν/c, doveν = c/λ. Siano

pe =
mv

√

1−v2/c2
e Ee = mc2( 1

√

1−v2/c2
−1
)

l’impulso e l’energia dell’elettrone nello stato finale, e chiamiamoφ eθ gli angoli che
formano le velocità finali del fotone e dell’elettrone, rispetto alla direzione incidente.
Il fotone ha energia e impulso finalihν′ ehν′/c. (vedi Fig. 1.6)

• Si usi la conservazione dell’ impulso per trovare la relazione

(

mv
√

1−v2/c2

)2

=

(

hν
c

)2

+

(

hν′

c

)2

−2

(

hν
c

)(

hν′

c

)

cosφ.
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• Si usi la conservazione dell’energia e la formula precedente per ottenere:

ν′ =
ν

1+(2hν/mc2)sin2(φ/2)

• iii) Si dimostri che la lunghezza d’ondaλ′ del raggio X emesso nella direzione
φ soddisfa

λ′−λ =
2h
mc

sin2(φ/2)

• (Formula di Compton;h/mc= 2.42· 10−10cm si chiamalunghezza Compton
dell’elettrone)

• iv) Si trovi l’energia dell’elettroneEe nello stato finale, in termini diν e di
φ. Si calcoliEe perλ = 10−9cm eφ = π/2. (m= 9.1 ·10−28gr quindimc2 =
8 ·10−7erg).

•

3. Si consideri un atomo d’idrogeno (1 protone + un elettrone; mp = 1836me).

• Si calcoli la massa ridotta (e si concluda che possiamo usaremridotta ≃ me);

• Si risolva l’equazione del moto (classico)mer(dθ/dt)2 = (e/r)2, assumendor
costante;

• Sia θ(t) = 2πνt + δ. Si determiniν facendo uso dime = 9 · 10−28gr, r = 5 ·
10−9cm,e2 = 2 ·10−19erg·cm;

• Si calcolihν, doveh è la costante di Plank (h= 7·10−27erg·sec) e lo si paragoni
conkT perT = 273oK, dovek è la costante di Boltzman (k= 1·10−16erg·K−1).
Dimostrare che i gradi di libertà associati agli elettronisono “congelati aT ∼
0oC e giustificare il calcolo del calore specifico dei solidi, fatto senza tener
conto degli elettroni.

4. Si costruiscano quantità che abbiano la dimensione di una lunghezza, facendo uso di
[me], [c], [h] e [e2].

5. Si verifichi che i potenziali di Liènard-Wiechart

φ(r ,t) =

Z

dV2
ρ(r2,t − r12/c)

r12

A(r,t) =
1
c

Z

dV2
j(r2,t − r12/c)

r12

sono soluzioni delle equazioni di Maxwell in presenza di unadistribuzione di carica
(di densitàρ) e di corrente (di densitàj).

6. Si trovi la formula
I = 2d̈

2
/3c2

per l’intensità di energia irradiata per unità di tempo daun dipolo elettrico.

7. Sono state osservate (all’inizio del secolo) le seguentilinee spettrali per un atomo (in
cm−1):

ν̃1 = 82258.27 ν̃5 = 15232.97 ν̃8 = 5331.52 ν̃2 = 97491.28

ν̃6 = 20564.57 ν̃9 = 7799.30 ν̃3 = 102822.84 ν̃7 = 23032.31

ν̃10 = 2469 ν̃4 = 105290.58 (1.124)

doveν̃ = 1/λ è l’inverso della lunghezza d’onda (“numero d’onda).
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• Si trovino tutti gli esempi dellaregola di combinazione di Ritz. (P.e.,ν̃7− ν̃5 =
ν̃9);

• Si dimostri che tutte le linee corrispondono alle varie combinazioni dicinque
termini spettrali;

• Si trovi una formula semplice per questi termini (tenendo conto del fatto che le
considerazioni i) e ii) danno solo ledifferenzetra i termini).;

• Che atomo è questo?

8. Si calcoli il numero di fotoni emessi al secondo da una sorgente di luce di 1candela.
Si assumaλ = 5600Å. (Una sorgente di una candela emette luce con una potenza
di 0.01 watt). Supponete che un osservatore guardi una sorgente di luce isotropa di
una candela a una distanza di 100 metri. Calcolate il numero di fotoni che entrano
in uno dei suoi occhi al secondo; assumete che la pupilla abbia un diametro di 4mm.
Poiché il numero di fotoni è cosı̀ grande, non osserviamo alcun tremolio, anche se il
flusso luminoso è piccolo per gli standard macroscopici.

9. Una stella di prima magnitudo apparente, come la stella diAldebaran, è facilmente
visibile a occhio nudo e la si vede lampeggiare. Tale stella produce un flusso sulla
superfice della terra di 10−6 lumen/m2. Un lumen alla lunghezza d’onda di massima
visibilità, che è di circa 5560̊A, corrisponde a 0.0016 watt. Si calcoli il numero di
fotoni che entrano nell’occhio di un osservatore che vede una tale stella.


