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10 CAPITOLO 1. INTRODUZIONE E CONCETTI PRINCIPALI

1.1 Introduzione

Il comportamento delle particelle quantistiche & in ma#fpetti straordinario, dal punto di
vista delle nostre esperienze quotidiane, siano esse ttroaks un protone, un atomo o
una molecola. Discuteremo qui alcuni esempi.

1) Diffrazione e Interferenza

L'aspetto piu caratteristico del comportamento “non sies’ dell’elettrone & quello
della diffrazione e dell'interferenza, ambedue tipico dianda.

Come € ben noto, la luce € un’onda, I'onda elettromagagticome tale esibisce molti
fenomeni caratteristici. Prendiamo in esame la famosaiesiza di Young (1801) in cui la
luce di una lampada viene fatta attraversare una doppiatéeadfacendo poi incidere su
uno schermo fotografico. Le immagini di frange di intensggolari e alternate osservate in
tale esperimento (Fig. 1.2) possono essere interpretate conseguenza dell’interferenza
di due raggi, passati da due fenditure diverse. Infatti,asdistanza tra le fenditure, la
distanza tra la fenditura e lo schermo, la posizione vdeidal punto sullo schermo sono
date rispettivamente da, L, x (vedi Fig. 1.1), allora I'angolo della diffrazione € circa
(assumendd < L;x <« L) 8 ~ x/L, percio la differenza del percorso tra i due raggi e data
da

Ad ~ d sinB ~ d6 ~ dx/L.

Se la lunghezza d’onda della lucé #a condizione per l'interferenza positiva &
Ad/A=n, n=0,1,2,...,

mentre pex tale che
Ad/A=n+1/2, n=0,1,2,... (1.1)

si avrainterferanzadistruttiva. Nell’esperimento divig,L/d ~ 10% A\ ~ 10°A =10-5cm,
percio tipicamente la spaziatura delle frange & delliogdli 0.1mm

Figura 1.1: Esperienza di Young

Nel caso di elettroni, un’analoga esperienza & (per megimici) divenuta possibile
solo qualche anno fa (1989 da notare che tale esperienza & spesso qualificata nei libr

Figura 1.2: La frange di interferenza nell'esperimenta &dung con la luce visibile
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di meccanica quantistica come “Gedanken experimentg oita esperienza “pensata’ o
“ipotetica”. Non lo & piu.

La figura presa da un articolo di Tonomura et.al. (Am. JouhysP57 (1989)117) qui
accanto dimostra una straordinaria somiglianza con leeplette Fig. 1.2 dell’esperienza
di Young. Ad un’analisi piu attenta, pero, si puo cogligualche differenza.

La prima differenza riguarda la scala. Nel caso dell'egpeza con la luce visibile la
spaziatura delle frange d’interferenza era dell’ordinenda, mentre nel caso degli elet-
troni & dell’ordine di 10°“mm. Questa differenza - quantitativa ma non qualitativar no
e concettualmente essenziale, ma comporta notevoliatfi¢ecniche che sono state le
ragioni per cui questa esperienza & stata realizzatansolidrecente.

La differenza piu importante, apparentemente, ¢ il fatte gli elettroni sono parti-
celle (mentre la luce & “ovviamente” un’onda ), con la massa carica elettrica ben de-
finite: infatti non é difficile distinguere i punti lasciatia singoli elettroni sullo schermo
nell’esperienza di Tonomura et. al.

In questo esperimento e stato usato un fa-
scio di elettroni di intensita molto ridotta,
~ 10%/sec. Tenendo conto della velocita me-
dia dell’elettrone~ 0.4c, la distanza media
tra due elettroni & circa- 150Km, mentre
l'intero apparecchio sperimentale ha una di-
mensione di circa 5m. E ragionevole, in
tali condizioni, pensare che gli elettroni arri-
vino “uno ad uno”, senza interagire tra di loro
in maniera significativa. Le cinque immagi-
ni corrispondono, rispettivamente, a 10, 100,
3000, 20000 e 70000 elettroni.

Arriviamo quindi ad una conclusione appa- H
rentemente paradossale. Il singolo elettrone E"
in qualche maniera “vede” le due fenditure, le
sue due fronti d’ona differenti interferiscono!
Questa proprieta & nota come “dualita onda-
corpuscolo”. E di fondamentale importanza

il fatto che tale dualita si riferisce ai singoli
elettroni, e non ad una proprieta collettiva del
fascio degli elettroni.

Con recenti sviluppi tecnologici, anche I'e-
sperienza di Young originale puo essere ri-
petuta con un fascio di fotoni molto debole,
di modo che i fotoni arrivino uno a uno. Col
senno di poi, ci si rende conto che non esiste
nessuna differenza sostanziale tra I'esperien-
za di Young con i fotoni e quella di Tonomura
et.al. fatta utilizzando un fascio di elettroni.
Risulta infatti (de Broglie) chéutte le parti-
celle elementari, atomi e molecole, posseg-
gono tale proprieta duale. Come vedremo in
seguito Meccanica Quantistica descrive que-
ste particelle con un linguaggio matematico
coerente e molto elegante.

2) La stabilita e I'identita degli atomi.
Il secondo aspetto riguarda la stabilita e I'assolutatitiedi atomi (dello stesso tipo).

Consideriamo I'atomo di idrogeno, che & uno stato legatm&bo da un elettone e un
protone. |l moto dell’elettrone intorno al nucleo & deorinella meccanica di Newton,
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dall'’equazione,
. ¢ -
mi' = —ﬁ+mr92, (1.2)

dove abbiamo assunto un moto circolare per semplicita. éC®@moto I'eq.(1.2) ammette
una soluzione stabile,= costante. Nel mondo attuale, tuttavia, esistono altrteflevuti
alle interazioni elettromagnetiche (la forza statica @oubiana tenuta in conto nella (1.2)
ne & una delle manifestazioni fra tante). Infatti, secdadeoria classica di Maxwell, una
particella carica in un moto accelerato emette luce e péederigia. Per I'elettrone che si
muove con acceleraziond’energia persa per un intervallo unitario di tempo é:

S= ég(vf (erg/seq (1.3)

(vedi Landau-Lifshitz Vol. 2). Supponiamo che la perditaedergia sia piccola di modo
che I'orbita possa essere considerata approssimativarcieclare, e calcoliamo in quanto
tempo un atomo di raggio~ 10-8cm collassa ad un punto.

Poniamo dunque

rt=0)=10"2% cm (1.4)
Da l'eq(1.2) si ha
e : :
= mr&? = m)v|, (1.5)
° &
V| = 2 (1.6)

Sostituendo questo in (1.3), si trova

dE 265
5= 70 T 3w (.7
Ma per un moto circolare vale la relazione:
1 &€ €&
E=omé-Z =2 (1.8)
percio
4¢*
2; P
refr = IS (1.9)
Integrando e ponenddt) = 0 si ha
4t
3 —_ — =
r(0) mzc3t 0,
mecs
= — (1083 ~101° 1.1
t P (107°) 0 sec (1.10)

Secondo la fisica classica dunque un atomo di idrogeno sallag un punto in 13%ec!
Questo non & certamente quello che accade in Natura.

Pur ammettendo che ci possa essere una ragione sconosaiutai fpa (1.3) non si
applichi al mondo atomico - dopottutto la teoria di Maxwelktata scoperta nel mondo
macroscopico - e quindi trascurando le difficolta che naiseg, c'€ un altro problema
molto serio per un modello “planetario” degli atomi comeatéto da (1.2). La difficolta
sta nel fatto che ogni atomo dovrebbe avere un raggio diyvarsmggio che dipende dalla
condizione al contorno (condizione iniziale).

Come vedremo in seguito, in meccanica quantistica tuttiti feassicamente) priodi-
ci sono “quantizzati”: solo alcuni “stat” sono permessi. ddnseguenza due atomi dello
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stesso tipo (nel loro stato normale) hanno proprig@rosamente identichd.a “quantiz-
zazione” del moto risolve in modo naturale anche il probletatiinstabilita dell’atomo
accennato sopra.

E facile capire la ragione per la quale I'eq.(1.2) non puérawuna soluzione con un
raggio ben definito (che non dipenda da una condizione Irizacidentale). Gli unici
parametri che appaiono nell’equazione samee con dimensioni (in unit&égs

m=[gr; e=[gr¥%cm¥?sec’!]:

€ ovviamente impossibile formare, tramite una loro corabione, alcuna costante con la
dimensione di una lunghezza. In Meccanica Quantisticdeesisa costante fondamentale
della natura chiamata costante di Planigkgon dimensione

A= [gr-cn?/sed;

guesta costante caratterizzera I'intera costruziora dé¢ccanica Quantistica.
Infatti, avendo a disposizione anchgesi puo trovare un’unica combinazione

ﬁZ
= 1.11
s me ( )
chiamato “raggio di Bohr.” Con i valori numerici noti si atie
rs~510%cm (1.12)

che & ragionevole come grandezza di un atomo.

L'assoluta identita delle proprieta intrinsiche di duerai (o piu in generale, di due
particelle elementari - due protoni, due elettroni, ec&)adstessa specie, € la base della
regolarita e stabilita del mondo macroscopico (cristalstemi biologici, ecc.) Senza tale
esattezza il fenomeno biologico (riproduzione e metabwissarebbe impossibile. Tale
aspetto del mondo microscopico € in chiaro contrasto, nealito senso in armonia, con le
infinite varieta dei fenomeni macroscopici.

3) Effetto Tunnel

Il terzo esempio € il fenomeno della conduzione elettricaun modello semplifica-
to I'elettrone nel metallo € rappresentato da una palicgie si muove in un potenziale
periodico (Fig.1.3). Secondo la meccanica classica lagediet si spostera nel campo elet-
trostatico ma non riuscira ad attraversare le barrier@tinziale (se il campo esterno, che
provoca il suo movimento, non e sufficientemente forte) meccanica quantistica, I'e-
lettrone & capace di attraversare la barriera anche sedngi@insufficiente dal punto di
vista classico (“effetto tunnel”), permettendo cosi ladozione elettrica osservata quoti-
dianamente. L'effetto tunnel & collegato strettamentelaalualita onda-corpuscolo delle
particelle.

Figura 1.3: Potenziale periodico

Ricapitolando, la meccanica classica di Newton non puordese il mondo regolare
in cui viviamo. Tale struttura richiede I'assoluta ideatdegli atomi dello stesso tipo, e
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questo & possibile soltanto in Meccanica Quantistica tlegeazione contiene una nuova
costante fondamentale dimensionale. Inoltre I'elettreriatte le altre particelle elemen-
tari, nuclei, atomi e molecole esibiscono una doppia cariatica “onda-corpuscolo”: la
guantizzazione dei moti periodici e il fenomeno del “tutting!’ sono strettamente legati a
questa proprieta. La Meccanica Quantistica descrivetgo@siportamenti (e molti altri!)
in modo coerente e con un formalismo matematico molto etlegan
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1.2 Complementi di Meccanica Analitica

1.2.1 Formalismo Lagrangiano

L'equazione di Newton per una particella &
dp/dt=F (1.13)

dove p é l'impulso (la quantita di moto)F e la forza cui la particellla in questione &
sottoposta. Nel caso in cui la forza & di tipo conservativo,

F=-0V (1.14)

doveV é il potenziale. Dalle egs. (1.13) e (1.14) segue la leggexservazione dell'ener-
gia totale
E=T+V;, T=p?/2m=mi?/2 (energia cinetica (1.15)

Inoltre, se il potenziale & a simmetria sferica,

e conservato anche il momento angolare r x p.
Nel formalismo Lagrangiano della mecccanica di Newton,dargita fondamentale &
la Lagrangiana
L=L(g,G;t) =TV

considerata come una funzione delle coordinate genea#digz i = 1,2,...,s, delle loro
derivate temporaly;, e del tempd. Data la Lagrangiana, 'equazione del moto é&:

(1.16)

(eqg. di Eulero-Lagrange). L'equazione di Eulero-Lagrasggue (vedi Appendice) dal
principio di minima azioneOvvero imponendo che 'azione sia minima rispetto allaasar
zione arbitraria delle funziomji(t), con la condizione che i loro valori, ai tempi iniziali e
finali g(t1), gi(t2), siano tenuti fissi. In formule:

8Siaq(ty)=a(tz)=0 = O; (1.17)

dove .
2

SE/t L(qi, Gi:t)- (1.18)
1

La dimostrazione ‘e data in Appendice A.

Note: Il valore dell’azione dipende dalla traiettorie, afioni, gi(t). In altre paroleSe
unafunzionaledi gi(t), generalizzando il concetto di una funzione.

Osservazioni

e L'equazione di Eulero-Lagrange é invariante (in forma) p@mbiamenti arbitrari
delle coordinate generalizzatg(t) — Qi(t) = Qi({qi(t)};t). (Esercizio: verificate-
lo.) Queste trasformazioni sono chiamatesformazioni puntuali

e Lintroduzione del concetto dei moti fittizi nel formalisnhagrangiano e la formula-
zione del principio di minima azione, risultano molto profiper i successivi svilup-
piin fisica teorica. (Sistemi relativistici, teoria dei cpiyil formalismo dell'integrale
sui cammini di Feynman della Meccanica Quantistica, ecc.)
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e La Lagrangiana per un dato sistema fisico non € univoca, mmtabitrarieta del
tipo,

L(a,p;t) — L(a,p;t)’ = L(q, p;t) + dFé?’U- (1.19)

Infatti, 'azione cambia secondo la relazione
S—»S =S+ F(ag,t2) — F(qu,t1) : (1.20)
ma allora segue, ricordando la condizione al cont@ao= dq; = 0, che

53 = &S (1.21)

Esercizio

Scrivere la Lagrangiana per una particella con caricar&ett| che si muove in un
campo elettromagnetico esterno. Dimostrare che la notagsipne per la forza di Lorentz
segue dall’equazione di Eulero-Lagrange (1.16).

Risposta
mi? q,
L=—+-=-r-A—qqr). (1.22)
2 c
dove 1A
B=0OxA E=-0UOp— ——. 1.2
xA, i (1.23)

L'ultimo termine & semplicemente I'energia elettrostatiL'equazione di Eulero-Lagrange
da q. q
m'r'i+EA@ :—qai(p+6rjaiAj. (1.24)

Scrivendo il primo termine come
mF; + % F0iA, (1.25)

e raccogliendo termini, si ha

mfi = —q0ip+ g Fj (0iAj — 0jA) = —00ip+ g fj&ijkBrk = —q0ip+ % (F xB)i. (1.26)
Il potenziale vettorial e il potenziale scalar@ sono definiti a meno di transforma-

zioni di gauge

10f
A — A+0f; - == 1.27
—ATED P (1.27)
sotto le qualig, B sono invarianti, mentre la Lagrangiana di trasforma di
AL = a w (1.28)

c dt

In virtu di quanto & stato osservato nell’'ultimo puntajiezione di moto rimane invariante
per tali transformazioni.

1.2.2 Formalismo Hamiltoniano

Nel formalismo Lagrangiano le variabili indipendenti sdé@coordinatey; (t),i = 1,2,...,s.
Infatti si ottiene una descrizione completa di un sistema grhdi di liberta risolvends
equazioni differenziali del secondo ordine. Nellequasdai Eulero-Lagrange le derivate
parzali sono prese comegee i fossero indipendenti, ma questo e solo un aspetto formale.
Infatti, nel derivare I'equazione di Eulero-Lagrange, &igzioni considerate indipendenti
sono solo 1&g, mentredq; (t) = (d/dt)dq;(t).
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Nel formalismo Hamiltoniano (detto “canonico), il numerellg variabili indipendenti
e raddoppiato (®. Le coordinateg; e gli impulsi coniugatip; sono ambedue variabili
indipendenti, e in piu appaiono in maniera (quasi) simioatnell’equazione del moto.
L'Hamiltoniana é definita da: ((1.29) ‘e un esempidmdisformazione di Legendie.

H (i, pi) Z PiGi — L, Gi), (1.29)
dove oL
Pi= 3 (1.30)

E inteso che I'eq.(1.30) € risolta pgr
G = Gi(pj,q;)

e che la dipendenza i daq;, p; al primo membro di (1.29) € intesa in tal senso. Le
equazioni del moto che seguono da (1.29) e dall'equaziokeldro-Lagrange sono:

N .
ql_a_piv pl___7 (|—1,...S), (131)

(equazioni di Hamilton o equazioni canoni¢he
Osservazioni

¢ Nell’esempio semplice = (1/2) mi?2 —V, H & data da

2
p
H="——+V:

2m+

I’'Hamiltoniana rappresenta I'’energia del sistema.

e Le equazioni canoniche sono invarianti per una classe rmoétade delle trasforma-
zioni delle variabili

{ai,pi} — {Qi(a,p),R(a,p)},

dettetrasformazioni canoniche

e Sebbene il numero delle equazioni sia raddoppiato rispéftymalismo Lagrangia-
no, esse sono ora equazioni differenzialitjidel primo ordine: il numero delle con-
dizioni al contorno (8) & invariato rispetto al formalismo Lagrangiarsegquazioni
del secondo ordine).

e Lo stato del sistema & specificato da un punto nell'ipelisp2z— dimensionale
{q, p} ( spazio delle fasg I'evoluzione del sistema & rappresentata dal movimento
del punto in esso.

Esercizio

Scrivere I'Hamiltoniano per una particella carica che soriin un campo elettroma-
gnetico esterng(r),A(r).
Risposta

Il moto di una particella caricagf in un campo elettromagneticB, B &€ descritto
dall’Hamiltoniana

—[p— JAMY2+ag(r.t) +V(1), (1.32)
doveV e il potenziale meccanico.

B=0xA, E:—I](p—%%—?. (1.33)
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Per transformazioni di gauge (1.2E) B sono invarianti. L'Hamiltoniana non € invariante,
ma si puo dimostrare che esiste una trasformazione cambredi (1.52) sotto) che riporta
le equazioni di moto nella forma originale. (Dimostratelo)

L'equazione di moto che segue &

q

m'r':qEJrEfxB, (1.34)

con il noto termine di forza di Lorentz. Le interazioni com@mpo vettoriale, rappresentata
da una sostituzione formape— p — JA(r,t) nel termine cinetico, & noto come interazioni
(o l'accoppiamento) minimali.

1.2.3 Parentesi di Poisson

L'evoluzione temporale di una variabile generica nel foismo Hamiltoniano viene ele-
gantemente descritto in termini deparentesi di PoissanLa parentesi di Poisson tra due
variabili generiche = f(q;, pi;t),9 = g(qi, pi;t) € definita come

> (of ag  of ag>
19r=2 \3g om ~ ap og : 1.35
o) i; (aq opi  9pi 9q; (1.35)

L'evoluzione di una variabild &

ﬂ — ﬂ+5 ﬁ+ﬁ
a ~ a2 lagdtapP
of S /ofoH of oH

- seal )

of
= S{fH) (1.36)

dqi 0pi  Op; 0G;

L'equazione del moto di una quantita fisica qualsiasi eqiendata - a parte la dipen-
denza esplicita dovuta ad eventuali parametri esternila dala parentesi di Poisson con
I’Hamiltoniana.

Dalle equazioni canoniche seguono le parentesi di Poissaramentali:

{a,pi} = &
{a,ai} = 0
{pi,pj} = 0. (1.37)
Alcune proprieta principali della parentesi di Poissonso
{t.at = —{ofh
{a, f} = of/op;
{p,f} = —of/oq;
{f,c} = 0 (c=cost);
{fi+f2,0p = {fop+{f2,08
{fifa, 0} = fu{fo,0} + fo{f1,0} (1.38)

{{f,9},h}+{{g,h}, f}+{{h,f},g} = 0O (ldentitadiJacobi (1.39)
Esercizio
i) Dimostrare che sé e g sono costanti del moto, lo & anchg g}. (Teorema di Poisson).

i) Dimostrare che il volume nello spazio di fase occupatostiti tra(q;, pi) e (qi +
00, pi +0pi) rimane invariante durante I'evoluzione temporale deesist (Teorema
di Liouville).
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1.2.4 Trasformazioni canoniche

Il formalismo canonico ammette un’ampia classe di variabitambiamenti di variabile
del tipo,

{ai, pi} — {Qi(a,p;t),R(a, p;t)} (1.40)
che lasciano invariata la forma delle equazioni canonicbe tale che
oH . oH

Qi:a_P.; Plzfa—Qi, (i=1,...9), (1.41)

seguono dalle equazioni (1.31), sono chiant@sformazioni canoniche

Per studiare quali trasformazioni hanno questa propretaal’e la relazione tra I'Ha-
miltoniana originale e quella nuova, possiamo ripartirendetodo variazionale. L'azione
puo essere riscritta come

S— /Ldt: /(z PG — H)dt, (1.42)

e I'equazione del moto segue dal principio di minima azione

0=38S = /[Z(ép.ql +Pig; d £5a1) — Z(gq. 8ai + g;' Bpi)]dt
— [I3 @~ 50p+ 3 (-h - Go)sald (1.43)

Ricordando che, nel formalismo canonidg; e dp; sono indipendenti le equazioni cano-
niche seguono da quest’ultimo.
Una trasformazioneanonicadeve essere allora tale che

/dt (> pigi—H)
/dt SRQ- H+— (1.44)

S

doveF & una funzione delle coordinate, degli impulsi & .diSupponiamo ché& sia del
tipo,

F =Fi(g,Q;t). (1.45)

Poiché iR oF oF

Ny 1

a ~ 2569 50

le relazioni tra le variabili nuove e quelle vecchie si tmoaiguagliando i due membri di
(1.44):

oF

Q)+ =5 (1.46)

- _ 9R@QY.
P g (1.47)

_ _9n(@QY).
P = - I} ; (1.48)

~ 0
A@QP) = Higp+ HEQY, (1.49)

L'equazione (1.47) varisolta per, dandop; = pi(q, Q;t), mentre la (1.48) dg = qi(Q, P;t)
che, sostituito nella prima relazione ga= p; (q Q;t) = B(Q,P;t). La (1.49) infine da la
nuova Hamiltoniana.

In breve, data una arbitraria funziokg(qg, Q;t), il cambiamento delle variabili e del-
I'Hamiltoniana definito da (1.47), (1.48) e (1.49), € talede equazioni in termini di
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nuove variabili sono le (1.41). La funziorig(g,Q) € dettafunzione generatricelella
trasformazione.
EsempioF, = 3 qQi.

In questo caso si ottengopp= Q;; ,P = —q; , % —0equindiH (Qi,R)=H(a,p) =
H(—PR, Q). E da notare che in questa trasformazione, il ruolo delledinate e gliimpulsi
e stato scambiato!

Co sono altre specie di trasformazioni canoniche, claas#fisecondo il tipo della
funzione generatrice usata,

F2(q,P;t);  Fs(p,Qit);  Fa(p,Pit); (1.50)

i.e., secondo la dipendenza da nuove o vecchie variabilirdsiormazione della seconda
specie puod essere introdotta attraverso quella dellagosmecie,

F(a,Pit) = Fi(@.Qt)+ ) Qs
oF;

La trasformazione in questo caso é:
o = OF@PU.
| aq| I
- 0R(gP),
Q = PN

- dF(q, P,
H(QP) = H(a,p)+ FZ(gt’ &)

(1.52)
Esempio 1:F, = 5; ®i(q,t)PR

Questo corrisponde alle trasformazioni puntu@ji= ®;(q,t).
Esempio 2:F, =5 qR

Questo corrisponde alla trasformazione ident@a= q;; pi = P; H =H, come & facile
verificare.
Esempio 3:F = 5;qiP +&y(q,P), cone <« 1. (Trasformazioni infinitesime

Le (1.52) danno luogo alla trasformazione (ritenendo fifioraine O(g)),

. ., 0y 0u(g,p)
Q =~ Q|+6P|7CI|+ ap
oy 0y(q,p)
i ~ P+—~PR+ , 1.53
pi 't g | 3G ( )
cioe,
ow(a, p) oy(a, p)
50 —  Spi=— 1.54
i an pi 3 ( )
Osservazione
L'evoluzione temporale di un sistema € descritta dai camienti,
oH oH
dg =——dt; dp=——=—dt, 1.55
4= P= "5 (159)

secondo le equazioni del moto. Levoluzione dinamica &ipeuna successione di tra-
sformazioni canoniche infinitesime, ceh(I’Hamiltoniana) come funzione generatrice. In
seguito vedremo che anche in Meccanica Quantistica I'Haména (piu precisamente la
quantita corrispondente, I'operatore Hamiltonianoxgian ruolo centrale nella descrizio-
ne dell’evoluzione temporale del sistema (i.e., I'equaeidi Schrodinger.)
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1.2.5 Equazioni di Hamilton-Jacobi

E opportuno menzionare qui unaltra formulazione indipemte della meccanica New-
toniana, che sara utile per illustrare la relazione tra &céénica Classica e la Meccanica
Quantistica. Nel formulare il principio di minima azion®dioneSe vista come funzionale
delle traiettoriegi(t). Alternativamente,

/dtL: /(z piG — H)dt’
/(Qi) Z nidg /t 4y

= S,t), (1.56)

puod essere considerata cofunazionesemplice dei valorg;, t all'istante finale. La dipen-
denza daessi e

S

S

E:fH(qi,pi); pi:a—qi, (i=12,...9 (1.57)
combinando queste equazioni, si ottiene una singola egp@zi
0S(a.t) oS
o THG 54 0=0 (1.58)

la (1.58) e chiamatequazione di Hamilton-JacobiLa funzioneS & chiamata funzione
principale di Hamilton. E notevole il fatto che la singola equazione (che & tuttavia
equazione differenziale nonlineare, in generale diffidéerisolvere) & equivalente alge
equazioni di Eulero-Lagrange o alls @quazioni canoniche. (Vedi Landau-Lifshitz, Vol.1
o Goldstein, “Classical Mechanics.)

1.2.6 Invariante adiabatico

Un concetto importante nelle discussioni generali deggistin cui uno o piu parametri
esterni variano lentamente, e che ha giocato un ruolo challe sviluppo della mecca-
nica quantistica, & quello di invariante adiabatico. Gd#r$amo un sistema con un moto
periodico. La traiettoria nello spazio di fapéq) - la soluzione delle equazioni del moto
- € una curva chiusa. Consideriamo ora che uno o piu parardet sisteman varia col
tempo. La traiettorigp(g,a(t)) non sara piu periodico, ma se la variazionexhi) cont

e sufficientemente adagio, la traiettoria restera petimpetiodi approssimativamente una
curva chiusa. In tal situazione potremmo definire anconédjrale su un periodo

I(O()E%dqp (1.59)

Si puo dimostrare in maniera generale tf®) & invariante, 1.e., non dipende dal termpo
Invece di dimostrare il teorema in generale, consideridesempio di un pendolo di
massan e di braccid., appesa da una carrucola, di modo che la lunghezza del bawti
essere modificato tirando su (o lasciando) il filo lentame(ftigy. ??). Per piccole ampiez-
za, come € noto, l'oscillazione orizzontale del pendoépprossimativamente descritta da
un oscillatore armonicok(= L 6)
H = 2mi@+ mgL(1—cos) = =mi+ mu?x 1.60
=5 gL(1—co )_me+2mwx+.... (1.60)
dove
g

w=\/7. (1.61)

La soluzione dell'equazione del moto

X(t) = Asinwt. (1.62)
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L'energia dell'oscillatore &
1 202 1 5,2
H:E:—m+—mwx:§mwA. (1.63)

Ora supponiamo di tirare su il filo lentamente. Come variadigia e la frequenza?
La variazione della frequenza & data esplicitamente @hl). La variazione dell’energia
(1.63) e piu difficile da vedere, perché gi@hew variano. Per calcolarla, occore sapere il
lavoro richiesto dalla forza esterna per tale processo.
La tensione del filo & data da
mg_,

T:mgcosezmg—%mg92+...:mg—%?x +... (1.64)

Facendo uso della soluzione (1.62) si trova percio

T=mg— TR

Il lavoro richiesto per accorciare il braccio del pendol@die dunque

mgA&
412

OW =TO3L=mgdL — oL. (1.65)
Tuttavia non tutto il lavoro € utilizzato per aumento deflergia dell’oscillatore: il primo
termine non ¢ altro che il lavoro necessario per aumenitaaentro di massa del pendolo
di 8L, i.e., per aumentare I'energia di potenziale. L'aumento dellfgizedell’oscillatore
ricercato & dunque

_ mgk
OE = L2 oL. (1.66)
Segue che
1L oE oL

Paragonando questo risultato con

0w oL

= 1.

w 2L (1.68)
si ha

E

— =const (1.69)

W

Per consistenza, riportiamo il valore dell’integrale @).per un oscillatore armonico

E
I(a) = 2“5' (1.70)

1.2.7 Teorema del Viriale

Un teorema di singolare importanza, che ripetutamenterapps vari problemi di moti
finiti, & il teorema del Viriale. Consideriamo una partlagthe si muove in un potenziale,
V(r), Dalle equazioni del moto di Newton,

mi = —0OV(r), (1.71)

si ha
mr - = —r-0OV(r). (1.72)
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Figura 1.4:

Prendiamo ora una media temporale nell'intervalle;T /2,T/2) di questa equazione.
Un'integrazione per parti da

%mr-'rﬁg— mi2 = —r-0OV(r). (1.73)

Se il moto ¢ finito, il primo termine tende a zero nel linilte— o: resta allora il teorema

mi2=r-0OV(r), 1.74)

cioé il termine cinetico € in media uguale alla medié di OV(r).
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1.3 Sviluppo Storico: Nascita della Meccanica Quantisti-
ca

In questo capitolo discuteremo brevemente alcuni aspatt dviluppo storico che hanno
portato alla scoperta della Meccanica Quantistica: il ettioddella dualita onda-corpuscolo
delle particelle elementari e I'idea della quantizzazideemoti periodici, accennati nel-
I'Introduzione, saranno esposti con piu esattezza.

1.3.1 Radiazione del corpo nero e la formula di Planck

Consideriamo un sistema macroscopico descritto dallebéiricanoniche{pi,q;}, i
1,...s. Il numero di gradi di libertdés & molto grande, tipicamente dell’ ordine Mj ~
6- 102 (il numero di Avogadro). Supponiamo che questo sistemansiguilibrio con un
serbatoio termico tenuto ad una temperatura fisa,

SiaE(qg1, p1,..- Ps) I'energia del sistema. Secondo la fisica statistica di Bz la
probabilita che il sistema si trovi tra gli stati1, g1 +d ), (P1, P1+dp1), - . (Ps, Ps+dps)
é data da

|

P(q1,...ps)dca---dps = %G’E(ql*pl*“'ps)/” (1.75)

dovek = 1.380658 10-23]J. K1 & |a costante di Boltzmarfi & la costante di normaliz-
zazione

Nz/---/dql---dpse*E/kT, (1.76)

tale che la probabilita totale sia uno.
Dalla legge di Boltzman segue immediatamente la leggeqdipartizione per un
sistema descritto da una Hamiltoniana qualsiasi del tipo

S

H=2 P+ Bigd), (1.77)
1=
il valor medio di un singolo termine dell’Hamiltoniana éusale a
<ap2 >=< B >= %kT, (indip. dan), (1.78)

i.e., ogni grado di liberta del sistema gode in media Iasstéfazion%kT di energia.

La teoria classica del Calore Specifico € una conseguengalise della legge di equi-
partizione. Per esempio, nel caso di un gas ideale monoetomi = 1/2m, 3; = 0,
mentre 2 2 2 2 | 2/5in6?

E-TE; E- (P + Py + PR Pt P/ sin
J 2m 2l

per un gas bi-atomico, dove gli ultimi termini rappresewotagradi di liberta di rotazione
(il grado di liberta di oscillazione radiale tra le due nmiée € qui trascurato). L'energia
totale per una mole & allora

3 3

= ZKTNy = =RT;
u > Na >RT,

5 5

= ZKTNa = =RT
V=3 2

rispettivamente per i gas monotomici e per i gas bi-atonhi& il numero di Avogadro,
R= Nak ~ 8.31441- 10" erg- mol~1K~1 & |a costante di gas. Segue che il calore specifico
nei due casi e dato da:

u {gR/zgz_gs, gas monoatomici (1.79)

T 0T |5R/2~4.96 gas biatomici
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(in unita Cal/K/mol).

Questi risultati della teoria classica sono ben verifiga¢rsnentalmente a temperatura
ambiente ma a temperature pit basse il calore specificovasséende a valori piu piccoli.
Lo stesso vale nel caso dei solidi dove il risultato classice 3R~ 5.9 (legge di Dulong-
Petit), e valido solo a temperature ambiente; il caloreifige sperimentale tende a zero a
basse temperature.

Sembra dunque che a basse temperature certi gradi didlitrattdiano” o “vengano
congelati” e non prendano la loro parte di energia come csgetierebbe dalla legge di
equipartizione. (Infatti la teoria corretta del caloreafieo € stata formulata da Debye e
da Einstein dopo la scoperta del quanto di energia da paRadck (1900).)

Essenzialmente lo stesso problema appariva, in modo pmmatico, negli ultimi de-
cenni del 19-simo secolo, nel cosidetto problema “del @arero”. Consideriamo una
cavita tenuta ad una temperatdrall suo interno & riempito delle radiazioni elettromagne-
tiche, in equilibrio con il serbatoio termico (la pareteld@avita).

Ora, qual’e il colore della radiazione di un corpo nero?t®eat altri termini, quale co-
lore (lunghezze d’onda) di luce si trova in un corpo nero,e@aale intensita relativa? O,
qual’e il calore specifico del “vuoto”, cioe delle radiaai elettromagnetiche a temperatura
T?

La risposta della fisica classica a questi problemi & laeegu L'energia del campo
elettromagnetico nel vuoto e (vedi Landau-Lifshitz, \&):

1 2
E“+H 1.
- o0 |, B2 H3dv (180
Le soluzioni formali delle equazioni di Maxwell nel vuotorsn
E=- 1aA H=0OxA (p=0) (1.81)
- cot ¢="5 '
doveA e un potenziale vettoriale arbitrario che soddisfa alleszipni
1 92
M-S —SA = 0 1.82
c2 ot2 ’ (1.82)
Oo-A = 0. (1.83)

La seconda condizione (1.83) € la scelta di gauge per aimia ridondanza esistente nella
parametrizzazione dei campi elettromagnetici in term@hipbtenziale vettoriale.
La soluzione generica di (1.82),(1.83), € un’onda piardiple

grcogk -r —ckt) +eoxsin(k - r —ckt) (1.84)

conk arbitariok = |k|,
ge1-k=¢e-k=¢1-6o=0. (1.85)

La soluzione generale & una qualsiasi combinazione kndiaguesti oscillatori armonici .
L'Hamiltoniana che da luogo a una tale combinazione corhezfane, & semplicemente:

2
2 Cc 2 2.2 \.
H= Z( pl—i-k ())+Z(Zp(2)+k q<2)). (1.86)

il sistema & equivalente a due gruppi di oscillatori indigpenti. Le due possibili direzioni
dell'oscillazione corrispondono alle due polarizzazipagsibili della luce, fatto ben noto
empiricamente.

Nelle precedenti equaziork, sono vettori arbitari: per “contare” i gradi di liberta &
spesso conveniente immaginare che il sistema sia conficatoe(lo & nel caso di un corpo
nero finito) in un volume finito e introdurre un’opportuna di@ione al contorno, per es.,
periodica. Ad esempio se la cavita & un cubo di latovalori permessi pek sono

kX: nx,ny7n2: O, 1,2,3,....00 (1.87)

L
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Visto che I'Hamiltoniana del campo della radiazione ha lefa standard (1.77), si
puod applicare la legge di equipartizione per calcolaraiaenergia. La risposta € sempli-
cemente

U =fkT, f(=ilnumero deigradidiliberta= oo, (1.88)
percio
ou
U = o C:ﬁ:oo. (1.89)

Dunque secondo la teoria di Maxwell I'energia del campo diazione elettromagneti-
ca in un volume finito sarebbe infinita; per aumentare la teatpea di una cavita di un
grado ci vorrebbe un calore infinito. Questi risultati soncchiara contraddizione con
le piu elementari esperienze quotidiane. Piu preciséebnper unita di volume € noto
empiricamentelégge di Stefan

U=0T* 0=7.64-10ergem3K4.

Questo € iproblema del corpo nero.

La causa di questa catastrofe & facile da individuare:rekzta legge classica di equi-
partizione alle luci (o le oscillazioni) di lunghezza d’'andrbitrariamente cortany, nyn,
arbitrariamente grandi - dovrebbero essere assegnatskagpart&T dell’energia. | fatti
sperimentali indicano che il numero effettivo di gradi didita ad ogni temperatura € in
realta molto minore.

E istruttivo studiare I'energia del campo elettromagretjrer intervalli di frequenze,

U= /O " dvu), (1.90)

u(v)dv & I'energia del campo dovuta alle oscillazioni con frequeetrav ev + dv. Calco-
liamo orau(v). Siccome
Injc

V(n) = I, (191)
segue che
dn— @ (1.92)

Ma le componenti di = (ny, ny,n;) sono numeri interi positivi, percio il numero dei modi
trav ev+dv € dato da:
1 8 ,
=—V

2
N(v)dv = 25(4T|n )dn= =2 dv. (1.93)

Applicando la legge di equipartizione, troviamo un ristdtéinito per un volume unitario,

u(v)dv = kTN(v)dv = STCLSTvzdv. (1.94)
(Formula diReyleigh - Jeans
Osservazioni

e AfissaT, la formula di Reyleigh - Jeans & in accordo con i dati spenitali a bassa
frequenza.

e Lintervallo di frequenze dove la formula € valida, si afja verso alte frequenze con
T; inaltri termini, av fissa, la formula e valida ad alte temperature ma falliscesa®
temperature E chiaro che qui vediamo lo stesso problema che abbiamotiraton
per la teoria del calore specifico di altre sostanze: ad uteatdmperatura solo certi
gradi di liberta sono “attivi”; altri sembrano “inattivi’
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e Facendo l'integrazione (1.94) da Gearitroviamo il risultato disatroso che e stato
notato prima (i.e.e). E chiaro che la divergenza & dovuta ai modi di frequenza
arbitariamente alta. (Per questo motivo, il problema & leewthiamatocatastrofe
ultravioletta)

Il primo passo verso la soluzione é stata compiuto da Wi8AZ)L Egli noto che i dati
sperimentali mostravano una “legge di scaling:

u(v)dv = 8C—;[F (v/T)vidv: (1.95)

con una funzion& da determinare empiricamente. In altri termini,uge) & noto empi-
ricamente ad una temteratura, siamo in grado di predirga qualsiasi altra temperature
usando (1.95). Come é facile verificare, inoltre, la forandil scaling & consistente con la
legge di Stefan.
Anche se Wien non riuscii a calcolaFe egli fu in grado di trovare una formula
approssimata,
F(x) =kBe P; B=cost, (1.96)

che e in accordo con i dati ad alta frequerzav,/T. Sostituendo questa funzione troviamo
la formula di Wien

uv)dy = zg%lkﬁe*ﬁ“’”v3 dv

8?Tlhve*h"/”v2 dv, (1.97)

dove
h= kB = 6.626-10 ?’erg- sec (1.98)

Abbiamo dunque la formula classica (1.94), valida a bassguinze, e la formula di
Wien (1.97), valida ad alte frequenze. Fu Planck (1900) watela corretta formula di
interpolazione,
8m hv
& v _1
Questa € la celebriormula di Planck Essa si riduce a (1.94) ed a (1.97), nei limiti,
hv/kT < 1 ehv/KT > 1, rispettivamente. La morale della storia & che per spiegare
dati sperimentali, nella formula classica (1.94) va fadtadstituzione,

hv

u(v)dv = v2adv. (1.99)

k (1.100)
Ma quel’e il significato di questa sostituzione?

Il contributo fondamentale dato da Planck (1900), che s&gnascita della nuova mec-
canica, fu quello di dare la corretta interpretazione aJ@) li.e., che essa implica I'esisten-
za di unquanto di energia Ripeteremo ora 'argomentazione di Planck e dimostredamo
formula (1.99), usando l'ipotesi di quanto di energia.

(Al'epoca l'esistenza degli atomi, i.e., il fatto che d@si&se un’unita di materia, era uni-
versalmente accettato, anch se solo da recente. Lideadclfu quella di generalizzare
tale struttura discreta anche per I'energia elettromacggt

Per ogni frequenza e per ognuna delle due polarizzaziétantiltoniana per il campo
elettromagnetico € un semplice oscillatore armonico,

H =adg®+bp?. (1.101)

L'energia media a temperatufaé

<E> (1.102)

d
~ ok 9
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= / dadpe (aP+br)/kT _ \/%) / dxdye ORI, (1.103)

dove nella seconda le variabili sono state cambiate=a/aqg; y = v/bp. Cambiando
ulteriormente le variabili a quelle sferich& = x? +y?;0 = tan 'y/x, e notando che
l'integrazione angolare & banale, si ha

<E> log\”, (1.104)

R
~ d(—1/KT)

N’:/dEe*E/kT. (1.105)
Se si facesse lintegrazione &i1normalmente si avrebbe E >= kT e ritroveremmo
la formula di Reyleigh-Jeans. Invece, supporremo, condRlache per qualche ragione
I'energia possa prendere solo valori discreti,

En=ne, n=0,123,... (1.106)

In questo caso l'integrale viene sostituito dalla somma,

dE— €Y. (1.107)
JaE=ey
Di conseguenza si ha
_ d 1
<E>= 3—1/KT) log”, (1.108)
" __ —ne/KT __ €
N 7s;e =1 oo (1.109)
Si ottiene cos i la formula “quantistica perE >
Ese— o (1.110)
< =gk 1 .
Se scegliamo come unita (“quanto) di energia
€ =hv, (2.111)

usiamo (1.110) al posto del risultato classicb per < E >, e alla fine sommiamo sulle
frequenze, otteniamo precisamente la formula di Planck!

Dunque il significato della formula empirica di Planck & sjee I'energia del campo
elettromagnetico € “quantizzata. La luce monocromatickequenza (i.e., dilunghezza
d’'ondaA = c/v) e fatta da un insieme di quanti (che chiameremo “fotorigsauno con
I'energiahv. La legge di equipartizione non & piu valida perché i gdadiberta associati
alle frequenze alte, avendo quanti troppo grandi ad unatdatperaturahy > kT) non
riescono ad ottenere la loro porzione di ener§ig) (ed rimangono effettivamente inattivi.

Un’analoga spiegazione del comportamento del calorefipedi varie sostanze é stata
data da Debye e Einstein.

L'esempio piu grande di corpo nero & l'universo stessome&a@ noto l'universo di
0ggi e riempito di radiazioni microondedsmic microwave radiatigrcorrispondenti al-
la temperatura di circa.Z’°K, che & una sorta di radiazione fossile dall’epoca iniziale
dell’espansione dell’'universo.
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1.3.2 Effetto fotoelettrico

La soluzione del problema del corpo nero e I'ipotesi del qoiahenergia (Planck, 1900)
segnarono la nascita della fisica quantistica, ma dovedtézndere quasi 10 anni prima di
essere universalmente accettate.

Un’evidenza piu diretta della proprieta corpuscolarkedece venne dall’analisi (Ein-
stein, 1905) del cosidetto “effetto fotoelettrico (Het&87). In questa esperienza, un rag-
gio X (raggio elettromagnetico di alta frequenza) vien&fatcidere sulla superficie di un
metallo alkalino (per esLi). Dalla superficie del metallo saltano fuori gli elettrocie
vengono misurati in forma di corrente (Fig.1.5). | fatti @ng principali sono:

(i) I'energia di ciascun elettrone & indipendente dalémsita della luce;

(i) al crescere dell'intensita della luce aumenta il nuonéegli elettroni (i.e., aumenta la
corrente foto-elettrica);

(iii) I'energia di ciascun elettrone dipende dal colokg del raggio;

(iv) la corrente fotoelettrica si accende immediatamempodche la superficie viene
illuminata.

E estremamente difficile capire questi fatti nella teoriadixwell. (Vedi Tomonaga).
Fu Einstein il primo a osservare che tutte le suddette eaistithe dell’esperienza trova-
no una spiegazione naturale se si adotta I'ipotesi di qudnemergia di Planck. Infatti
supponiamo che il raggio X sia un fascio di “fotoni, ciascaon energidwv (v sara ugua-
le per tutti se la luce & monocromatica; altrimenti si tmaveno diversi tipi di fotoni nel
fascio). Supponiamo inoltre che gli elettroni, originahtelegati agli atomi del metallo,
ricevono tutta I'energia del fotone che li colpisce; se &ggia ricevuta e sufficientemente
grande (i.e., rispetto all’energia di legame) essi satteoduori. Questa teoria predice una
semplice relazione tra I'energia massima dell’elettrBreela frequanza della luocg

E=hv—A (1.112)
doveA & una costante che dipende dalla sostanza.

X
/
/

/
/

/

[
w
®

Figura 1.5: Effetto fotoelettrico

| dati sperimentali, presi dall’articoli di Millikan (19J)6nostrano che la relazione li-
neare predetta da (1.112) & effettivamente osservatlrerdall'inclinazione della retta
sperimentale si trova il valore plr

h~ 6.65- 10 ?’ergsec (1.113)
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in ottimo accordo con il valore ottenuto da Wien-Planck 8.9n questa maniera l'ipotesi
di quanto di energia di Planck per la luce, & stata ineqaibdmente verificata.

Prendiamo nota che il carattere corpuscolare della lucesmim evidenza dall’anal-
isi dell’effetto fotoelettrico, si manifesta chiarameatgche nelle diffusioni dei raggi X da
elettroni Effetto Comptonvedi Problema 2).

1.3.3 Modello atomico di Bohr

Nella discussione dello sviluppo storico che ha portata stloperta della nuova mecca-
nica, un successivo passo fondamentale & stato quelloictomgia Bohr (1913). Co-
me era gia noto allora, i gas ad alta temperatura emetta@®dan spettro caratteristi-
co dell’'elemento. (Per es., la lampada al sodio con la @aistita luce di colore aran-
cione). Per l'idrogeno, lo spettro contiene le linee cquisdenti alle lunghezze d'on-
da, 65628,48613,43405,41017,... (,&). Per queste linee spettrali, Balmer (1885) aveva
trovato una formula empirica,

n?

A= on, Ao =36456A, n=345,... (1.114)
Piu tardi Rydberg aveva scoperto una fomula universale
v 1 R R
v_Z_ _ : 1.115
c A (m+a? (m+b)2 ( )
doveR & una costante universale (i.e., indipendente dall'ajpmo
R=109678cm* (1.116)

(chiamatacostante di Rydbejge a,b sono costanti che dipendono dall’elemento. La
(1.115) rappresentava bene tutte le linee spettrali misyyer vari atomi. Restava da
interpretare e comprendere il significato della formula gilBerg.

L'idea di Bohr era che I'energia dell’elettrone legato r&thmo potesse prendere sol-
tanto valori discreti, in analogia con quanto avveniva pesdillazione elettromagneti-
ca. Piu precisamente, Bohr formuld le seguenti ipotdéasomo (I'insieme di queste era
chiamatomodello di Bohy:

[1] I valori possibili dell’energia di un atomo sono disdréd;, Es, ... (Livelli di energig).
Finché I'atomo & in uno dei possibili statitati stazionan non emette luce;

[2] L'atomo emette 0 assorbe luce quando un elettrone coon@dransizione (un “salto)
da uno stator{) ad un altro (n); la luce emessa o assorbita in tale transizione ha la
frequenza uguale a,

hv = En — En, (1.117)

[3] I'elettrone che si trova in uno stato stazionario si meisgcondo la Meccanica Classica
(questa ipotesi subira una sostanziale modifica in MeceaQuantisticao);

[4] Pern> 1, i risultati della nuova meccanica coincidono con quétiouti in Mecca-
nica ClassicaFrincipio di Corrispondenzai Bohr).

Notiamo che le ipotesi di Bohr eliminano immediatamente @exreto) la difficolta
legata alla stabilita dell’atomo, discussa nell’'Intrachne. Le ipotesi [1] e [2] permettono
una naturale interpretazione della struttura della foengiRydberg, attribuendo ai singoli
termini E, (livelli di energia), enon alle loro differenzgil significato fondamentale. Con
grande ingegno, combinando le ipotesi sopra descritter 8dh grado di ottener&, nel
caso dell'atomo di idrogeno:

Rh
En:—n—c' n=12,.... (1.118)
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e di calcolare la costante di Rydberg in terminigie, c e h:
_ 2remé
- ch

in accordo con il suo valore empirico. (Vedi Tomonaga.) Babsci inoltre a determinare
I'ordine di grandezza del raggio dell’atomo di idrogeno

R ~1.09-10°cm™* (1.119)

ﬁZ
= — ~0.529177-1078 1.120
I'Bohr me cm ( )

(chiamataraggio di Bohj) dove € stata introdotta una costante legaia a
h
= — ~1.05-10 %’erg- sec 1.121
o 9 ( )

Siah cheh'sara chiamata costante di Planck.
L'esistenza di stati stazionari discreti (livelli di en&pin atomi e stata verificata in
un’elegante serie di esperienze fatte da Franck e HertAj191

1.3.4 Condizione di quantizzazione di Bohr e Sommerfeld; Coha di
de Broglie

La correttezza dell'idea di quantizzazione fu dunque imempabile dopo il lavoro di Planck
(quantizzazione dell'energia elettromagntica); quelld&hstein-Debye (quantizzazione
dell'oscillazione atomico/molecolare nella teoria ddbeca specifico) e ora quello di Bohr
(quantizzazione del moto degli elettroni nell'atomo), raaférmulazione corretta della
Meccanica Quantistica dovette attendere i lavori di Hdigeg e Schrodinger (1924F
di un certo interesse storico, tuttavia, ricordare due edintributi importanti dell’epoca
“pre-meccanica-quantistica.

Bohr e Sommerfeld tentarono di formulare l'idea della girmmatzione in modo uni-
versale, di modo che essa fosse applicabile a tutti i mosisatafiniti (periodici). Essi
ipotizzarono la regola,

%pdq:nh (n=0,1,2,...) (1.122)

(condizione di quantizzazione di Bohr e Sommeifelaveq e p si riferiscono a una coppia
arbitraria di variabili canoniche, e I'integrale va calat su un periodo classico.
Osservazioni:

e La limitazione ai moti finiti (periodici) & importante. Non € nessuna indicazione
empirica che i moti non periodici siano quantizzati, fattee drovera conferma in
Meccanica Quantistica.

e Perl'oscillatore armonicola (1.122), in accordo con ltgsi di Planck, da il risultato
En = nwh = nhv, che per I'esattezza differisce da quello corretto delladémica
Quantistica solo per una costante.

e Perl'atomo diidrogeno, la (1.122) da il risultato coregtbttenuto da Bohr.

e Come € notog pdge “un invariante adiabatico”. In altri termini, se uno wpara-
metri presenti nel sistema variano lentamente col temjpegrale per un periodo di
moto rimane invariante. Si noti che per le variazioni sudfitemente lenti, il moto
del sistema e approssimativamente periodico per moliogigre percio I'nitegrale
§ pdge ben definito. Il fatto ch¢ pdqge invariante adiabatico, € fondamentale per la
consistenza della condizione di Bohr-Sommerfeld, (1.1ZHrimenti, non avreb-
be senso proporre tale condizione come condizione unieer&asti pensare due
sistemi che differiscono poco nei parametri (massa, pdifamel potenziale, etc.).
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e In generale, la (1.122) non & esatta in Meccanica Quardjstna risulta essere
approssimativamente valida nel limite semi-classico i(deg@o).

L'ultimo tassello mancante, per cosi dire, alla formutema della Meccanica Quantisti-
ca fu il concetto che la dualita onda - corpuscolo, scogeetda luce e successivamente
per gli elettroni (per es. I'esperienza di Davisson-Gerfd®27)), fosse in realta valida
pertutte le particelle elementari (de Broglie, 1925). In particelaad ogni particella di
impulsop, va associata una sorta di ondada di de Brogligdi lunghezza d’'onda

h
A=— 1.123
0 (1.123)

(de Broglie). Questa relazione, pur semplice, € di fond#ale importanza. de Broglie
fu in grado di dare una “derivazione della formula di Bohr evBeerfeld a partire dal-
la (1.123). Inoltre, la consistenza dell'ipotesi (1.128plica che ad ogni particella va
associato un “pacchetto d’'onda. La velocita della pditicea associata alla velocita di
gruppo di quest'ultimo (e non la velocita di fase). In alp@role il lavoro di de Broglie
offri una prima chiave per interpretare e quantificarectinsueta idea della dualita onda -
corpuscolo.

1.3.5 Problemi

1. Si consideri un pendolo semplice (peso sorretto da una diimassa trascurabile)
sostenuto da una carrucola. Si dimostri che, se quando &vigme tirata molto
lentamente mentre il pendolo € in oscillazione, la quaijtv si mantiene costante
(invariante adiabatico), dove e I'energia dell’oscilazionei.g., senza I'energia di
potenziale).

2. Effetto Comptore cinematica relativistica. Si consideri lo scattering diraggio X
su un elettrone in quiete. Il raggo X di lunghezza d’oida considerato come un

Figura 1.6: Effetto Compton

fascio di fotoni, ciascuno con enerdia e impulsop = hv/c, dovev = ¢/A. Siano

mv 1
= —— - 1
e V1-Vv2/c2 V1-Vv2/c2 )

'impulso e I'energia dell’elettrone nello stato finale,l@@miamope 6 gli angoli che
formano le velocita finali del fotone e dell’elettrone pagto alla direzione incidente.
Il fotone ha energia e impulso findiv’ e hv'/c. (vedi Fig. 1.6)

e  Ee=md(

e Si usi la conservazione dell’ impulso per trovare la relagio

() (34 (5) 2 (3) (¥ )eom
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e Si usi la conservazione dell’energia e la formula preceslpat ottenere:

r \Y)
VT I 2/ s (9/2)

e iii) Si dimostri che la lunghezza d’ondéd del raggio X emesso nella direzione
@ soddisfa

, . 2h
A —}\_H:smz((p/Z)

e (Formula di Comptonh/mc= 2.42-10~'%m si chiamadunghezza Compton
dell’elettrone)

e iv) Si trovi I'energia dell’elettroneEe nello stato finale, in termini di e di
@. Si calcoliEe perA =10 %cm e@=1/2. (m=9.1-10 %&gr quindimc =
8.10 ’erg).

3. Si consideri un atomo d’idrogeno (1 protone + un elettrome= 183@me).

e Si calcoli la massa ridotta (e si concluda che possiamo usgiga ~ mMe);

e Sirisolva I'equazione del moto (classiomr (d8/dt)? = (e/r)?, assumendo
costante;

e SiaB(t) = 2rvt 4+ 8. Si determiniv facendo uso dine = 9-10-2%gr, r = 5.
10 %m,e? = 2-10 erg-cm;

e Sicalcolihv, doveh ¢ la costante di Plank& 7-102’erg- sec) e lo si paragoni
conkT perT =27%K, dovek & la costante di Boltzmak & 1-10 %erg- K1),
Dimostrare che i gradi di liberta associati agli elettreano “congelati & ~
0°C e giustificare il calcolo del calore specifico dei soliditéasenza tener
conto degli elettroni.

4. Si costruiscano quantita che abbiano la dimensione allwmghezza, facendo uso di

[me], [c], [h] e [€”].

5. Si verifichi che i potenziali di Lienard-Wiechart

or.t) = [ deip(rz’tr:”z/ 2

2
A(r,t) = E/dvzij(rz’t —12/0)
c 12

sono soluzioni delle equazioni di Maxwell in presenza di dis&ribuzione di carica
(di densitgp) e di corrente (di densitd).

6. Si trovi la formula -
| =2d°/3c?

per l'intensita di energia irradiata per unita di tempaudiedipolo elettrico.

7. Sono state osservate (all'inizio del secolo) le seguire spettrali per un atomo (in
—1\.
cm):

V1 = 8225827 Vs = 1523297 Vg = 533152 Uy = 9749128
Vg = 2056457 Vg = 779930 V3 =10282284 V7 =2303231
V10=2469 Vs = 10529058 (1.124)

dovev = 1/A e l'inverso della lunghezza d’onda (“numero d’onda).
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e Si trovino tutti gli esempi dellaegola di combinazione di Rit£P.e. V7 — Vs =
Vo),

e Si dimostri che tutte le linee corrispondono alle varie camabioni dicinque
termini spettrali;

e Sitrovi una formula semplice per questi termini (tenendatoalel fatto che le
considerazionii) e ii) danno solo thfferenzetra i termini).;

e Che atomo e questo?

8. Si calcoli il numero di fotoni emessi al secondo da unaeaatgdi luce di Icandela
Si assuma = 5600A. (Una sorgente di una candela emette luce con una potenza
di 0.01 watt). Supponete che un osservatore guardi una sorgentedsotropa di
una candela a una distanza di 100 metri. Calcolate il numigiai@hi che entrano
in uno dei suoi occhi al secondo; assumete che la pupillaaabbdiametro di 4mm.
Poiché il numero di fotoni & cosi grande, non osservialoaretremolio, anche se il
flusso luminoso & piccolo per gli standard macroscopici.

9. Una stella di prima magnitudo apparente, come la stelldldibaran, & faciimente
visibile a occhio nudo e la si vede lampeggiare. Tale stethapce un flusso sulla
superfice della terra di 6 lumen/n?. Un lumen alla lunghezza d’onda di massima
visibilita, che @ di circa 5568, corrisponde a 0.0016 watt. Si calcoli il numero di
fotoni che entrano nell'occhio di un osservatore che vedetale stella.



