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0.1. ERRATA

0.1 Errata
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36 CAPITOLO 2. PRINGPI DELLA MECCANICA QUANTISTICA

2.1 Principi e Legge della Meccanica Quantistica

In questo capitolo sono introdotti i postulati principalieelegge della meccanica quanti-
stica. Lo stato quantistico & descritto da una funzionedé le variabili dinamiche da
operatori hermitiani; infine I'evoluzione temporale dedkato dall'equazione di Schrodin-
ger. Le predizioni della nuova meccanica sono formulateimini di probablilith che la
misura di una variabile, in un dato stato, dia uno dei poksiglori. Questi ultimi sono
autovalori del relativo operatore Hermitiano.

2.1.1 Lo stato quantistico e il principio di sovrapposiziome

La discussione dell'esperimento di Tonomura et. al., disawnell'Introduzione & una con-
ferma diretta della relazione di de Broglie, (1.123). Queisporta a definire uno stato

quantistico non in termini di valori simultanép, g} delle variabili canoniche, ma con una
sorta di onda. Infatti, abbiamo il primo

Postulato Fondamentale della Meccanica Quantistica:

lo stato e descritto da una funzione complessa

stato quantistice- W({q},t) ‘ (2.1)

chiamatafunzione d’onda Essa dipende dalle coordinate canoniche e dal tempo ma non
dagli impulsi?

La conoscenza della funzione d’onda equivale alla commletebscenza dello stato
quantistico. Essa permette di calcolare le probabilitatténere determinati risultati in
qualsiasi tipo di misura.

Per esempio consideriamo la posizione di una particellay énpgenerale, le coordi-
nate generalizzate del sisten@.( La probabilita di trovare il sistema nell'intervallo di
coordinatgq,q+dq] €, per postulato dato da

dP=[y({a}.t)[’dg (2.2)

(dg=dqd@...dgs). Per una particella in tre dimensioni la probabilita cesaesi trovi in
un volume attorno al puntoé

W(r,t)2dr. (2.3)
Poiché la probabilita totale deve essere 1, si deve ineporr
w2 = [ lw({a}.bl?da=1 (2.4

L'eq.(2.4) € nota comeondizione di normalizzazion®©gni funzione d’onda per la quale
lintegrale [ |@({q},t)|?dq converge, & normalizzabile, con la moltiplicazione di un n
mero opportund. Segue che la funziong e un’altra funzioney dovec & un numero
complesso costante qualsiasi diverso da zero, rappresdotatesso stato.ge.,

Y~ cy, c#£0. (2.5)

In altre parole, lo stato quantistico & descritto dal ragdi ), nello spazio di funzioni
normalizzabili®

1Tale descrizione appare introdurre la perdita della simimeer lo scambio tra le coordinate e gli impulsi,
che caratterizza il formalismo canonico della fisica clzgsiln realta la legge della meccanica quantistica ha
una completa simmetria per— p; I'apparente violazione di questa simmetria in (2.1) eudawalla scelta del
linguaggio, alla particolare scelta deli@ppresentazionger lo stato quantistico, come sara spiegato nei capitoli
successivi.

2Per esempial(r,t) = e non & normalizzabile, pertanto non rappresenta nessatmfisico.

3Piu precisamentay deve appartenere ad uno spazio di Hilbgft,
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Il principio di sovrapposizioneafferma che sg; e Y, sono due stati possibili (fisici)
qualsiasi* di un sistema, un terzo stato descritto da

P = c1y1+ Y2 (2.6)

dovec, ¢ sono due costanti complesse arbitrarie, & anche essoatogsssibile (fisico).
Significa che I'insieme degli stati ammissibili di un datetema & descritto da uno spazio
lineare di funzioni d’onda.

Per consistenza, il principio di sovrapposizione richietie I'evoluzione temporale
della funzione d’onda sia descritta da un’equazione lie@ay, i.e., del tipo

SP=0. (2.7
doves e un operatore lineare, i.e., un operatore tale che

S(caPa+colz) = cLSP1 + C2SYo. (2.8)

La forma esplicita dell’operatotg sara discussa in seguito.

La descrizione dello stato quantistico in termini di funmal’onda introduce una certa
asomiglianza con quella della dinamica di onde classicher guesta ragione € stata usata
in passato la denominazione di “meccanica ondulatoria’lgelinamica di Schrddinger.
Tuttavia, esistono delle differenze essenziali tra la mhica delle onde classiche e quel-
la dello stato quantistico. Per esempio, in meccanica igigat la funzione d’ondd e
un’altra funzione d’onday (c # 0 ) rappresentano lo stesso stato, come abbiamo appena
accennato, mentre due funzioni che differiscono di un fattooltiplicativo rappresentano
due onde classiche di diversa ampiezza, percio di diversaye, fisicamente distinguibili.

Il concetto stesso di sovrapposizione richiede un’inttigerione drasticamente diversa
in meccanica quantistica, rispetto a quella delle ondesidhs. Consideriamo per esempio
due stati (quantistici e B.> Siano questi stati tali che la misura di una determinatatigaan
fisica (O) dia con certezza (i.e., con probabilita 1) il risultatoello statoA, e con certezza
il risultato b, nello statoB. Ora secondo il principio di sovrapposizione esiste untosta
fisico C descritto da

Yc =cala+CaUs, (2.9)

dove Ya e Yg sono le funzioni d’onda (normalizzate) degli stAte B; ca,cg sono due
numeri complessi arbitrari. Le proprieta fisiche delldsta saranno in qualche modo in-
termedie tra quelle dello statd e quelle dello stat®. Qual’e il risultato di una misura
della stessa quantifa fatta nello statdC? Secondo la regola della meccanica quantistica,
il risultato di una singola misura non pud mai essere divelesm oppure da. Pil precisa-
mente, la meccanica quantistica predice che le probabpkit ottenere i risultai e b sono
rispettivamente
e e
[Cal?+ [cal?’ |Cal%+ |cal?’
e zero per tutti gli altri possibili valori dD. In altri termini, il carattere intermedio dello
stato C si manifesta nelle probabdidi ottenere un determinato risultato in un'osserva-
zione, e non nei risultati stessi di singole misure (Dita€ueste “regole” della nuova
meccanica saranno formulate nella successive sezioni.

(2.10)

a

Osservazioni

¢ Secondo quanto detto sopra le funzioni d’ogdae®y (cona reale), rappresentano
lo stesso stato. La fase costante davanti alla funzionedd'mon ha un significato
fisico. Ma ovviamentapa = c1 + G2 € Wg = C1P1 + C2€%Y, sono due stati
diversi (perci ¢z # 0).

4Ci sono eccezioni a questa regola (regola di superseldzione
5Drora in poi, eccetto quando ¢'& un rischio di un’ambiguitun malinteso, useremo semplicemente la parola
“stato” al posto di “stato quantistico.”
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e Per due sistemA e B non-interagenti tra di loro e scorrelati la funzione d’orsila
fattorizza:

YaB = Pals. (2.11)

Si noti che in presenza di particelle identiche, la funzidimeda di molti corpi deve
avere una certa proprieta di simmetria per scambi di questeelle, e questo intro-
duce una correlazione anche tra particelle non-interag@nesto aspetto peculiare
della meccanica quantistica, di fondamentale importae#la fisica dei molti corpi,
sara discusso nel Capitoh®

Polarizzazione del fotone
Lo stato di polarizzazione della luce & descritta in teol@ssica dal vettore di polarizzazione
A =ANK)eNKk) TN L he, (2.12)
Per semplicita abbiamo assunto una luce monocromatiggauge di radiazione,
10A
cot’
L'ultima condizione significa che ci sono due polarizzaziadipendenti. La luce polarizzata linear-

mente corrisponde a, per es.,
e'=(1,0,0, k=(0,0k), (2.14)

B=0OxA, &k=0. (2.13)

con L
A
Ex = ?wcos(k-rfux), Ey=0, (2.15)
e analogamente pef = (0,1,0). La luce polarizzata linearmente, ma in direzigsa®, cosd) (nel
piano perpendicolare alla direzione della propagazierdgscritta da

€ = (cosh, sinG,0). (2.16)
La luce con polarizzazione circolare, corrisponde per es. a

1
1 .
e =—(1,i,0),
ﬂ( )
AT AT
Ex=—wcogk-r—aut), Ey= —wsin(k-r —ot), 2.17
k= ppwcosker—a),  By= 5 wsinker —at) (2.17)

una polarizzazione elitticaga= % (2,i,0), etc.

Secondo la meccanica quantistica la luce va considerat@ eonfascio di fotoni, e I'origine
della proprita di polarizzazione pu0d essere attribuitdue possibili stati indipendenti del singolo
fotone. Tralasciando altre caratteristiche ('impulsogzione della propagazione), lo stato di un
singolo fotone & descritto da una combinazione generale

(W) =c1]1) +c2(2), lc1? +c? = 1. (2.18)

|1), |2) rappresentano due stati ortonormali di polarizzazior@dimnelle direzionk ey, corrispon-
dono alle luci polarizzati linearmente (2.14), e soddisfan

A1) =(22) =1, (12)=0. (2.19)

Certi cristalli hanno la proprieta di fare passare solatlpolarizzata lungo un asse caratteristi-
co, chiamato asse di polarizzazione. Quando un fascioentédha una polarizzazione lineare nella
direzione che fa un angolrispetto all'asse di polarizzazione, si trova empiricateae l'intensita
di luce che passa e

1(8) =1(0) cos® (2.20)

(Legge di Malus).
Ora consideriamo lo stesso esperimento dal punto di vistndioli fotoni che incidono sul
cristallo, con 'asse di polarizzazione nella direzion&diSe il fotone ha la polarizzazione lineare
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1, passera con certezza, con probabHita 1. Se esso € di tipf2), invece non passera (probabilita
nulla di passare). Cosa succede se il fotone incidentd@ stato,

|8) = cosB|1) +sinb|2) (2.21)

(stato di polarizzazione lineare nella direzioBealall'assex)? L'unica risposta sensata - ed & la
predizione della meccanica quantistica - € che il fotondaharobabilita P, = \cl|2 = co<6 di
passare, e lprobabilita P = |c,|2 = sir?8 di non passare.

Per una luce polarizzata perfettamente nella direzégwemposta di molti fotoni nello sta{é),
ritroviamo la legge di Malus.

In questo esempio, vediamo che l'interpretazione prolsticiéh della meccanica quantistica &
una diretta conseguenza dei fatti empirici, 0 meglio, kbanformulazione logica possibile di questi
fatti.

2.1.2 Principio di indeterminazione di Heisenberg

Il fatto che I'elettrone sia descritto da una sorta di ondazfone d’'onda, significa che il
concetto classico di traiettoria perde validita. Esso pod avere simultaneamente valori
definiti dell'impulso e della posizione. Questo non sigRifiche i concetti stessi come
la posizione, I'impulso e I'energia perdano totalmentesseift la descrizione dello stato
guantistico che differisce sostanzialmente da quellaadediccanica classica, dove “lo stato
fisico” & completamente specificato dai valori contemperdinqg;, p;; E, ....

D’altra parte, nei limiti in cui la costante di Plantkpuo essere considerata piccola,
le leggi della meccanica quantistica devono essere censiisbn quelle della meccanica
classica. In qualche modo, allora, la costamtéovra segnare il confine tra il dominio
guantistico e quello classico.

L'espressione matematica della suddetta limitazione pateterminazione simulta-
nea digi e p; € stata scoperta da Heisenberg. Essa viene espressa dsiameirdi
disuguaglianze:

Dx-Dpc>R Ay-Apy >R Az-Ap >R (2.22)
0 piu generale, per una coppia canorgcalsiasj
Aqgi-Api > h, (2.23)

dove h
=5~ 1.054-107%" (erg-seq (2.24)

Queste relazioni sono chiama#azioni di Heisenberg; o relazioni d’indeterminaziorie d
Heisenberg

Larelazione d'indeterminazione segue dalla descrizion@a particella come un pac-
chetto d’'onda. Per esempio, consideriamo un pacchettald’'dnforma Gaussiana in una
dimensione, che b= 0 € dato da:

Y(x,0) = coste /%, (2.25)
Notiamo che questo pacchetto &€ concentrato attosne & ma ha una dispersione,
Dx=/((x— (x))?) ~d, (2.26)

che pud essere interpretato come una sorta di indeteriiredella sua posiziorfe.

6Come accennato nella sezione precedente, il calcolo deii vakdii nella (2.26) coinvolge la densita di
probabilita||? anziché la funzione) stessa.
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D’altra partel(x) = W(x,0) pud essere visto come una sovrapposizione di onde piane:
la sua trasformata di Fourier &

[ on (ane™ e )
[ O; dra(h) 2/ (2.27)

W(x)

dovel & la lunghezza d’'ondaa& —A) = a*(A).
Secondo de Broglie vale la relazione

= 2.28
P=5 (2.28)
per ogni particellagnda di de Brogli la equazione precedente pud essere riletta allora
come sovrapposizione di diverse componenti di impytso

W)= [ dp(p)e” " (229)

dove & stato introdotth = h/2mt La componente di Fourid(p) si calcola facilmente nel
caso di un'onda Gaussianp(x) = e/¢*:

(™ AX iR )d?
Wp) = [ gre e

R A
w2mh

— coste ¢P/4°, (2.30)

Tale risultato & interpretabile come un’indeterminagidell'impulso dell’'ordine di

Ap ~ h . (2.31)
d
Dalle equazioni (2.26) e (2.31) segue la relazione di Héieem

Risulta che il pacchetto Gaussiano minimizza il prodditéd\p: per un pacchetto
generico si trova (vedi dopo) una disuguaglianza come eglig2.22).

Le relazioni d’indeterminazione implicano che in uno stet@ui la posizione di un
elettrone & esattamente nota, la conoscenza dell'imgulsampletamente persa, o vice
versa, ed in ogni modo il prodotfhigAp non puo essere minoreldi

Il significato della relazione di Heisenberg va precisatalioe E naturale chiedersi
se tale relazione abbia affatto senso. Infatti, non bastergorendere una particella di
cui I'impulso, p;, per es., € perfettamente noto grazie alla preparazioeeamente, e
misurarnda posizione zon una precisione che si vuole, per ottenere uno “statoliitec
posizione e I'impulso sono perfettamente determinati@mporaneamente, o per lo meno
uno stato arbitrariamente vicino a tale stato?

Queste questioni sono stati studiate da Heisenberg, ett@aesame di una serie di
“Gedanken experiments” (le esperienze pensate, ipogticiConsideriamo qui solo due
esempi. La prima riguarda la misura della posizione di uttrelee con un microscopio
ottico. (Fig.2.1) La luce entra orizzontalmente, viendudid dall’'elettrone e entra nella
lente dell’'obiettivo. Come & noto dall’ottica, la risolare orizzontale di tale apparecchio

¢ data dalla formula: \
AX ~ —— (2.32)
sine

"“Principi Fisici della Meccanica Quantistica (BolinghijerPhysical Foundation of Quantum Mechanics” di
Heisenberg.
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Elettrone

Figura 2.1:0sservazione della posizione orizzontale di un elettrameun microscopio

doveA e la lunghezza d’'onda della luce usatageadl'apertura angolare dell’obiettivo. A
causa della misura, I'elettrone ricevera un rinculo detline dihv/c, i.e., dell'ordine de-
l'impulso del fotone, da scattering Compton (vedi il Prabke2 della sezione precedente).
Siccome la direzione del fotone & nota solo entro il limiegediminato dall'angole, la
componente orizzontale dell'impulso dell’elettronessanche essa affetta da un’incognita
di

Apx ~ h?v sing ~ ;sins (2.33)

da cui segue la relazione
AXApx ~ h. (2.34)

La dualita onda-corpuscolo della luce e essenzialeargibmentazione.

Un altro “Gedanken experiment” & la misura della posizieesicale ¢) dell’elettrone
che entra orizzontalmente in una fenditura (Fig. 2.2). $a@mo che il fascio di elettroni
sia ben collimato di modo che il suo impulso nella direzioeeticale possa essere con-
siderato zero. L'apertura della fenditwtantroduce un’indeterminazione nella posizione
dell’elettrone: essa sara misurata con la precisione di

Az~d (2.35)

se l'elettrone attraversa la fenditura. Ora, secondo deglRrdelettrone con impuls@
si comporta come un’onda di lunghezza d’'orida- h/p: come tale, esso subira una
diffrazione al passaggio dalla fenditura stretta. Quest@acsi diffonde di un angola
dove
. A
sina ~ — (2.36)
d
dove & stata usato un altro risultato ben noto in otticaciBé&elettrone, al passaggio dalla
fenditura, acquista una componente verticale dell'impuleta entro il limite di

. hA h
Apy ~ =——-=-. 2.37
Per il prodotto delle indeterminazioni della posizione #idgpulso (le componenti verti-
cali) vale percio la relazione

AzAp; ~ h. (2.38)

Questa deduzione utilizza la dualita onda-corpuscolediettrone.
Queste discussioni dimostrano che c'e un limite nella ipire@ce della determinazio-
ne simultanea delle variabili canonicamente coniugate, se interpratidansimultaneita
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Figura 2.2: Determinazione della posizione verticale di un elettrona & passaggio per una
fenditura

nel senso fisic8. Tale limite & un limite fisico, indipendente dalla condizéoesterna del-
I'osservazione (tecnica, perizia, esperienza, quakifiappparato di misura, ecc.); esso &
dovuto alla proprieta dinamica del processo fisico coitovol

Infatti queste argomentazioni di Heisenberg mettono iltésun aspetto caratteristico
importante della meccanica quantistica. Nelle esperieneeoinvolgono i sistemi atomici
o sub-atomici la perturbazione dovuta al processo di unanaison pud essere controllata
dall’osservatore oltre un certo limite, essendo tale kmiha proprieta fisica dei processi
stessi. Il determinismo nel senso classico € generalnpense nel processo di osservazio-
ne. Linterpretazione probabilistica delle predizionlldeneccanica quantistica, associata
al processo della misura, & legata intimamente al priodfihdeterminazione.

Viceversa, i sitemi lasciati indistrubati evolvono in mawa perfettamente deterministi-
ca. La funzione d’onda obbedisce I'equazione di Schréelingn’equazione differenziale
nel tempa.

Tutto ci0 € in contrasto con quanto accade in meccanicsicia In processi macro-
scopici, il disturbo causato dalla misura (I'apparato edgesssi) all'oggetto di misura e
trascurabile. Il concetto classico di determinismo & tzasa questo fatto. Dal punto di vi-
sta piu generale, tuttavia, c'e da tenere presente clealchinismo tradizionale ha - negli
ultimi decenni - subito una notevole revisione, anche agibito della meccanica classica,
collegata con i fenomeni nonlineari,daos ecc.

2.1.3 Operatori, autovalori e autostati, risultati di un’osservazione

Abbiamo visto che lo stato quantistico & descritto da umeziitne complessa - funzio-
ne d'onda,y({q},t). Come sono descritte le variabili dinamiche? Quali sonsultati
possibili di una misura? Qual’e la predizione della medcanuantistica?

In meccanica quantistica, ad ogni variabile dinamiceiene associato uoperatore
lineare f, che agisce nello spazif delle funzionid’onda. Un operatore lineafsoddisfa
per definizione, A A .

f(Cllle—i-CzLIJz) =cfPr+cafysy, (2.39)

dovecs ¢, sono costanti complesse arbitratiee relazioni di Heisenberg implicano I'in-
troduzione del concetto di umaedia quantisticao valore d’aspettaziondi un operatore
in un dato stato. Esso puo essere definito, nel caso defdiope di posizione, come

@Dy =/dqqlw(qﬂz:/dqw*(q)qw(q), (2.40)

8Al contrario, il prodotto tra I'indeterminazione gi, un istanteprima e I'indeterminazione d immediata-
mentedopoil passagio dell’elettrone per la fenditura, nel secondengsio discusso qui, ha solo un significato
filosofico, non essendo tale prodotto utilizzabile come c@ore iniziale per processi successivi.

9Esempi: la funzione d’onda di una particella in tre dimenihm la formay(r,t); gli operatori differenziali

2 2 2 - - T A
2.0, 0, .0%= ;7 + ;7 + 53? sono operatori lineari; 'operatorg — U (r)w & lineare, mentr@y = P2 non

¢ lineare.
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visto che|p(q)|? & la densita di probabilita. Generalizzando, & natuaafinire il valor
medio dell'operatore generidonello statap con

Wifly) = [ daw (@) o) (2.41)

ma la relazione tra questa quantita e la media dei rissipaiimentali della variabilé non
e owvia.

Infatti, il risultato di una singola misura della variabdemamicaf & uno deglautova-
lori. di f, fy: i

fn = fan, |[nl] = 1. (2.42)

Le autofunzioniy, descrivono gli autostati dell’operatore: stato in cui lssura dif da
con certezza il valoré,.

Un generico stato & descritto da una combinazione lineare

W(a) = catn(a). (2.43)

di autostati{yn}. Il secondo
Postulato Fondamentale della Meccanica Quantistica

asserisce che la probabilita di ottenere il risultitaella misura dif fatta nello stato (2.43)
e data da

Ph = |cnl? (2.44)

Facendo uso dell’'ortonormalita degli autostati

(Wnltpr) = [ W = B (2.45)

('ortogonalita degli autostati relativi ad autovaloiiversi sara dimostrata nella sezione
successiva), la condizione della normalizzazione deditodi,

Wil =1,

implica che

Ph=Y [ca2=1. (2.46)
Segue allora che il valore d’aspettazione dell’'operafamello statay, (3.84), & uguale a
Wil = [ day’ (@) (e = ¥ leafa =3 Pao (2.47)
n n
dove abbiamo usato la linearita dell'operatore. (2.4@ustamente la quantita da confron-

tare con il risultato mediato delle misure ripetute.
Una formula alternativa per la probabilita (2.44) &

Pr = |(Wn|W)[? (2.48)

visto che il coefficiente dello sviluppo, usando la relagath ortonormalita, (2.45),
uguale a

(nl) = [ datin(@)” (@) = o (2.49)

In altre paroleja probabilith di trovare un determinato risultato nella misura diéfil
modulo quadrato della proiezione della funzione d’'ondaedativa autofunzione.

1ONelle (2.45), (2.47), (2.49) introduciamo la notazione @@, con i “ket”, |), e i “bra’”, (|.



44 CAPITOLO 2. PRINGPI DELLA MECCANICA QUANTISTICA

2.1.4 Risultati reali per una misura; Operatori Hermitiani

Il fatto che il risultato di misura di una quantita fisica sin numero reale, impone una
condizione particolare sull’operatore associato. Infaisti i postulati della meccanica
quantistica,f deve essere tale che i suoi autovaliari.e., possibili risultati sperimentali)
e di conseguenza il suo valor medio siano in qualsiasi séatia r

Prima di tutto definiamo ifrasposto f diun operatore. Dato uno stafp se esiste una
funzioney € # tale che per qualsiagic # vale la relazione

/dq(fcp*)w = /dqtp*x, (2.50)
allora
x=fTy. (2.51)
Il coniugato Hermitianali un operatore & definito come
=Ty =(f)T. (2.52)
Un operatore &ermitiano se
fT=f, (2.53)
i.e.,se
(@fw) = (W[fe)" = (foly), V0. (2.54)

Per un operatore Hermitianfosi ha infatti (f) = (f)*, prendendap = @ in (2.54). In
particolare, petp = Y, si trovaf; = f,, come richiesto.

Nota:
L'Hermiticita di f & anche necessaria. Infatti, supponiamo che valgé|y) = (W|f|w)* per
qualsiasip. Ponendap = x + €% ¢, troviamo che

(x| flg)+e ' (gff[x) € R, (2.55)
(reale) per qualsiasi valori di costante reale. Segue che
(@ flx) = xIflo), (2.56)

per ogni scelta dk, @, che significa ché & Hermitiano, per definizione ((2.54)).

Arriviamo alla conclusione chad ogni variabile dinamica & associato un operatore
lineare e Hermitiano.

Esempi: 'operatorg, y, X2, id/dx, id/dt ecc., sono Hermitian@/dx non & Hermitiano.

Teorema: Gli autostati corrispondenti ad autovalori diversi di ureogtore Hermitiano
sono ortogonali.
Dall'eq.(2.42) segue

/dqw;fmn: fn/dqw,*nlvn; (2.57)
e un’analoga relazione in cnie m sono scambiati,
/dqwrﬁflvm: fm/dqwi‘,wm. (2.58)
Prendendo ora la combinazione, (2.57) - (2:58)trova
(o= fr) [ dawinn = [ dagin(f — 1) =0, (2.59)
dove & stato usato il fatto cHe,} sono numeri reali, 6" = f. Segue
/dqtp;*ntpn —0, se fo fm. (2.60)

[ )



2.1. PRINGPI E LEGGE DELLA MECCANICA QUANTISTICA 45

2.1.5 Prodotti di operatori, Commutatori, Osservabili conpatibili

Il prodotto di due operatori & definito da

fogw = f(gu). (2.61)

In generale gli operatorig e gf sono diversi. llcommutatordra due operatorf e g &
definifto da

[f,g] = fg—gf. (2.62)
Se[f,g] =0, i due operatotommutano
Inoltre, i commutatori soddisfano all’identita di Jacobi

[f.[g,h)) +[g,[h, f]] + [, [f,g]] = O (2.63)

(cfr. vedi 1.2.2.)

Nella discussione delle osservabili gioca un ruolo impudal seguente
Teorema:

Se due operatori f e g commutano, esiste una base di statiamuali e complet{ yn}
tale che

fPn = faln;  gPn = GnPn. (2.64)

In altre parole si possono trovare gli stati che sono simetimente autostati sia fliche
di g. | due operatori corrispondono percio a due quantitaHesi@sservabili) compatibili,
che possono avere simultaneamente valori definiti.

Dimostrazione: Nel sottospazio di autostatgdion determinato autovalogg, W}

QUL =gnWl:  i=12,..., (2.65)
g agisce come un operatore unita (a parte una moltiplicazibnn numero),
Gij =/dquﬂ*gw‘ = Onjj -
L'operatoref in questo sottospazio in generale non & diagonale,
fyn = Fij wh, (2.66)

dove abbiamo utilizzato la linearita die il fatto chef e g commutano, per concludere che
f W}, € un autostato dj con autovalore),. Dal fatto che I'operatoré & Hermitiano segue
che (sopprimendo I'indica)

i = [ daw 19! = [da(r ey = (f daul” rl)’ = Fj:

F € una matrice Hermitiana. Una matrice Hermitiana puoresdimgonalizzata con un
atrasformazione unitaria

W= U@, d:(Ufl)iquj:UiHij (2.67)

fir O

. 0 fo
UtFU=F=1| | ) (2.68)

0O O
ulu=uuT=1 (2.69)

Nella nuova base,
fg = Ulfy =UlFk = Ul Fued

= (U'FU)i¢ = fig. (2.70)
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Chiramente una matrice uni@; € invariante per qualsiasi trasformazione unitaria, iperc
gli stati ¢ sono autostati simutanei flie dig.

In breve, si tratta semplicemente di diagonalizzare I'apg@ef nello spazio di autostati
(degeneri) appartenenti ad un autovalorg,ai vice versa. o

Ricapitolando, s¢f,g] = 0, i due operatori corrispondono a due quantita fisiche di cui
valori possono essere simultaneamente precisati: sondtaimleamente osservabili con
arbitraria precisione e non sono condizionate dalle refazl'indeterminazione.

La discussione sopra chiaramente puo essere general@zzso di pit operatori che
commutano tra di loro. Partendo da un operatore qualsiast;ig al concetto dosserva-
bili massimalj i.e., un insieme massimale di tutte le variabili dinami¢kg} con relativi
operatori che commutano tra di loro. Gli autovalori di takservabili massimali forni-
scono una caratterizzazione completa dello stato. Laasdeliale insieme massimale di
osservabili non € in generale univoca.

Vice versa, la relazione di Heisenberg si riferisce, appuatcoppie di variabili di-
namiche che non commutano, e in particolare a coppie canerdelle variabili (vedi
Sez. 2.1.6).

Esercizio:
Il valor medio di un operatore di forma A in qualsiasi stato & semipositivo definito.

(AT A, = /dq WAt AY = /dq|AL|J|2 >0. 2.71)
Esercizio: Dimostrare
(AB)T=BTA"

2.1.6 Operatori di posizione e di impulso, Commutatori fonédmentali,
Relazione di Heisenberg

L'operatore di posizione (coordinate generalizzate)amgis modo semplice

qu(a,t) =aqw(a,t), (2.72)
esso corrisponde alla moltiplicazione gl{questo fatto era implicito nella definizione di
<C|>.)L’operatore dell'impulso canonicamente coniugatpé
p=—i h‘%, (2.73)
e per una particella in tre dimensione,
p = —ih0 (2.74)

Segue che le due variabili canonicamente coniugate sathaish relazione di commutato-
re,

[, =ih| (2.75)
Per una particella in tre dimensione,
X, pj] = ihd&;j. (2.76)
Le componenti dg tommutano tra loro, ed cosi anche le componernpi di ~
%i,xj] = [pi, pj] = O. (2.77)

Osservazione
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La somiglianza tra queste relazioni e quelle soddisfatigedlantesi di Poisson in mec-
canica classica, (1.37), non & casuale. Dal punto di vistadle, infatti, la meccanica
guantistica pu0 essere vista come una deformazione,

{f.gt— %[f,g], (2.78)

della meccanica classica, espressa in termini di pareditBgiisson.

Relazione di Indeterminazione di Heisenberg

Ora che abbiamo definito operatori, I'azione di un operasoigi stati, i commutatori
tra operatori e il valor medio di un operatore in uno statam& finalmente in grado di
dimostrare la relazione di Heisenberg in modo piu rigordsmdiscussione della sezione
2.1.2 lasciava molti punti oscuri. Dimostriamo infatti ¢chger una qualsiasi coppia di
operatori HermitianQ, P che soddisfano

[Q,P]=ih, (2.79)

e valida la relazione di Heisenberg, (2.85) qui sotto. Siihfattore %
L'indeterminazione dQ o di P & definito da

AQ=/((Q-Qo)?).  AP=,/((P—Py)?),

Qo= (Q) = (WIQW); Po=(P) = (W[P[W), (2.80)

sono i valor medi dei due operatori nello stgtoConsideriamo un operatore

dove

A=Q—-Qo+ia(P—PRy), (2.81)
dovea € un numero reale qualsiasi. Facendo uso del fatto che
(WA'AY) >0, (2.82)
per qualsiasi operatore si ha
((Q—Qo)?) —ah+a?((P—Py)?) >0, (2.83)

una disuguaglianza valida per qualsiasUn’espressione quadratica & semidefinita positi-
va quando il suo discriminante & negativo o zero:

R% — 4(AQ)?- (AP)? < O; (2.84)
ie.,
A
AQ- AP > 3 (2.85)

dove abbiamo definito lo scarto quadrato come media sulio stajuestione,

(AQ)? = ((Q—Qu)%) = (- QF) = (@) — (Q)%, (2.86)

(8P)? = ((P—Po)?) = (P?|) — (|P)>. (2.87)
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2.1.7 Evoluzione del sistema, Equazione di Schdinger

L'evoluzione temporale degli stati deve essere descrétardequazione lineare, come ab-
biamo gia accennato. L'equazione fondamentale della amca quantistica che descrive
I'evoluzione temporale dello statBguazione di Sclidinger, e:

2 w(at) =A@ B (Y (289)

doveH & I'operatore dell'energia, 'Hamiltoniana. La (2.88)ssituisce I'equazione di
Newton. Per ipotesi, 'Hamiltoniand & uguale a,

doveH(q, p;t) € la Hamiltoniana classica.
In altre parole, la regola fondamentale della meccanicatigiica € I'associazione

0 0
H Hlﬁa, Pi Hflﬁa—Xi (2.90)

La relazione tra I'impulso e I'energia,
H =H(q, p;t) (2.91)

(per es.,H(q,p) = % +V(q)) si traduce in unaondizione sullo stato fisico (funzione
d’onda), che & I'equazione di Schrodinger.

Onda piana
E possibile dare una motivazione euristica per questa guwagconsiderando un’onda piana

Yo = coste H(W-™) (2.92)

che rappresenta una luce monocromatica con polarizzafiese L'idea € di considerarla come
soluzione di un’equazione quantistica. ApplicarinHé sug si ha

i ﬁ% Yo = HCL)LIJO =hv Yo (0): 2Tl\)) (293)
Ma sappiamo che per (il quanto di) una luce monocromdtica la sua energidyv = E ,
.0
i ﬁa Wo=EWpo: (2.94)

i.e.,l'autovalore di H & I'energia. D’altra parte, la relazione di de Broglie rivela che

_m_p
=5 =r (2.95)
di conseguenza
0
—I ﬁ&wo = pWo. (2.96)

Questa relazione suggerisce chiéia% ¢ I'operatore che rappresenta I'impulso.

Inoltre, tra I'autovalore di energia = hv e quello dell'impulsop = h/A esiste una nota relazione
E = pc, la relazione cinematica (relativistica) corretta tra €egia e I'impulso di una particella libera
e senza massa (fotone).

11E yn fatto misterioso, che queste regole scoperte nellandbmeccanica quantistica non relativistica, hanno

una struttura perfettamente compatibile con il principdialrelativita specialep, — i R-2;. Tale & la base delle

oxH -
equazioni relativistiche, come I'equazioni di Dirac, o el Klein-Gordon.
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L'equazione quantistica in questione e I'equazione di BiAbert,

1 02
[? ﬁ*A]LI»':O, (2.97)

che non & altro che I'equazione di Maxwell nel vuoto per igpaiali scalare e vettorial&)(= @,A;)
nella gauge di radiazione. Nel caso nonrelativistico $&o# I'equazione di Schrodinger.

Questa osservazione euristica per la legge della mecoguiécdistica non & che uno dei modi per
vedere la sua ragionevolezza, e in nessun modo la giustéidamostra la sua unicita. L'aspetto non
“usuale”, rispetto alla legge classica, tuttavia, riflettenplicemente il fatto che la nostra intuizione
e basata (0 meglio, si & evoluta basandosi) sulle esgerien scala macroscopica (la sensazione
che il moto di una particella abbia una traiettoria ben ntascetc.). Tale intuizione & decisamente
inadeguata al mondo atomico. In ultima istanza, la giustiiiene delle leggi di meccanica quantistica
e la sua correttezza empirida., sta nelle innumerevoli conferme sperimentali, come debrkese
I'equazione di Newton.

La correttezza e consistenza dell’equazione di Schrédieglella regola di meccanica quantisti-
ca si puo verificare tuttavia anche dal fatto che essa dsuikato classico corretto, nel limite— 0
(vedi dopo).

Esempi:

e Per una particella in tre dimensioni,

H:p—2+V(r):fi2D2+V(r) (2.98)
2m 2m
ed & Hermitiano.
[ )
H:p—2+gr-p, p=—ih0, (2.99)
2m

non & Hermitiano, pertanto non & accettabile come buomailtdaiana;

P g
H=omt2

e invece Hermitiano ed € accettabile come operatore iptignt

(r-p+p-r) (2.100)

Quest'ultimo esempio mette in chiara luce il problema di¢ggior-ordering”, una sor-
ta di ambiguita nel trovare I'operatore Hamiltoniano, pelamiltoniana classica di un
sistema.

Consideriamo ora i sistemi per i quali 'Hamiltoniana eipehdente dal tempo,
H=H(GpH; ). (2.101)
L'equazione agli autovalori pet,
HWn = Enln, (2.102)

e chiamata anche essquazione di Sclidinger, 0 equazione di Schrodinger indipendente
dal dal tempoE, autovalori d’energia. Ora,

d d N d X
aEn = a/dqunEn'-lJn: a/dquanJn

1 . B
~ =/ dawiH.HIgs o0, (2.109)

percio
E, = cost. (2.104)
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Gli autovalori di energia di un’Hamiltoniana indipendemtal tempo sono costanti del
moto, da cui il nomestati stazionari per autostati corrispondenti.

La funzione d’onda di uno stato stazionadipendedal tempo, ma in modo semplice.
Risolvendo I'eq. di Schrodinger, (2.88), si ha in questica

Wn(t) = e Et/Ay.(0), (2.105)

doven(0) & la funzione d’'onda all'istante= 0.
La soluzione generalalella eq. (2.88) per uno stato generigdi.e., non necessaria-
mente stazionario) € data da:

W(t) = 3 ane =/ (). (2.106)

dove i coefficienti dello sviluppo sono determinati dalladizione al contornap(t)|i—o =
¥(0),
PO)= T an(0).  an= (Wn|P(0)).
n

Piu in generale, la dipendenza temporalevdébr mediodi un operator® in uno stato

W,
(©)u = (WioW) = [ dayroy. (2.107)
e data da:
4 0p = Wi 2o+ Lio,H)w) (2.108)

Segue dunque che §&/0t)O = 0, e se I'operatore commuta céh allora

d
G (Qu=0. (2.109)

In questo caso I'operatof@e conservatoE interessante notare la somiglianza dell’eq.(2.108)
con I'equazione che descrive la dipendenza temporale divariabile nella meccanica
classica, in termini di parentesi di Poisson.

Esercizio: Verificare I'eq.(2.103), I'eq.(2.106) e I'eq.(2.108).

2.1.8 Spettro continuo; la funzione delta di Dirac; autosté di posizio-
ne

Finora gli autovalori di operatori sono stati assunti déicin meccanica quantistica, certi
operatori prendono autovalori continui (per es., I'operatdella posizione,, I'energia per
I'elettrone non legato, ecc.). L'equazione agli autovigloende la forma

fr(a) = fyr(a) (2.110)

dove oraf prende valori continui. (cfr. (2.42)) Una funzione genaipaid essere sviluppata
in termini di autostatip

v = [dfafvia) (2.111)
(cfr. (2.43)). La probabilita di trovare il risultato tfae f +d f nello statoy e

dP=|a(f)|?df. (2.112)

(cfr. (2.44)). Poiché la probabilita totale & uno,

/df|a(f)|2: 1; (2.113)
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mentre la condizione di normalizzazione della funzionend@e

[ daw(a) wi@) =1 (2.114)

Larelazione di “ortonormalita” degli autostati € pitttle nel caso di spettro continuo.
Sostituendo il coniugato complesso di (2.111) nell'’ed.12) si trova

1~ [dfa(f)( dowi(@w(a). (2.115)

da cui (cfr. (2.113))
[ dawi(@w(a) = (1) =ah) (2.116)

che e analogo dell’eq.(2.49). Un'ulteriore sostituzioled’eq.(2.111) in (2.116) da luogo
ad una relazione di consistenza:

a(f) = [ dr'a(")( | dawi(@wr () (2.117)

Nel caso di autovalori discreti, la relazione di ortonorizedzione (2.60) segue da una
analoga equazione. Perché I'eq.(2.117) sia valida pdsigsaa(f), I'espressione dentro
la parentesi quadrata deve essere identicamente nulla€f’. D’altra parte I'integrale
su f’ deve ridaref d f'a(f’)[...] = a(f) : & evidente ché ..] non puo essere una funzione
nel senso normale. Tafenzione generalizzamdistribuzioneg stata introdotta da Dirac e
si chiama funzioné(x) di Dirac.

Definizione
0(x)=0; x#0; 06(0)=o0; (2.118)
e
b .
g(0), sea<0<b;
dxd(x)g(x) = 2.119
/a (3)g(x) {0, altrimenti ( )
per una funzione qualsiagix) continua ax = 0. A
Segue dalla definizione
b .
g(c), sea<c<hb;
dxo(x— = 2.120
/a x8(x—c)g(x) {O, altrimenti ( )

Alcune tra le pit importanti proprieta della funzionetdedono:

o(—x) = 9d(x)
1
o(ax) = Hé(x)
F)d(x—y) = f¥)3(x-y);
x0(x) = 0;
d ) _J1, sx>0;
00 = 80, e(x)—{Q o0
d 1 .
o(f(x) = 2 |f,(xi)|6(x—x.), f(x)=0,i=1,2,...r. (2.121)

La funzioned(x) & pari, percio

o 1
/O dx5(x) 1(x) = 5 (0). (2.122)
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La funzione delta puo essere definita come limite di unaifume Alcuni esempi (le
operazioni di limite vanno fatte fuori I'integrazione):

5(x) = lim ﬁe*xz/sz; (2.123)
o(x) = LI[noo &TDIEX) (2.124)
3(x) = lim SifL(XLZX> : (2.125)

3(x) = lim. %[ ﬁsxz; (2.126)
x—lis :§+T{i6(x), (2.127)

dove & il valore principale di Cauchy.
Dimostrazione di (2.124): Supponiamo che: 0 < b.

b g b g
im [CaxSMX t00 — im dxM(f( 0) +xf(0) +...)
L—ow g T™X L—oo T™X
sm Lx
= Jmlt©) [ dx o)
_ 1o / a5 _ 1(0), (2.128)
dove I'ultimo integrale puo essere calcolato con il metddategrale nel piano complesso.
Vedi il Complimento di questa Sezione. & La dimostrazione di (2.125) & analoga.

(Dimostratela)

In termini di funzioned(x), la relazione di “ortonormalitd” nel caso di autovalorieo
tinui dunque prende la seguente forma:

[ dawi @@ =5(f - ). (2.129)

(cfr. (2.45) nel caso di autovalori discreti.)
Un'importante applicazione della funzione delta & il segpe integrale,

/ dx & kK) — om3(k—K), (2.130)
e analogamente in tre dimensioni
/ dr &K — (2383 (k —K'). (2.131)
Sfruttando questi risultati si pud dimostrare la formubadrsa delle trasformazioni di
Fourier: se .
X) = / dke W (K), (2.132)

la trasformata di Fourierdi F (x), F (k), & data da:

El) = %_[/:dxékxF(x). (2.133)
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2.1.9 Relazione di Completezza

Esistono delle relazioni di completezza, in un certo sensdi dlle relazioni di ortonorma-
lita. Sostituendo (2.116) in (2.111) troviamo infatti

— [ddwid) [/ dtwid)wi(@; (2.139

la consistenza richiede allora che sia valida la seguelseioae

[ dtwr@uwie) = s@-d) (2.135)

(chiamataelazione di completezial secondo membro e simbolico: per una particella in
tre dimensioneg — r, per esempio

d3(q—q) — &(r—r') =5(x—X)3(y—y)d(z—2). (2.136)

Analogamente per autovalori discreti troviamo

Z Wn(q =3(q—(). (2.137)

Infine, per un operatore che possiede sia autovalori digcketti propri) che autovalori
continui (detti impropri) vale la relazione di completezza

> Un(@Wh(e) + [ dTwr(@wi(d) = S(a— ). (2.138)

Il significato della completezza delle autofunzidui, } sta nel fatto cheualsiasi stato
Y pud essere sviluppato in termini di esse:

= 32 + [dfalf)wi(a = Y N4 4n(a )+ [dHiwwi@. (@2.139)

2.1.10 Autostati di posizione; autostati di impulso

Gli autostati di posizionsono dati in termini di funzione delta. In una dimensione,

Wy (X) = 8(X—X0), (2.140)

rappresenta una particella localizzataxin (questo € ovvio intuitivamente), e soddisfa

XYy, (X) = XoWx, (X) grazie alla proprieta della funzione delta. L'insieme alicstatiyy, (X)

soddisfano le relazioni (2.129) e (2.136), come si verifacdmente facendo uso di (2.121).
L'operatore diimpulso &

p = —ih0. (2.141)
Autostati dell'impuls@sono dati da:
1 ipgr
Wpo(r) = CoEE en, (2.142)

dovepg & un vettore numerico (i.e., non un operatorg),, soddisfa I'equazione agli
autovalori,

P Wpy = PoWpy- (2.143)

In generale, gli autovalori dell'impulso sono continuirédazione di ortonormalita (con la
particolare normalizzazione degli autostati (2.142) ) &:

/d“lJB(fNJp/(U =& (p—p'); (2.144)
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mentre la completezza di stdtp, } si esprime come

/dpmp(r)m;(r') —&(r—r). (2.145)

Dimostriamo ora la relazione (omettendo il simbolo “capgel

p —lpro

H(r+ro,p)=¢e ® H(r,p)e 7 (2.146)

per un operatore qualsiasi.
DimostrazioneE sufficiente considerare il caso di una dimensione: caoubi

Gxa)=eTF(xe ™ p= —ih‘%(. (2.147)

G(x,0) = F(x) ovviamente. La prima derivata rispettoada =0 &

0 -6(¢a)la0 = % [ip/f F(]e a0 = F'(x), (2.148)
dove e stato usato il commutatore,
ip/RF (] = [ F(X)] = = -F ()~ F(X)% =F(x (2.149)
P/, X T dx dx ‘ '
Analogamente si trova che
d2
dozC*% Mla=o0= F"(x), (2.150)
ecc. Si ottiene cosi
a d" a d"
G(X,C() - ; HwG(X,a”g:O - ; Wd_)(nl:(x) - F(X+ G). (2151)

La formula (2.146) dimostra che I'operatore di impulso geriatraslazionedella po-
sizione. Applichiamo ora questa formula all’Hamiltonia® I'Hamiltoniana € invariante
per traslazione, i.e.,

H(r +ro,p) =H(r,p), (2.152)
allora _ _
1p-rg —Ip-rg
H(r,p)=¢e" H(r,p)e 7 . (2.153)

Sviluppando il secondo membroiig al primo ordine, si ottiene
[pi,H]=0: (2.154)

ciog, se il sistema € invariante per traslazione I'impuismmuta con I'Hamiltoniana: esso
e conservato (vedi (2.108)). Questo risultato generalizzanaloga e ben nota relazione
tra I'invarianza per traslazione e la conservazione deplilso in meccanica classica.
Notiamo infine che le proprieta degli autostati dell'impaie quelli della posizione sono
in accordo con le relazioni di Heisenberg. Infatti, nellatstp,, I'impulso della particella
e ben definito; in compenso la sua posizione & completanireaéfinita, e come si vede da
|Wp, |2 = cost. Viceversa, nellautostato della posiziog, (x) = 8(X — Xo) la posizione &
perfettamente definita mentre I'impulso e del tutto indédincome risulta dallo sviluppo
di Fourier,

B(r—r)= 21_{ﬁ)s/d3pe'p ~")/Map);  ap)=1 (2.155)

Nota e Riflessione
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Uno studente attento avra notato che autostati che apgare ad uno spettro con-
tinuo (autovalori continui) non sono normalizzabili. (ReEsempio si paragoni (2.4) con
(2.144).) Possono essere tali stati considerati “fisicibmanque accettabili in meccanica
guantistica, in vista dell'interpretazione di funzionedda, discussa in Sec.2.1.1?

Dal punto di vista matematico, in meccanica quantisticays & generale a che fa-
re con uno spazio vettoriale (di funzioni d’onda) di infindamensione; le operazioni di
somma, limite, ecc. vanno definite in modo consistente mgphzio. Questo rende indi-
spensabile considerare spelziusi i.e., spazi che contengono, insieme ad ogni successione
{Un}N=1,2,..., WN € H, anche il suo limite liy_.. Yn come suo elemento. Le pro-
prieta di questi spazi (spazi di Hilbert) saranno discussepiu esattezza in S€¢. Gli
autostati dell'impulso (in una dimensione) in certo senssspno essere considerati come
limiti di una successione,

Y = costeie (/N N 1 23 (2.156)

C’e una differenza evidente, dal punto di vista fisico, woatati di energia con auto-
valori discreti e quelli corrispondenti allo spettro conitd. | primi, avendo funzioni d'onda
normalizzabili, descrivono infattitati legati i.e., stati in cui la particella & confinata in una
regione finita dello spazio; la probabilita per trovare datjzella si annulla & | — c. Vice
versa, i secondi, cop|? — cost. ar| — o, descrivono stati dicattering

Ovviamente i concetti come onda piana (con loro infinitarestme spaziale) o par-
ticella completamente localizzazta in un punto spazialapaun’idealizzazione. Nessun
sistema fisico ha realmente un’estensione infinita, per pgenNonostante cio, e auspi-
cabile, ed ¢ il caso in molte teorie fisiche (la meccanicantjstica inclusa ), che latrut-
tura matematicadi una teoria fisica sia tale che la descrizione di situazidealizzate
sia naturalmente contenuta nella teoria stessa, spessoda particolarmente semplice e
elegante.

2.1.11 Problemi

1. Si dimostri che:

a)(fHT=f;

b) (fg)" =g'f";

c) [f,gh = g[f,h[+[f,glh, [fg,h] = f[g,h[+[f,hlg;
d) x & un operatore hermitiano;

e)—i g—x € un operatore hermitiano;

f) Se f eg sono hermitiani, lo sono anchHg+gf ei[f,q];

g) Le seguenti matrici sono hermitiane:

a3 @(03) ()

mentreo;0, € antihermitiana.

h) Per tre operatori qualsiaﬁj 4, h vale I'identita di Jacobi:

[[f.4], A +[(6.h], f] + (A, f],6] = 0
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i) Si ricavi il passaggio dalle parentesi di Poisson cldssia quelle quantistiche (com-
mutatori tra operatori) assumendo che le loro propricaacile stesse. Si usi in
particolare la proprieta:

{f.gh} =9o{f.h}+{f.g}h

e si assuma che la parentesi di Poisson quantistica di graetiermitiane sia hermitiana
e che le dimensioni fisiche delle parentesi di Poisson siastekse nel caso classico
e in quello quantistico.

j) SeA & un operatore qualsiaal A ha autovalori non negativi.
2. Verificare le proprieta della funzio®x), (2.121).

3. Sitrovino le espressioni esplicite dei seguenti operato

I - I A
dx ' dx X ' dx

2
<%(x> o [(AO+AND2 5 (L=M)(L+M)
4. Si trovino le regole di commutazione dei seguenti operato
d : ) 0
x,& : ihO, A(r) ; %,f(r,e,q))

5. Si trovi I’hermitiano coniugato degli operatori:

o .

0x ' oxn

6. Dati due operatoti edM che soddisfan{l, M] = 1 si calcolino:
[L,M2Z o [f(L),M].
7. Dati due operato e B che non commutano, cahinvertibile, provare che:
a)A-1B°A= (A"1BA)?%;
b) A~'B"A = (A"1BA)";
c)Alf(B)A= f(A1BA).
8. Sianoc un numero € un parametro. Dimostrare che:

[AB]=c implica e”Be*A=B+CC

9. Trovare le autofunzioni e gli autovalori dei seguentiraperi:

d ; ii ; X+ d ; a4 ; sin—
dx ' dx ' dx ' do ' do
d ad, ¢  2d
Sl . ] . = ==
COSdcl) ' € ' dx2 + x dx

(Suggerimento per l'ultimo: fate agire I’operatore%é2 e studiate I'equazione per

f(x).)
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\z

~
C z=0

Figura 2.3:

2.1.12 Complemento: Integrale nel piano complesso e teorentli re-
siduo

L'integrale

|—/ dz>"? sinz

nella (2.128) pud essere valutato facilmente col metodntd'grale nel piano complesso.
Poiché l'integrando e analitico (olomorfo) attorna & 0, si pud modificare il cammino
dell'integrazione, sostituendo un segmento di retta att@ll'origine con un semicerchio,
per evitarez= 0. (Fig. 2.3)

sinz gz g2
= [0e% = a5l

Ora che il cammino non passa & 0 si puo spezzare l'integrale,

eiz efiz
| =1 l2, 1= [ dz=—, I:—/dz_,
1+l ! /c 2iz 2 c 2iz

e in ciascuno dij, i = 1, 2, aggiungiamo un semicerchio di ragfldR — o), nel semipiano
superiore if1 e nel semipiano inferiore pés (vedi le figure),

e|z efiz
I = —, lo== .
1= d 2iz 2 /cdeZiz

Tale scelta € dettata dalla convergenza degli integta)i-e «. Il contributo da semicerchi
grandi & trascurabile, per cui tale modifica non cambialdneadegli integrali. Secondo il
teorema del residuo (teorema di Cauchy), il primo integeatero, il secondo & uguale a
(—2mi) volte il residuo &= 0: perciol; =0, I =1, | =1+l =Tt

C2
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2.2 Equazione di Schidinger: Proprieta Generali

In questo capitolo le proprieta generali dell’equazionesdhrodinger sono discusse e
saranno illustrate con alcuni sistemi uni-dimensionali.

2.2.1 Proprieta generali del’Equazione di Schibdinger; Teorema di
Ehrenfest; Denisita e corrente di probabilita

Consideriamo una particella in tre dimensioni. L'equaeiai Schrodinger indipendente
dal tempo
Hy = EY, (2.157)

dove ) .
_p* _ _ﬁ 0
H= 2erV(r) = om +V(r). (2.158)

e un’equazione differenziale del secondo grado. Di camsega la sua soluzione richiede
un’opportuna condizione al contorno sul valore della foneid’'onda e delle sue derivate
prime. In accordo con la sua interpretazione, richiederehmla funzione d’onda sia
continua e monodroma, dappertutto. Imporremo tale comdimunche dove il potenzialé
risulta discontinuo, ma finito.

La condizione di continuita sulla derivata prima al pungosegue dall’'equazione di
Schrodinger (scriviamo in una dimensione per sempliaitavicino axg)

ﬁZ
—5= W' (%) = (E-V(x))w(x). (2.159)

2m

Integrando infatti i due membri nell’intervalley — €, %0 + €], si ha

Wito +) - Wlo ) ~ 2623 (E-V(x)Ula) =0, (2.160)

se il potenziale & finito & = Xp. Segue che la derivata prima della funzione d’'onda &
continua, dappertutto nella regione dove il potenzialaigofi (Vedi la sezione 2.2.8 sulla
condizione di continuazione in presenza di potenzialepdid(x — xp). )
Dalla proprieta
(p?) >0, (2.161)

valida per qualsiasi operatore di formdA, segue immediatamente che gli autovalori di
energiaE, soddisfano
En > Vimin, (2.162)

doveVmin € il minimo del potenziale.

Supponiamo ch¥ (r) — 0 a|r| — o, ma che il potenziale possa essere negativo a
finito. Risulta che tutti gli stati coie < 0 corrispondono a livelli discreti, i.e., a stati legati.

La funziona d’onda non si annulla necessariamente nelieneglassicamente proi-
bite, i.e., doveE < V(r). Il valore di ¢ & determinato dall'equazione di Schrodinger e
dalle opportune condizioni al contorno. Una conseguengaeito fatto & che le particelle
possano infatti penetrare, con probabilita finita, le ieaerdi potenziale che sono insor-
montabili dal punto di vista classico (conservazione dakrgia). Questi fenomereffetto
tunne), tra i pit importanti che caratterizzano la Meccanica Qistica, saranno discussi
in pit occasioni in seguito.

Teorema di Ehrenfest

Consideriamo il moto di un pacchetto d’'onda. L'Hamiltoraanla (2.158). Dimostria-
mo che:
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| valor medi degli operatori della posizione dell’impulsop e del potenziale ¥t)
soddisfano alle relazioni “classiche:

Smy=mr S =—(ow) (2.163)

Dimostrazione: per un operatore generico indipendenttedgbo, vale (vedi Sec.2.1)

ih‘%(@ = ([O,H]). (2.164)
PerO = mr il commutatore &
p?. .
[mr,H] = [mr, %] =ihp, (2.165)

dove abbiamo usato i commutatds, p2] = 2 px[x, px] = 2i A p, ecc, nonché il fatto che
eV(r) commutano. PeD = p, invece, il commutatorfO, H] & uguale a

[p,V(r)] = —ih0V. (2.166)

[ )
Ricapitolando, un pacchetto d’onda si muove secondo I'Eiqua di Newton, fatto che
appare giustificare l'identificazione di tale pacchetto odistribuzione materiale di una
particella classica (Born). Tale identificazione & errdlaa funzione d’onda rappresenta
la distribuzione dprobabilita. Si noti che un “frammento” dell’elettrone non & stato mai
osservato, la carica elettrica dell’elettrone & sengpraentre un pacchetto d’onda si puo
facilmente spezzare in due, se lo mandiamo contro una berrie

Densita di corrente; Equazione di continuita

|p(r)|? = p rappresenta la densita (di probabilitd) della particelUn’altra quantita
importante che ha una interpretazione fisica diretta & fesithedi corrente o di flusso (di
probabilita),.

Facendo uso dell’equazione di Schrodinger, si ha

d 2 *a a * _1 * _ 1k
G = WS (S W0) = Z(WHY - (HY))

1., P2 h202 |
= ﬁ[w (*H )*(*H Y]
1 ., RO RO,
= 0 AV (5 W)+ 0V
= -0 (2.167)
dove -
j = o ((OW)W— 'Oy}, (2.168)
ie.,
d +0:j=0: (2.169)
giP j=0: .
equazione di continuita. Se prendiamo un volume fiiteello spazio, si ha
g/d3r|w|2:—% dsn.j, (2.170)
dt Jv o

(il teorema di Gauss). Queste relazioni permettono di imetarej come densita di cor-
rente (di probablilita), le (2.169) e (2.170) come espmss della conservazione della
probabilita.
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Per una particella libera, rappresentata da un’onda partagtato dell'impulso),
p = e K(E-PT), (2.171)

si ha

j= = =V: (2.172)

uguale alla velocita classica. La funzione d’onda che maggnta un flusso unitario (in

media una particella attraverso una superficie unitariaimtervallo unitario di tempo) &
_ 1 YEt—pr

allora data daj, = Joe n(EPT),

Esercizio: Dimostrare che per una particella in un campo magneticoresBe= [J x A,

1

N I U 4 *
=5 W (= JA—{(P— AW} W] (2173)
Dimostrare che esso € invariante di gauge, se la funziomedd’ si trasforma in modo

opportuno.

Teorema del Viriale

Ilteorema del Viriale (1.74) in meccanica classica rigaarda media temporale dei ter-
mini cinetici e termini di potenzialéE interessante che esiste un teorema analogo in mec-
canica quantistica, che concerne le medie quantisticheadieiermini dell’Hamiltoniana.
Per dimostrarlo, basta considerare il valor medio del cotatote

P P
[pX+Xp,H] = [pX-‘,—Xp,%—I—V(X)] :z(lﬁ)[zﬁ_xv/]

(per semplicita di scrittura consideriamo il caso unidigienale) in uno stato stazionario,
Wn. Il primo membro si annulla:

(Wn|[pX+XP,H][Wn) = (Yn| (pPX+XP)[Wn) En — En (Yn| (pX+Xp)[Pn) =0,

dove abbiamo utilizzato la proprieta di un operatore HéamoH, che agisce a sinistra e
a destra ugualmente. Segue il teorema,

2
2<q-’n|2p_m|lpn> = (Un| XV’ |Wn). (2.174)

La generalizzazione del teorema ai sistemi tridimensi@niahmediata:

2
2 (Wl 5 W) = (Wl - OV ). (2.175)
(cfr. (1.74)).

Teorema di Feynman-Hellman
In molti problemi ci sono uno o piu parametri esterni; chiamolo g genericamente.
Gli autovalori di energi&n(g) € una funzione di essi. Esiste un semplice teorema

oE, <av>
han LY (i S 2.176
ag a9/, ( )

valido se il parametrg appare solo nel potenzialdimostratelq.
Tale teorema resta valido anche nel caso in cui il parametesreog varia lentamente
col tempo, e da la variazione adiabatica dei livelli di @ col tempo.
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2.2.2 Equazione di Schodinger in una dimensione

L'equazione di Schrodinger per una particella che si muowsa dimensione &
R? d?
(%W +V(X)) W(x) = EY(x). (2.177)

Lo studio dell'eq.(2.177) € importante come laboratogimrico per studiare varie situa-
zioni fisiche che possono sorgere e per imparare il funziemaondella Meccanica Quan-
tistica. Tuttavia, l'interesse in (2.177) e tutt'altroechccademico. Infatti, un problema
dinamico tri-dimensionale si riduce effettivamente a uahi-dimensionale, nel caso in
cui il potenziale ha una particolare forma,

V=VXY¥2: (2.178)

se il potenziale dipende solo da La sostituzional(x,y,z) = Y(X)@(y)n(z) in (2.158)
infatti da luogo a una equazione

(FderV0)v —F&ey) -Fé&ne
ey w0) e

| tre termini del primo membro, ciascuno dipendente solo nka delle variabili, devono
essere costanti. L'equazione ¢ risolta in termini di sioloizdi

=E. (2.179)

R? d?
(g V000 = Evoio;
2 d2
—ﬁW(P(y) = Exqy);
R2 d?
f%d—zzn@ = E3n(2);
E = Ei+E,+Es, (2.180)

di cui la prima & proprio la (2.177) (le altre sono equaziirschrodinger libere).
L'equazione di Schrodinger tridimensionale si riducectanei casi di potenziale a
simmetria centrale,
V =V(r), (2.181)

(vedi Cap.4.1.1)
Esempi

e Per una particella liberd,(x) = 0, I'eq. di Schrodinger &

ﬁz "
—5 b =EU, (2.182)
oppure
W= Ky, k= Z%E; (2.183)
gli autostati dell’energia sono _
etk (2.184)

0 una combinazione lineare qualsiasi di questi due
P = A Be X, (2.185)
conk > 0 arbitrario. La soluzione dipendente dal tempo &

k2h2

P(xt) =e B/NAd¥ L Be ™) E= S (2.186)
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Lo spettro di energia (I'intervallo degli autovalori perssé €E > 0 in questo caso;
perE < 0 la soluzione &p O exp+|k|x ed € non normalizzabile. Ogni livello con
energia positiva &€ doppiamente degenere.

e Una particella libera che si muove su un anello (lungo il leoddun cerchio). La
soluzione & come sopra (2.184), tranne che la funzionedd'@leve soddisfare la
condizioney(x+ L) = Y(x) per essere ben definita. | valori permesskdiono
quindik=2m/L, n=0,1,2,3,..., e lo spettro & discreto in questo caso

(2m)*h?

E. —
" 2mL2

(2.187)

ogni livello energetico positivo &€ doppiamente degenezatne lo stato fondamentale
conE = 0 e singolo. Vedi il sottocapitolo 2.2.7 per una discussipiul approfondita
del sistema.

L'equazione di Schrodinger in una dimensione ha varierfwig speciali. Una di queste
e il seguente teoremin un problema uni-dimensionale, non esistono degeraderivelli
discreti. In altre parole, ad ogni autovalorepHliscreto corrisponde uno e soltanto un
autostatap.

Dimostrazione: supponiamo, per assurdo, che ci siano dugisoi normalizzabilij,
e Yo dell’Eq.(2.177) con lo stesso autovaldtei.e.,

" 2 " 2
Y=~ E-UN W= —Z(E-U)p (2.188)

Moltiplicando la prima e la seconda equazione den Y rispettivamente, e sottraendo
termine per termine, si ottiene

W12 — Yoy = 0. (2.189)
Integrando quest'ultimo,
W1 (X)Wa(X) — Wa(X)W(x) = cost, (2.190)

Ma 1 = Y2 = 0 ax= +o0, essendo ambedue normalizzabili (stati discreti), perost= 0
sopra:

W1 ()W2(x) — W ()1 (x) =O. (2.191)
Integrando ancora,
logy; = logy, +cost., Y1 = costisy : (2.192)

dovremmo dunqgue concludere che le due funzioni d’onda ilteresppresentano lo stesso
stato, al contrario all'ipotesi fatta. A

~ N
S N

a b

Figura 2.4: Andamento generale della funzione d’ondaaHigppresenta la situazione per
E > V(x); Fig.b quella peE < V(x)
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Poiché I’'Hamiltoniana & Hermitian¥,(x) e E sono reali. L'equazione di Schrodinger
(2.177) ha i coefficienti reali. Di conseguenza, la funzidienda pud essere scelta reale.
L'andamento generale della funzione d’onda puo esserettieda:

LIJ” _ Zm(V(X) — E) LIJ

= (2.193)
Nell'intervallo doveE > V(X) (regione classicamente accessibile),
" O O
qJ,, >0 sep<h, (2.194)
Y <0 sey>0,

i.e., un andamento oscillatorio. Nell'intervalloxdoveE < V(x) (regione classicamente
proibita) abbiamo una situazione opposta
Y’ >0 sey>0, (2.195)
Y <0 sey<O, '

un andamento instabile. In ambedue i casi, la curvatjiracresce cofE —V(x)|. La
situazione ¢ illustrata in Fig.2.4.

Tenendo conto di queste proprieta non é difficile dimastilteorema di oscillazione
La funzione d’onda dell'n-simo livello discreto di enerdia n— 1 nodi (zeri).

Dimostrazione. Supponiamo cheéx) — c ax — 4o, di modo che il sistema abbia
solo livelli discreti. L'eq.(2.193) ha due soluzioni (noafizzabili o no) generali. Nella
ricerca di funzione d’onda normalizzabile, basta scegliara soluzion& che tende a zero
ax = —oo. Senza perdita di generalita si pud assumerelc$ia positivo & < 0 e |x| molto
grande. La normalizzazione gi puo essere fissata di modo afiéx;) = 1 dovex; & un
punto scelto in maniera opportuna. Partiamo con un valogaedigiafE < Vmin € studiamo
come cambia la situazione al crescer&di

() E <V(x), ¥x. Y & concavo l(J" > 0) dappertuttop continua ad aumentare come
funzione dix: Y diverge inevitabilmente a — . Segue che non ci sono autovalori
al di sotto diVpmin. (Questo “teorema” € gia stato dimostrato prima).

(I) E & appena maggiore ®nin, E1 > E > Vinin. Supponiamo ch& > V(x) perx; <
X < X2 e E <V (x) altrimenti. Y aumenta da zero (@= —o) fino ax = x;, dove
W(x1) = 1; trax; e Xz, P & convesso; a > x P & di nuovo concavoy{ > 0). E
owvio, per continuita, che fino a un certo valoreEi(appunto,E;) Y continua a
divergere a = o, e rimane non normalizzabile. (Fig.2.5)

(I E = E;. All'aumentare diE, l'intervallo x1,x2 dove & convessa si allarga e la
curvatura pek fissato aumenta. Per continuita ci deve essere un primoevdi,
Ej, per il qualey tende esattamente a zeroxa «. La funzione d’onda & allora
normalizzabile: il sistema & nello stato fondamentaley.@=6)y non ha nodi.

(IV) E1 < E < Ey. QuandcE € appena al di sopra &, la funzione d’onda si annulla ad
un valore dix finito, e diverge comé — —o ax — oo, (Fig.2.7). Si noti chep" =0
dovey = 0, per cui non & possibile chigritorni su dopo aver toccato zero.

(V) E = Ep. Al crescere diE, la regione classicamente accessibile (dove la funzione
d’'onda oscilla) diventa sempre piu grande. EBet E, la funzione d’onda tende
esattamente a zeraka= «. La funzione d’onda ora ha un nodo. (Fig.2.8)

(VI) Ripetendo I'argomentazione aumentando sempre Igaesi dimostra che h -simo
stato stazionario ha esattamente 1 nodi.

)
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I/—I\/

Fig. a

Figura 2.5: Andamento della funzione d’onda pgih < E < E;

=

/ \\

1 X2

X

Fig. b

Figura 2.6: Andamento della funzione d’onda pet E; (Stato fondamentale)

2.2.3 Buche di potenziale
Buca infinitamente alta

Consideriamo come primo esempio non banale di potenzialestadi legati, la buca di
potenziale di profondita infinita,

V(x) = 0, O<x<a, I
V(X) = o, x<0 I; x>a Il (2.196)

La soluzione negliintervallil e lll &
Y=0. (2.197)

Nell'intervallo Il, I'equazione di Schrodinger € queliaera:

ﬁz "
_fnw =Ey: (2.198)
con la soluzione generale
U = Asin(kx+ 0). (2.199)

La condizione di continuita = 0 impone che
Asind=0, — sindo=0; (2.200)
mentre quella x = ada
Y =Asin(ka+9d)=0, — sin(ka+9d)=0. (2.201)

La prima condizione si risolve can= 0 (la sceltad = messendo equivalentefa— —A.)
La seconda da allora la quantizzazione

KGR TR,

ka= Eh=—=——= =123... 2.202
a=n == on = omz" " 23, (2.202)
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Figura 2.7: Andamento della funzione d’'onda ggr< E < Ep

_

e

Fig. d
Figura 2.8: Andamento della funzione d’onda et E; (Il primo stato eccitato)

La funzione d’onda delii simo stato (normalizzata) e

W(x) = \/gsin(?x). (2.203)

EsercizioUna particella si muove in tre dimensioni, confinata in urepatale

V(r) = 0, 0<x<a 0<y<b, O0<z<g;
V(r) = oo, altrimenti (2.204)

Trovare gli autosati e gli autovalori dell'energia. Diserd la degenerazione dei livelli
energetici in generale, e nel caso di una scatola isotepdy = c, in particolare.

Buca di potenziale di altezza finita

Consideriamo ora il caso di un potenziale di altezza finita

V(x) = 0, O<x<a, I
V(X) = W, x<0 I, x>a (2.205)
e cerchiamo le soluzioni di tipo stati legati, con<OE < V. La soluzione in Il € come
prima:
. v2mE
W = Asin(kx+3); k= ?m (2.206)

Nelle regioni | e lll, I'equazione di Schrodinger prendddama:

" Zm(E —VO) . _ Zm(VO* E)
g __?Lp_}( W; K_iﬁ > 0. (2.207)

I numeri d’ondak ek non sono indipendenti:

2m

2, .2
k+K:h_2.

(2.208)
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La soluzione di (2.207) & expkx: la condizione di normalizzazione implica che va
fatta la scelta:

W = Be%
Yy = =Ce* (2.209)

nelle regioni | e lll, di modo che la funzione d’onda tende eoz@a ax = —o che ax = co.
La funzione d’onda e la sua derivata prima devono esserénc@ttraverso i confini
. . . . . ! U
delle diverse regioni, |, II, e ll. AX= 0 si deve imporre dunquiy = ;P =Y, :

k
B=Asind; Bk =Akcosd, — tand= o > 0. (2.210)

Si puo prendere, senza perdita di generalitdel primo quadrante,

0<06<T1/2; (2.211)
da (2.210) si trova
sino = \/1tj—irt]:r?6 - \/k2k+ e ¢;nﬁwvo <t (2.212)
La condizione di continuita tra Il e 11l &:
Ce @ = Asin(ka+9); —Cke "“@= Akcogka+9), (2.213)
cioe
—k =kcot(ka+9), — tanka+09)= JE( <0. (2.214)

Secondo questa condizione I'angéd®+ 6 € o nel secondo o nel quarto quadrante. Segue
che

sinka+8) = 42K+ _ s (2.215)
1+ tar?(ka+ o)
o semplicemente
Kat5— —d+2nm, (nN=1,2,...) oppure, (2.216)
-3+ (2n+1)m (n=0,1,2,...)

Ma poichéd soddisfa (2.212), si ottengono le equazioni implicite

ka= —2sin !

kh
nct (n=1,23...): 2.217
\/m + 2 ( ) 3 3 ) ( )
gueste danno (implicitamente) gli autovalori dell’'enargi
La (2.217) puo essere risolta graficamente. Da (2.215)&atr

E sinka+ coska= £1. (2.218)
Ponendo
ka/2=§; ka/2=n, (§,n>0). (2.219)
&,n soddisfano

oppure
gcot =—n, (B) (2.221)
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e allo stesso tempo
. maZVo
2R
(vedi I'eq.(2.208)). | punti di intersezione tra le due carf2.220) e (2.222), e quelli
tra (2.221) e (2.222), nel quarto del piaga> 0,n > 0, corrispondono agli autovalori
dell’energia.

Tali soluzioni sono facilmente visualizzate nel pighe n: (2.220) e (2.221) rappre-
sentano i vari rami delle curvg = &tang e n = —&cot mentre (2.222) rappresenta un

§2+n?

(2.222)

cerchio di raggi m;;;’" col centro all’origine. (Fig.2.9). Non & difficile vederliama che
il numero degli stati legati & per =1 < ,/% < om

o< \/%\@ < 7 : Esiste una sola intersezione tra le curve (2.220) e (2,228ssuna
tra (2.221) e (2.222) (vedi la Nota qui sotto). Vuol dire chiste un solo stato legato;

(i) 3 <4/ m;’:_;/o < 1 In questo intervallo ci sono due stati legati, una soluziooe

0 < ka/2 < /2 (soluzione del tip@), un’altra soluzione com/2 < ka/2 < Tt (tipo
B);

(iii) Per i< 4/ m;;;"’ < 37", ci sono tre livelli dell'energia, uno con€ ka/2 < 1/2 (solu-
zione del tipoA); uno conm/2 < ka/2 < T (tipo B) e il terzo conm < ka/2 < 311/2
(del tipoA); ecc.

Il numero dei nodi della funzione d’onda delisimo stato di eccitazione obedisce al
teorema di oscillazionen(— 1) come ¢& facile da verificare. Infine, nel limitg — oo,
I'eq.(2.217) si riduce &a = nm, e Y, Y — O, e ritroviamo le soluzioni per la buca 2
infinita, come ci si aspetta. Il modello illustra il fatto chie generale, il numero di stati
legati dipende dai dettagli del potenziale.

Nota
La buca con parametri esattamente corrispondenti ad un@biei critici

ma&Vy TN
@ =5 N=l2.. (2.223)

merita una particolare attenzione. Consideriamo infatthe cambia il numero di stati

legati, al variare dei parametVg,a,m). Quando la combinazion m;;;"’ in aumento

supera uno dei valori critici, il numero di stati legati aurteedi uno. Piu precisamente, uno
stato nello spettro continuo diventa normalizzabile (dteeuno stato legato), e entra nello
spettro discreto. (Fig. 2.10). Ma ad esattamente a uno ¢tw@ii 'eaitici, la soluzione nuova

ha 'energia zero, se misuriamo partend&gdén = 0, vedi Fig. (2.9)), e la funzionad’onda
del nuovo stato nelle regioni fuori buca & costamte-(0 nella (2.209)), e la soluzione non
€ normalizzabile. Vuol dire che questi soluzioni non ra@gentano stati legati, ma uno

stato del continuche sta per diventare uno stato lega&oltanto pen / mfﬁ;/" strettamente
maggiore diT? il nuovo stato rappresenta un nuovo stato legato.

Esercizi:

(i) Sey/ mza?ﬁ;") =g« 1lil sistema ha un solo stato legato. Calcolare approssiaménte,

al primo ordine non banale iy I'energia di questo stato (come funzionédjie di

€)
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5

Figura 2.9: Soluzione grafica delle Eq.(2.220) e Eq.(2.22%)pure Eg.(2.221) e
Eq.(2.222).

a b
Figura 2.10: Spettro della buca finita con }“Taéﬁ =J—¢,econ(b) %\@ =ZJ4e.

(i) Considerare il limitea — 0, Vo — o, con il prodottoaVp = f fisso. Usando il risulta-
to di questo sottocapitolo, dimostrare che esiste un sato #gato, e determinare
I'energia del livello,E — Vp, e la funzione d’onda.

(iif) Calcolare lo spettro discreto del sistema

2
_r -
H= 2m+V(x), V(x)=—-fd(x), f>0,
direttamente (vedi Sec. 2.2.8) e verificare che il risul@ncide con quello del
punto (ii).

(iv) Determinare la funzione d’'onda e I'energia dello stato teda degli stati legati) del
potenzialeV (x) = — fd(x+a) — fd(x— a). Quanti stati legati ha il sistema?

2.2.4 Oscillatore armonico

L'oscillatore armonico unidimensionale & descritto ddimiltoniana
2
p- 1 2
H=1—+ Zmw?X 2.224
T ; ( )

dovem e w sono costanti. L'equazione di Schrodingp = EY pud essere riscritto come

2
e+ B E— smPX)p =0 (2.225)
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Introducendo una variabile adimensionale

o mw
E=/Fx (2.226)

siha @’ = &)
W A-E)=0, (2.227)
2E
==>0. (2.228)
Per grandé, " ~ £2y, percid il comportamento asintotico glie
y ~ (polinomioe¥/2. (2.229)
Poniamo allora ,
WE) =x(®e*/?  (Defx): (2.230)
I'equazione pex é:
X —28X +(A—1)x=0. (2.231)

Supponiamo che una funzione rappresentata da una seritedizeo
X(E) =&8(ap+af +af2+...), ap#0; s>0, (2.232)

risolva la (2.231). Allora la sostituzione di (2.232) nelrpo membro di (2.231) deve dare
zero identicamente: tutti i coefficienti §F2" (n=1,2,...) si devono annullare. Le
condizioni sono:

s(s—ljag = O,

(s+1lsa = O;

(s+2)(s+Dax—(2s+1-Nap = O;

(s+3)(s+2)az— (2s+3—Na; = O;
(s+€+2)(s+€+1)a4+2—(23+2€+1—)\).z;\; = o (2.233)

La prima di queste relazioni & soddisfattasse 0 0 s= 1, mentre la seconda richiede
0a; = 0 o/es=0. In altre parole la serie inizia 0 con un termine costanteroun termine
0 &. Consideriamo prima la sottoserie formata dai terminiraliivi, con i coefficienti
ap,az, s, ... (determinati da (2.233)). Questa serie o terminera dopowmero finito di
termini o non terminera. Se essa € una serie infinita (ian,termina), il comportamento
asintotico (a grandg) della somma & principalmente determinato dai coefficeegtande
¢. Essi obbediscono alle relazioni:

e 2
_agz =22 (2.234)
E facile trovare che i coefficienti sono dati da ~ (n}l)! : la somma si comportera come
s 1 g g (2.235)
nzl (n—1)!° ' '

Un tale comportamento asintoticoxlnon & accettabile: esso rendereljbgon normaliz-
zabile (vedi (2.230)). La seri@ + a>E% + ... deve perciod terminare. Essa terminera se il
parametro\ é tale che

2s+20+1—-A=0, (2.236)
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per un valore df (pari). Infatti da (2.233) segue chein tal cagg, = a;4=...=0, e la
serie si riduce ad un polinomio.

Per quanto riguarda I'altra sottoserie con i coefficiemtias, . . ., €ssa non puo termina-
re. (Pesfisso, la condizionet 2¢+1— A = 0 per/ dispari non € compatibile con (2.236).
) Ilcomportamento asintotico della somma & determinai@®84):az,. 1~ 2"/(2n— 1)!!
percidai§ + agf3 +asE® + ... ~ Eexp&2. Anche questo contributo renderehp@on nor-
malizzabile e pertanto non & accettabile. L'unica pobtik# porrea; = 0, che comporta
az=as =...= 0 vialarelazione diricorrenza.

La funzione d’ondap & normalizzabile dunque se e solo se la condizione (2.236) °
soddisfatta pes = 0 o pers= 1. Mettendo insieme i due casi, la condizione &

A=2n+1 n=0,12... (2.237)
Da (2.228) e (2.237) troviamo

h 1
En:%(2n+1):mﬁ(n+§), n=0,12,..., (2.238)
il famoso risultato per i livelli dell’energia di un oscitlare lineare in meccanica quantistica.
Per trovare la funzione d’onda deltsimo livello dobbiamo risolvere I'equazione (so-
stituendo (2.237) in (2.231) e scrivenge= Hn(§) ):

Hy, — 28H, + 2nHy =0, (2.239)

nota comeequazione di HermiteLa sua soluzione polinomiare € nota copainomio di
Hermite
Digressione su polinomi di Hermite

| polinomi di HermiteH, (&) possono essere definiti tramite la funzigemeratrice

S(Evs) — e752+2§ — 8527(575)2
> g
= 3 @), (2.240)
doves & un parametro. Dalla considerazion@8j0¢:
hd Sn ’ OS &£ i 23n+1
ZH(8) = = =25 52 — H 2.241
si ottiene una relazione ricorsiva )
H, = 2nHn_g; (2.242)
mentre dalle due espressioni p&/ds:
> gt 0S > (—2s+28)s"

S (it = 5 = (-25+ 28)e F+2% — S ), (2249

risulta un’altra relazione ricorsiva
Hnt1 = 2&Hn — 2nHy_ 1. (2.244)

Prendendo una derivata (rispettc adell’eq.(2.244) e facendo ripetuto uso di (2.242)
troviamo , )

Hn —28H,+ 2nH, =0, (2.245)
che & precisamente I'equazione di Hermite. Le espressgplicite diH,() si possono
trovare facilmente dalla formula

Hn(E) = (4”@20'0'—;”(;22 (2.246)
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che segue dalla seconda equazione in (2.240). Calcolanthilate troviamo:

Ho(§) = 1,

Hi(§) = 2,

Ha(8) = 48%-2,

Ha(§) = 88°-1%,
Ha(8) = 168%—4882+12,

(2.247)

| polinomi di Hermite soddisfano alla seguente relazionertbhnormalizzazione
/ dE & & Hi(&)Hrn(E) = Spmy/T2"N. (2.248)
Per dimostrarla basta considerare I'integrale
© 7{2 & gqtm ® 7&2
| de¥sEssen= Y S [ die HoE)Hn(E), (2.249)
— nGontm /e
che e uguale a

2! (st)!
o

/ ) dE e (- (st} 2st _ | /st _ /iy /z (2.250)
o £,
Il paragone tra queste due espressioni comporta la rekadicrtonormalizazzione.
[ ]

Lafunzione d’onda delfi-simo livello dell'oscillatore armonico (normalizzaggllora
data da

Yn(X) = CoHn(0x)e” 2% = CyHn( / %x)e*%xz; (2.251)

dove 12 12

a moy /4 /1 mw
Cn= (an) = (%) (ﬁ) A=y R (2.252)
Lo stato findamentale e descritto dalla funzione d’ondasSiamna

mw\ /4 _me2

Wo(X) = (ﬁ) e 0" (2.253)
e ha I'energia

Eq= %wﬁ, (2.254)

nota come energia di punto zero.

E molto istruttivo osservare che I'estensione della fungid’ondaAx ~ m—ﬁw nonché

la presenza dell’energia di punto zero, possono esserdtdaduartire dalle relazioni di
Heisenberg e dalla forma dell’Hamiltoniana, ma senza usaseluzione esplicita. Infatti,
supponiamo che lo stato fondamentale sia lo stato in cuoiiptto delle indeterminazioni
sia minimo: R

AXAp ~ > (2.255)

Senza perdita di generalita possiamo inoltre supporra ghkr medii dix e di p siano
nulli: (x) = (p) = 0. Le indeterminazioni dk e di p sono allora uguali a/{(x— (x))2) =
V) V(P (p)2 = v/(p?).

Prendendo il valor di aspettazione dell’HamiltoniaHas= p?/2m-+ muw?x?/2, si avra
quindi

(Ap)2  muwPR?

H) = 2m  8(Ap)?

. (2.256)
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Minimizziamo ora(H) rispetto a(Ap)?, visto che si tratta dello stato fondamentale:

1 mw?h?

(Ap)? ~

NI =

Inserzione di questo risultato in (2.256) da la stima @ekrgia dello stato fondamentale,

1
Est.fond =~ Ewﬁ, (2.258)

che & in accordo con il risultato esatto. L'estensioneadelhzione d’'onda & stimata come
Ax ~h/Ap~ /h/mwche & pure in accordo con (2.253).

L'energia di punto zero (chiamata alternativamente coneggga del “vuoto”) € cosi
interpretata come effetto fluttuazione quantistica minimaompatibile con il principio di
Heisenberg: una particella confinata in uno spazio finitoiiandeterminazione dell'im-
pulso non nulla, che equivale a una certa quantita di eaergéetica. Nei sistemi di infiniti
gradi di liberta (dei solidi, sistemi quantistici reldstici, ecc.) la presenza dell’energia del
vuoto causa fenomeni interessanti (eeffetto Casimiy.

Esercizi: Si calcolino i valor di aspettazione (esatti) degli operiatd e p? sullo stato fon-
damentale dell'osillatore armonico, (2.253). (Risposté2mw e mwh/2, rispettivamente.

)

Per le applicazioni in suguito troveremo molto utili avetieadementi di matricelegli
operatorix, X2, i.e.,

Xom = (M) = [ XWX, (@)= (hEIm) = [ dxs (002 im(x). (2.259)

calcolati. Tali quantita possono essere calcolate comtalella funzione generatrice dei
polinomi di Hermite: i risultati sono:

1./M1 sem=n+1,
Xm=9 1. /0 sem=n-1, (2.260)
0 altrimenti
q% w, sem=n+2,
2 _
(0am=q L, /oD sem=n—2, (2.261)
0 altrimenti
dove
mw
=4/—=. 2.262
a=/F (2.262)
Analogamente gli elementi di matrice dell’operatore delpulsop sono:
. /mwh
Pmn = (MIp|M) = —i1/ == @mn-1vN—Bmn+1v/N+1). (2.263)

Osservazione

Lo spettro di energia dell’'oscillatore armonieai(n+ 1/2), € discreto e equispaziato,
e a parte I'energia di punto zerah/2, assomiglia alla formula per I'energia diparti-
celle (ciascuno con massah) non interagenti a riposo. Questa analogia e di importanza
fondamentale: esiste infatti un formalismo che discuterémseguito, che mette questo
aspetto in risalto - formalismo di operatori di creazioned arthichilazione. Lintera teo-
ria quantistica dei sistemi di infiniti gradi di liberta (fia dei solidi, fisica delle particelle
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elementari, teoria quantistica dei campi) € basata sudaiealismo, dettaseconda quan-
tizzazione In meccanica quantistica non ci sono differenze essenmdh massa di una
particella “elementare, e I'energia di stati composti.

EsercizioPlottare la funzione d’onda detfsimo livello, con laMathematica. Risposta:
il commando

W, x ] = \/ﬁ HermiteH[n, x e /2, (2.264)
che definisce la funzione d’onda; il commando
Plof @[10,x], {x, —11,11}] (2.265)

plotta la funzione d’onda del livelln = 10, nella regione-11 < x < 11.

2.2.5 Operatori di creazione e di distruzione

L'oscillatore armonico ammette soluzione con un’altronfiatismo molto elegante, che &
la base del metodo di seconda quantizzazione. Introduciamo

mo . [ 1

e il suo coniugato hermitiano

U L NSO
a'= 2h_x [ meHp’ (2.267)

detti rispettivament®peratore di distruzione operatore di creazione L'inverso della

trasformazione e
_Jh fye o i /MRy
X= 2—(a+a ), p=-—i 5 (a—a'). (2.268)

Segue dal commutatore txa p chea, a' soddisfano alla relazione
[a,a'] =1. (2.269)
L’'Hamiltoniana dell'oscillatore armonico & uguale a
h 1
H= % (aa' +a'a) = wh(a'a+ > (2.270)

dove e stato usato il commutatore (2.269). Usando i natietdi di matrice degli operatori
x e p si trova che gli unici elementi di matrice non nulligiea’ sono 6=0,1,2,...):

(n—1lajn)=+v/n; (n+1jafn) =vn+1. (2.271)
O equivalentemente,
an) =+nn-1), a'n)=vn+ijn+1). (2.272)
Segue allora che
a'ajn) =n/n): (2.273)

I'operatore/\’ = a'a & chiamatooperatore del numero di occupazionesemplicemente
come operatore del numero. Infine, 'Hamiltoniana e il suaalore sono ovviamente

H|n>:wﬁ(ﬂ\[+%)|n>:mﬁ(n+%)|n>, (2.274)
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risultato gia trovato risolvendo I'equazione di Schrigkr.

L' n-simo autostato di energia di oscillatore armonjop e interpretato - questo € il
linguaggio del formalismo di seconda quantizzazione - ceta® din “fononi. Lo stato
fondamentale € il “vuoto” senza fononi (ma con I'energfa 2 di “punto zero); I'operatore
a' crea un fonone, I'operatoene distrugge uno. Loperatofg = a'a “conta il numero
dei fononi nello stato sul quale agisce. In questo sisterisieesn solo tipo di fonone
con I'energiawh. Qualsiasi elemento di matrice di tiga|F (x, p)|m) doveF (x,p) & un
polinomio dix e di p, pud essere trovato con facilita dagli elementi di matdca e a’.

Infatti gli autovalori e gli autostati dH possono essere trovati caso direttamente da
(2.270)) e (2.269), senza mai parlare dei polimoni di Hezmifcc., in modo assiomati-
co. Prima di tutto si deve assumere I'esistenza di uno stamidma energia (lo stato
fondamentale)|0). Per definizione tale stato (normalizzato) € annichilate:d

a0)=0, (0j0)=1. (2.275)

Agendo l'operatore’ iterativamente su questo stato, possiamo definire lo statonc
fononi, definito come

=@ 1o 2.276
| > = \/ﬁ | >7 S K I ( . )
dove la costante davanti € introdotta di modo che
(nin) = 1. (2.277)
Facendo uso del commutatore
[a,(a")" =n(@""* (2.278)

e della (2.275) ripetutamente, si pu0 verificare la primbad@.272), (la seconda della
(2.272) € owvia), la (2.273), e infine la (2.274), il che egle alla soluzione del problema.
Esercizia

Si verfichi la (2.277). Si verifichi che la funzione d’'ondiéx) = (x|0) coincide con la
(2.253).
Stati coerenti

Un importante applicazione dell'uso del formalismo conraperi a e a' riguarda i
cosidettistati coerenti Gli stati coerenti sono gli stati in cui il prodotto di inéeminazione
di x e dip nellarelazione di Heisenberg (vedi Sez. 2.1.6) prenderilmm valore possibile,
h/2: essi descrivono i “pacchetti d’'onda i piu compatti pbiie in un senso i piu classici.

Gli stati coerenti possono essere convenientemente definite autostati dell'opera-
tore di distruzionea,

alB) = BIB), (2.279)

dove 3 € un numero complesso. Per costruire lo siflo introduciamo un operatore
unitario,

U(p) = ek —Fa (2.280)
conf3 un numero complesso arbitrario. Allora
IB) =U(B)|0), (2.281)

dove|0) & lo stato fondamentale (2.275) nella base di numero dipazione. Infatti,
poiché
au(p)=U(p)(a+p) (2.282)

(Esercizio: verificatelo), la dimostrazione della (2.279) € immediata
Un’identita molto utile per studiare gli stati coerentiggformula di Baker-Campbell-
Hausdorff-Weyl,

el = XY HEXY], (2.283)
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valida se[X,Y] € un c-numero (i.e., se esso commuta con tutti gli opejatder esempio,
U(B) = e PP/2gBa’g=B'a, (2.284)

Si ha dunque
IB) = e IPF/2¢82 ). (2.285)

Sviluppando I'esponenziale, si ha

B) =" Anln), Aneﬁz/zﬁ—n_, (2.286)

n!

dove|n) & lo stato din fononi. La probabilit di osservarequanti nello stato coereni)
allora &

P = ef\mzﬁﬁ : (2.287)
€ una distribuzione Poissoniana, con il valor medio di andéoccupazione

(Bla'alp) = |BI*. (2.288)
Infine, non & difficile dimostrare che nello stato coerente

i) il prodotto di indeterminazioné(Ax)?) - ((Ap)?) prende il valore minimo possibile,
R/ 4;

ii) la funzione d’onda nella baseprende forma,

B — (X—=%0)* | . PoX
W(x) = (xIB) = NeXp[—W +it), (2.289)
dove
%o = (A/2mw)2(B+B*);  po = i(mhw/2)Y3(B* —B); (2.290)
((AX)?) = h/2m. (2.291)

(vedi, per es., Davydov, “Quantum Mechanics). Gli statireo#i hanno generalizza-
zioni interessanti chiamati stati “schiacciag(eezed statggecentemente studiati
in connessione con ottica quantistica, in cui le indeteamioni ((Ax)?) e ((Ap)?)
sono variati, tenendo fisso (e il minimo possibile) il lorogotto.

2.2.6 Barriera di potenziale e Effetto tunnel

Consideriamo ora la barriera di potenziale,
V= 0 sex<0, (), x>a(lll), (2.292)
Vo>0 sel0<x<a (Il).

Una particella & incidente da= —. Sivuole calcolare la probabilita di trasmissione attra-
verso/riflessione da tale potenziale. Linterpretaziome la densita di corrente di un onda
piana (vedi Sec.2.2.2) ci permette di trattare il problema kequazione di Schrodinger
indipendente dal tempo.

(i) Dapprima consideriamo il cagd > V. Una particella classica che entra da sinistra, non
sentirebbe nemmeno la presenza del potenziale, e corglvieil suo viaggio verso destra
indisturbata. In Meccanica Quantistica il moto della paita & descritto dall’equazione di
Schrodinger, che € una equazione libera nelle regionill 8l¢lla regione Il 'equazione &
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pure quella libera, a parte lo spostamelate- E —\j dell’energia. La soluzione ha quindi
la forma

g = dpAe™ k= —Zh[nE;
Yy = Beik,x + B/e—ik/x; k/ _ zm(E _VO) :
gy = Cév. (2.293)

Nello scrivere (2.293 ) abbiamo arbitrariamente sceltodemalizzazione della funzione
d’onda di modo che I'onda piana incidente (i) abbia il coefficiente 1. Inoltre abbiamo
imposto la condizione al contorno adatta per il problematd’in considerazione: nella
regione Il abbiamo solo 'onda trasmes&agxp —iEt /h+ ikx)).

La condizione di continuita tra le due regionil e Il &:

1+A=B+B, ik(1-A) =ik (B-B), (2.294)
mentre quellatrall e lll &
Bd¥a peKa_cda=c; ikB2-_Be*2)=ikcd®=ikC. (2.295)

Questi sistemi di equazioni si risolvono facilmente, efiemidoB, B’ da

<BB’> =M </i) : (;jﬁl) =M (C‘Ska> : (2.296)

Un calcolo elementare da il risultato

B i(k? —K?)sink'a _
2kK cosk'a—i(k? + k'?) sink'a’
2kK

! = 2.297
c 2kK cosk’a—i(k? + k'2) sink'a (2.297)

A —

Sivuole calcolare soprattuttodbefficiente di trasmissione

D = lluras| (2.298)
| jinc|
e il coefficiente di riflessione _
r= Hiifil (2.299)
| jinc|

dove jinc, jiras € Jrifl rappresentano rispettivamente la densita di corrent®ded inci-
dente (il primo termine di);), dellonda trasmessaly; ), e dell'onda riflessa (il secondo
termine diyy). Le tre correnti sonah/m, kh|C|2/m e kh|A|2/m, perciod

D=[CP=[C'% R=|AP (2.300)
cioe
4k2k/2
4k2k’2 + (k2 — K'2)2sirf k'a
(k% —K?)%sirf K a
4k2Kk'2 4 (k2 — k'2)2sirPKa’

D =

(2.301)

Si osservi che:
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e D+ R=1 Questo € quanto ci si aspetta per la probabilita totale.

e La probabilita di riflessione non & zero in generale, ntarue il fatto che I'energia
della particella incidente sia al di sopra della barrieraatienziale. Questa € una
conseguenza dell’aspetto ondulatorio delle particellMéctcanica Quantistica: in
Meccanica Classica avremmo sempliceménhte 1, R=0.

e Per certi valori discreti dell'energia incidentg/@m(E — Vp)a/h=nm, n=1,2,.. ),
c’'e trasmissione complet®(= 1). Anche questo & un fenomeno tipicamente quan-
tistico: & analogo dekffetto Ramsauer-Taunseimdre dimensioni.

Consideriamo ora invece il cago< Vp. Classicamente la particella, non avendo un’e-
nergia sufficiente per superare la barriera, sara riflessa &: avremmd =0;R=1. Il
comportamento di una particella quantistica & ben diverso

Le soluzioni dell’equazione di Schrodinger in questo csmao:

P = pAeR k=" ZI:_’nE;
Yy = Be"+Be%;, k= 72m(\ﬁ/0 i) :
Y = Cé% (2.302)

Si osservi che I'andamento della funzione d’onda nellaaegintermedia & del tipo espo-
nenziale reale. Per il resto si procedera come prima: hies@gimporre la condizione di
continuita ax = 0 e ax = a, per trovareC e A. Per fortuna, una semplice osservazione ci
permette di arrivare al risultato senza fare nessun caldelequazioni da risolvere sono
identiche a (2.295) a parte la sostituzione

K — ik (2.303)

Di conseguenza i coefficienti e C' nel casoE < Vp sono dati da (2.297) con la suddetta
sostituzione (si noti la sostituzioni, difa — i sinhka; cosk'a — coshka):

(k% +k2) sinhka _
2kki costka+ (k% — k?) sinhka’
2kki

/ —
C = 2kK| COSh(a+ (k2 _ KZ) SinhKa' (2304)

A —

Le probabilita di trasmissione e di riflessione sono qudsade da

b 4K%k? _
4K2K2 + (K2 +K2)2sintPKa’
2 W22
R (K% 4 k?)?sintf ka (2.305)

4k2k2 + (K2 + k2)2sintPka’
Osservazioni

e In generale si h® # 0, D > 0. La particella ha una probabilita non nulla di attra-
versare la barriera, nonostante che la sua energia norfiéient per superare la
barriera dal punto di vista classico. Questo € un esempioaiiebreeffetto tunnel
che distingue la Meccanica Quantistica in modo cosi netila dleccanica Classica.

e Nellimite di barriera molto grand¥®p — o e/0a — oo, il coefficiente di trasmisssione
si comporta come

D ~ e 2V2mVo-E)a/f. (2.306)

ed € esponenzialmente piccolo, (con due volte I'azionss@a nell’esponente),
caratteristica questa dell'effetto tunnel in generale.
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Esercizio: Calcolare il coefficiente di trasmissione della barrieralimensionaley (x) =
fd(x) (f > 0), prendendo il limitd/p — 0, a — 0, con f =Vpafisso.

Esercizio: Lo stesso problema can(x) = —fé(x) (f > 0).

2.2.7 Sistemi in uno spazio topologicamente non banale

Una particella che si muove su un anello (discussa in (2)187)esempio di un sistema
meccanico-quantistico, che possiede un parametro nasdostnon ha analoghi classici.
Dovuto alla nota arbitrarieta della fase della funzionendla, la periodicita dello spazio,

X=X+L, (2.307)
in generale richiede che la funzione d’onda obbedisca ahaizione piu generale,
W(x+L) = (x), (2.308)

doveb e una costante che caratterizza il sistema quantisticeoluzione dell’equazione
di Schrodinger & sempie= €%, ma la condizione al contorno & ora

kL=2m+6, n=0,+142,..., (2.309)

percio
2

= omiz!
Per un generic6 la doppia degenerazione del livello (2.187) del d&so0 viene eliminata,
En # E_p. E interessante che per un particolare valore, @ = 11, i livelli di energia sono

En 21+ 0)>2. (2.310)

RP(2m? 1
En= %(m 5% (2.311)
In questo casatutti i livelli sono doppiamente degeneri (le coppie di stati s¢bo-1),
(1,—2), ecc.). Un’altro caso particolar8,= 21, € interessante. In questo caso, lo spettro
del sistema & identico al cagb= 0, come si vede facilmente. In generale, lo spettro
e periodico in® con periodo 2, risultato che ci si aspetta dalla definizione stessa del
parametro, (2.308). Si noti che nella discussione la caistica topologica non banale
dello spazio in questionest) & fondamentale. Esistono molti sistemi di interessedisic
analoghi a questo sistema. Un esempio ¢ I'effetto Ahard@avm (in questo caso, il ruolo
del parametr® e giocato dal flusso magnetico, attraverso una superfigieruiata da due
classi di cammini dell’elettrone.)

6 puo essere considerata in generale come un parametrn@sgmpponiamo ora che
0 varia adiabaticamente da 0 a.2Lo spettro del sistema varia lentamente e alla fine del
ciclo, ritorna a quello orignale. Se la particella € inimante in uno stato stazionario, e.g.,
n-simo stato, la variazione adiabatica@laumentera I'energia del sistema. Alla fine, lo
spettro ritorna allo spettro originale, il parametro asberitorna al valore originale (visto
che® e una variabile angolare,;/2~ 0), ma il sistema si trova nello stato+ 1! In altre
parole, 'intero spettro si € spostato di un'unita-¢ n+1 se® = 0 — +2m). Questo
fenomeno e noto come “spectral flow.” Ci sono importantilagzioni di questo fenomeno
in teorie di gauge non abeliane.

2.2.8 buca/barriera di potenziale con funzionid

Considerazione generale: condizioni di continuazione
Consideriamo ora il moto di una particella in un potenziakalunidimensionale
2
p

H =2 —93(x), (2.312)
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A causa della singolarita del potenziale & 0, le condizioni di continuita sulla funzio-
ne d’onda richiedono una considerazione particolare. Bantp riguarda il valore della
funzione d’onda dobbiamo richiedere semplicemente

W(X)x—0+ = WX)[x—0-,  W-(0) =14 (0) (2.313)

per la continuita della densiti dove cony. abbiamo indicato le funzioni d’onda definite
nelle regionix > 0 ex < 0.
La condizione di continudt sulla derivata deve tenere conto della singolaritel po-
tenziale. Infatti, integrando I'equazione di Schrodinger
2
——"—-gd =E 2.314
S - g3(X)Y =E, (2:314)
nella regiong—¢, €], si ha

ﬁz / /
o (W) —W (=€) —g(0) = Ofe). (2.315)

Considerando poi il limite — 0, si trova la condizione di continuita per la derivata @im

della funzione d'onda,
2mg

W, (0) WL (0) =~ =7 W(0). (2.316)
La stessa condizione si trova, sostituendo la funzioned#ion
P(X) = P-(x)B(—x) + W (x) 6(x) (2.317)

direttamente nell’equazione di Scrodinger, utilizza®do) = d(x), i.e., richiedendo che
(2.317) effettivamente soddisfi quest’ultimo dappertitiolusox = 0.

Esercizio: Dimostrare che la condizione (2.316) sia compatibile condatinuita della
densita di correntd, = 4L [ (W) @ — gry/'].

i) Spettro discreto
La funziona d’onda di uno stato legato, con enekgjac O &:

W(x) =B(—x)e"+8(x)e™, K=/ _ZHTEO. (2.318)

dove abbiamo gia tenuto conto della normalizzabilita pela scelta della soluzione
e* perx < 0 ee ™ perx > 0) e la continuita della funzione d’ondaxe= 0; la
normalizzazione globale € lasciata arbitraria.

Dalla (2.316) segue immediatamente la condizione di guzettione,

mg mg?
K=—3 Eo=—-——. 2.319
R2 0T o (2319)
La funzione d’onda normalizzata &
W(x) = VK[B(—x)€™ + B(x)e™]. (2.320)

i) Spettro continuo
Si puo porre, per gli stati dt > 0,

W(x) = 8(—x)[A + Be ] 1 g(x)[C* +De ™, k= Z%ZE (2.321)
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La condizione di continuita tra le due regionil e Il &:
A+B=C+D. (2.322)

La condizione di continuita per la derivata prima da (@#&H.316):

2img

C—D:A—B+W(A+B):(1+2icx)A—(1—2icx)B, (2.323)
dove
mg
a=— >0. 2.324
kh? ( )
Risolvendo (2.395) e (2.396) p€tD, si ha
C=(1+ia)A+iaB, (2.325)
D=—-ioA+ (1—ia)B. (2.326)
@)
C\ _[(1+ia i« A\ _ A
(D) B ( —ia 1ior) (B) =5 (B)' (2.327)
La matriceS

S (1+ior io >; sl_ (1.—i0( —ior> (2.328)

—ia 1-ia o l+ia

€ nota comenatrice di transizionp

QL B e

Per qualsiasi valore direale la (2.321) con tali coefficienti rappresenta gli aiatibs
dell’Hamiltoniana.
iif) Barriera di potenziale

Perg < 0, il potenziale rappresenta una barriera, non una bucaidstq caso non ci
sono stati legati. La funzione d’'onda (2.321) con la (4.3M@)ettamente rappresenta
lo stato di diffusione generale.

Se la particella entra da= —oo, allora la condizione al contorno &
D=0: (2.330)

la soluzione &
A=(1-ia)C; B=iaC, (2.331)
per cui le probablita di trasmissione e di riflessione sono:
1 a?
=— R=——. 2.332
1+a2’ 1+a2 ( )

Osserviamo che nel caso di portenziale delta, il risuléattedifferente del segno di
0, i.e, sia il potenziale ripulsivo che il potenziale attrattiva lo stesso effetto.
iv) Doppia barriera di potenziale delta

Il risultato sopra pud essere immediatamente generaizzaaso di multi barriere di
potenziale. Consideriamo per esempio il problema col iépoiale con due barriere
di forma delta, spaziati di,

V =g[d(x) +d(x—a)]. (2.333)
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La funzione d’onda € ora
W(x) = B(—x)[ A+ Be | +-8(x)B(a—x)[Ce®* + De ] +-B(x—a) [ Fe¥* + Ge ],
(2.334)
Definendo
F=rd G =ce'ke, Cc =cd® D =De' (2.335)

C,D sono dati in termini dA, B come nella (2.400), mentre

(g) - <1i_[3iB 11?[3) ' <g> =S (é;a e?ka) -S: <g>. (2.336)

Oppure
(g) _ <eoika é8a> s (éga e?"a) S (’é) _ (2.337)
dove ) .
5= ﬁ;ﬁ ) 1?B>; p=1td. (2.338)

dove la forma della matric8 qui (2.338) €fr. (2.401)) riflette il segno opposto di
delta nella (2.333) rispetto alla (2.312).

Rispetto al caso di una singola barriera delta, (2.332) slaediqui &€ decisamente
piu interessante. Dalla matrice di transizione nella3B)3si trova i coefficienti di
trasmission® e di riflessioner,

2 2
D— 1 _ ; R— 43 (coska+Bsm!<a) . (2.339)
1+ 4B2(coska+ B sinka)? 1+ 4B2(coska+ B sinka)?

Per una prima verifica, si noti che er 0, si ritrova il rusultato precedente cgp-

2g. Per generici valori di energla la situazione & analoga al caso di singola barriera
delta. In particolare, nel limite g8 — o (g — ), il coefficiente di trasmissione
tende a zero.

Per certi valori di energia incidente,
1
tanka= — B (2.340)

tuttavia, si ha una trasmissione totale=€ 0, D = 1) | Notiamo che nel limite di
g — oo, i valori di risonanzalR=0,D = 1) sono a

ka~ 1n, n=212...: (2.341)

essi corrispondono a stati stazionari nella buca di largggzinfinitamente alta (Eq.
(2.202)). Per generico valore Hi si ha invece la riflessione totalR (- 1, D — 0)
nel limite g — oo. La situazione ¢ illustrata nellla figura (FRF), dove i coefficienti
di trasmissione e di riflessione & plottata come funziorie ger tre valori in ordine
crescente dB. E interessante che il sistema della doppia barriera dedtalifnite
di grandeg) pu‘o essere considerato come un filtro per la misura dgitilso: se la
particella incidente ha I'energka ~ Tin passa, altrimente non passa.

La generalizzazione della formula (2.337) nel casN giotenziali delta equispaziati
e con lo stesso accoppiamemggtae

(g',:) = <ei(')\‘ka eil\(l)ka> .[<ei(|;a e?ka) 'S]N' (gi) . (2.342)
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2.2.9 Applicazioni della buca infinitamente alta

Consideriamo ora alcune applicazioni del problema deltahili altezza infinita discusso
in Sec.2.2.3. La pressione che una particella confinata helta (scatola) esercita sul
muro puo essere calcolata nel modo seguente. Supponiant@ garticella sia nelli-simo
livello energetico. L'energia del sistema &

™m\2 R2

En— (E) o (2.343)

Supponiamo di comprimere la scatola adiabaticamente,a— da: il lavoro richiesto &
uguale a

@n?R? 1 1
En(a—da) —En(a) = o ((aéa)zﬁ)
™®n?h2
= TmE da = p-da, (2.344)
La pressione & percio
™R 2
P=—"a = 5En- (2.345)

Consideriamo ora un gas Niparticelle in equilibrio con il servatoio termico di tempe-
raturaT .12 Per tale insieme canonico la distribuzione di energia éajdeBoltzman,

Py = e En/kT, (2.346)

. . . . - . 2 R2
con A( costante di normalizzazione. Per la particellavisimo livello, E, = () &

2 F2 . , o
A-r?, A= (T)° I il valor medio dell'energia &

(E) =3 EnPn. (2.347)

Ora per uno stato dil particelle con le interazioni trascurabili tra loro,

E(nl’nz""nN) = Enl + Enz +...Eny, (2.348)
il suo valor medio &
"~ k
<E>(N) _ Z(nl,nz,...nN) E(nlynz,...nN) e E(”l-nz....nN)/ T
2 (ny.np....ny) e Enpng..ny) /KT
E e*Enl/kT
- N ~N(E). (2.349)

—En, /KT
an e nl/

Per temperature altﬁ < 1, la somma sun pud essere approssimata con un integrale,
i.e.convAn= x,
[dxRe¥/KT 1

L'energia del sistema & data dall’espressione classica

U=(EN= %NkT (2.351)

12Questa discussione trascura la correlazione tra le pietidentiche, dovuta alla statistica di Bose-Einstein
o di Fermi-Dirac, che sara discussa piu in la, e in questiss non va considerata come approssimazione valida a
sistemi fisici quantistici.
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dalla quale segue il risultato noto per il calore specificer (pn gas monoatomico 1D)
_ 1
C=5 =3Nk ) .
A temperature basse, la sommgi) & dominato dallo stato fondamentale,

(E) ~ Ey, (2.352)

per cui il calore specifico tende a zerd a- 0.
Per quanto riguarda la pressione, si ha dalla (2.345)

2 2 2 kT 1
P=—-N(E)=-=N(E) ~ —N— = =NKT, 2.353
“N(E) = SN(E) ~ SN = ONKT. (2.353)
a temperatura ambiente. Questa non € altro che I'equadiayees unidimensoinal®V =
NKT.
& Infine, il numero di stati quantistici conE < EnaxperEmaxgrande puo essere stimato
facendo uso della condizione di quantizzazione di Bohr erSerfeld:

7§dx p=nh, (2.354)
SiccomeEnax corrisponde gmax= v/2M Enax, il livello massimonmax € determinato dalla
richiesta
Nmaxh = <fdx p> — \/2MEnax- 22, (2.355)
max
per cui
i 22V 2M Ema 2;" Emax (2.356)
Questo coincide con il risultato quantistico esatto
my 2 R
=(—) —< .
En=(7) 5 < Ema (2.357)
v/2m &Emax
~ - 2.358
Nmax - ( )

2.2.10 Dallafisica di una particella alla fisica dei sistemiidmolti gradi
di libert a: Cristallo Unidimensionale

Come prototipo del modello dei cristalli (dei solidi) préawho in esame una catena di
atomi in una dimensione, interagenti tra loro con una form@omica. |l sistema & descritto
dalla Lagrangiana classica

1

dovex, indica lo spostamento della posizione deimo atomo dalla sua posizione di
equilibrio, e per semplificare le cose poniamo la condizips@odica

m.
2% 5 01— X)), (2.359)

NI X

XN =Xo;  XitN =X, (2.360)

e supponiamo chein (2.359) prende valon=1,2,...,N.

La (2.359) descrivél particelle accoppiate tra loro, e il fatto che il sistemagaosssere
risolto con esattezza potrebbe sembrare mirocoloso. Goimen noto, la chiave della
soluzione ¢ la trasformata di Fourier (discreta) ,

7i ikna _A*
=5 AT A A (2.361)
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dove la condizione sulle ampiezze comple&geflette la realta delle variabik,, I'impulso
k prende valori
21 N—1 N
k=—; U=4+142 ...+ — —. 2.362
Na 2 72 ( )
Anj2 = A_n/2 € reale. Inoltre, il terming = O (che corrisponderebbe alla traslazione
dell'intero sistema) & assente. Percio il numero deiigtaliberta associati a vady &

2. NTl+1 N, (2.363)

uguale al numero de4, indipendenti.
Come e facile verificare, ci sono delle identita,

N Z dna(k—K) =3 z g2nt—{)/N =3, (2.364)

1 —
Nzé (ma—g . (2.365)

che risulteranno molto utili. Usando queste indentitégtin si trovano
1 . . L1 L1
S Caa =)t =3 G35 Ayl el - ek e 1)
n n K

ZAkA,k(e"‘a —1eke_1)= 4ZAkA,k sinzk—;‘; (2.366)

rn)'(z m 1 .o . S m .o
Z Tn _ E ; N ZAkAk,elknaelk na__ 5 ZAkAfk- (2.367)

Ma usando la condizione di realtax}j (2.361) si pu0 scrivere (definend@ = ax + iby,
ag, b realipert=1,2,...(N-1)/2)

AA k=AA =al+bl; AA =&+b% k=12...(N-1)/2; (2.368)

Anj2A N2 = ARz (2.369)
Raccogliendo tutti i termini, troviamo che la Lagrangianaguale a

ND2m., m2 , m., mep
_ a2 A 2

4K . ,ka
=— —. 2.370
W = sir (2.370)
In altre parole, il sistema (2.359) € equivalente ad uremsi diN oscillatori armonici

indipendenti! In termini di coordinate generalizzdig} = {ax, bk, An/2}, € gli impulsi
canonici corrispondent{,p; }, 'Hamiltoniana del sistema & semplicemente,

+ AN/2

= Z + ﬁql (2.371)

La quantitizzazione del sistema procede esattamente ceheaso di un singolo oscil-
latore armonico: la descrizione degli autostati di eneggjzarticolarmente semplice nel
formalismo di seconda quantizzazione (con operatori dgizione e di distruzione, per cia-
scun modo), seguendo I'esempio di Sec. 2.2.5 Un generitm ditatato di eccitazione e
dato dal ket

Tyni
|...,ni,...>=|f|(\a‘/n)_i! 0,0,...) (2.372)
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con energia,
1
E= zl wih(n; + 5)' (2.373)

A differenza col caso del singolo oscillatore, qui ci sdhtpi di fononi di energianh, i=
1,2,...N. Si osservi che, corrispondente al passo reticolarel€l sistema originale, c'e
un limite superiore della frequenza (limite inferiore ddlinghezza d’onda). Nel limite
continuo, N — o, a — 0, Na= L conL fisso), il sistema si riduce al caso di una corda
finita (con la condizione periodicafr Appendice 2): in tal caso non c’'e nessun limite
inferiore alla lunghezza d’onda.

Un’analogo trattamento & possibile per i cristalli trirdinsionali. | fononi sono quanti
di eccitazioni collettive (con energia h ciascuno). La radiazione elettromagnetica libe-
ra (senza particelle cariche) & descritta in modo analogme un insieme di oscillatori
armonici (Appendice 2 e Capitolo 1.3), il fonone & chianfatonein questo caso.

Il fatto che molti sistemi di molti o infiniti gradi di libeat’'sono descritti nella pri-
ma approssimazione come un insieme di oscillatori indipatigdé basale nel permetterci
di analizzare questi sistemi complessi con la teoria dedigupbazioni, nell’ambito del
formalismo di seconda quantizzazione (teoria dei campintisteci).

2.3 Potenziale periodico e struttura di bande d’energia

Il comportamento in Meccanica Quantistica di una particetlie si muove in un potenziale
periodico
V(x) =V(x+a) (2.374)

(vedi Fig. 1.3) differisce in modo essenziale da quello dh& aspetta dalla meccanica
classica. Come e stato anticipato gia nell'introduzjdake sistema puo essere considerato
come prototipo dei sistemi piu interessanti (per es.freletnei solidi).

Supponiamo che I'energia della particdliasia tale che

0<E < Vo, (2.375)

dove 0 ey Sono rispettivamente il valore minimo e il valore massinebpbtenziale. Sup-
poniamo inoltre che nell’approssimazione in qui il poteeie considerato infinitamente
alto (Vp =~ ) i livelli di energia e le funzione d’onda di una singolagima) buca siano
dati da

Eio),Eéo),...,Efo),...; wi(x;n),W2(;N),... Wi(xn),.... (2.376)

| livelli di energia in altre buche sono identici a questi,ntre le funzioni d’'onda delih
sima buca sara data da(x — (m—n)a;n). In altre parole, nell’approssimazione in qui
I'effetto tunnel & trascurato ogni livello & infinitamentegenere (con funzioni d’onda
{wi(x;n)},n=...,—2,-1,0,1,2,... che rappresentano la particella varie buche). In se-
guito concentreremo la nostra attenzione ad un determinaito (per es.,i-simo), e
lasceremo implicito I'indice. Un’identica considerazione € valida per tutti i livelli.
Dovuto all’effetto tunnel, sappiamo che i stétil(x; n)} non rappresentano gli autostati
esatti dell’Hamiltoniana )
p
H= 2m+V. (2.377)
Tuttavia, considerando gli effetti dovuti alla penetramali barriera come perturbazione,
possiamo scrivere

HY(x;n) ~ EQg(x;n) —e[px;n-+1) + P(x;n—1)], (2.378)
n=...,-2,-1,0,1,2,... (2.379)

doves corrisponde all’'ampiezza di probabilita di tunnelling fm-sima buca e le due buche
adiacenti.
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La diagonalizzazione del’Hamiltoniana, date il numerfinito di equazioni accoppia-
te, (2.379), appare un problema formidabile. In veritdaes compie senza difficolta con
la trasformata di Fourier rispettora

=y <@y (x; n), (2.380)

n=—oo

dovek e un parametro real&lf = p € una sorta di impulso coniugataa Essendo il co-
niugato di Fourier di una variabile discreigkae un parametro angolarke [—T11/a,11/a].

Infatti, moltiplicando congk@" e sommando sn in ambedue i membri di (2.379), e
usandoy(x;n+ 1) = Y(xF a;n), troviamo che le combinazioni lineari in (2.3869n0
infatti autostati dell’energia:

HP(x) = [E© — 2ecogka)] P (X). (2.381)

In altre parole, invece di un singolo livelB(© infinitamente degenere, abbiamo trovato
una spettro continuo compreso[E(? — 2¢, E(© 4 2¢] (banda di energij parametrizzato
dall'impulso p= kh. Ad ogni valore di energia nella banda sono associati sotostati
distinti, conk = +|k|. Gli autostati di energia (2.380) non sono localizzati a delie
buche; sono estesi a tutto lo spazi® < x < .

(Osserviamo a questo proposito il seguente fatto. Le anrodni vere differiscono in
modo essenziale da quelle “non perturbate, (2.376), ancaedyp i termini di “perturba-
zioni [J € sono infinitesimi. La ragione di tale fenomeno sta ndgeneraziondegli stati
nonperturbati. Vedi Capitol@?)

Le autofunzioni (2.380) non sono autostati dell’'operatimmpulso —ih(d/dx), tan-
to & vero che linvarianza per traslazioni— x+ Ax e violata dal potenziale. D’altra
parte, l'invarianza per traslazioni discrete generatexda x+ a (che € una simmetria
dell’Hamiltoniana) fa si che le autofunzioni soddisfano

Pr(x+a) = ey (x), (2.382)

(dove abbiamo usato la relaziongx + a;n) = Y(x;n— 1), ecc), proprieta condivisa da
un’onda piana usuale. Questo aspetto si illustra meglioran®e si considerasse i casi di
piccoli impulsi,ka< 1. La relazione energia-impulso in questi casi si riduce a

E =E© —2ecogka)) ~ E(® — 2¢ + ek?a?. (2.383)

A parte una costante, questa € la relazione standard trergji@ e I'impulso di una parti-
cella libera con la massa,

ﬁZ
- 2ea?’
Naturalmente si tratta di una massa efficace, dipendentettizgtl del potenziale e dalla
banda considerata; essa non ha niente a che fare con la nesasdella particellan.
Nonostante cio, resta il fatto che la particella “propalgaramente attraverso le barriere di

Metf (2.384)

potenziale.
Ricapiltolando, gli autovalori dell’energia sono le bamtienergia, attorno a ciascuno
di Ef)),Eéo), ...,Ei(o), .... Le autofunzioni descrivono una sorta di onda piana, con-I'i

pulso limitato ap € [—hrt/a,hr/al, e collegato al valore di energia tramite una relazione
del tipo (2.381). Questo, dunque, € il meccanismo con eietfrone nei cristalli si muove
liberamente¢onduzione elettrica dei metdllisebbene subisse diffusione da tutti gli atomi
che formano il reticolo cristallino.

In tutto cio, & fondamentale il fatto che I'effetto tunrdgscrive una penetrazione di
particella a livello diampiezza di funzione d’onda (vedi (2.379)), e non a livello di proba-
blilita. In questo senso, la conduttivita elettrica destalli € uno dei fenomeni che meglio
illustrano le caratteristiche della meccanica quanastic
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2.3.1 Esempio di simmetria: parita della funzione d’onda; doppia
buca

Il concetto disimmetriee di importanza sia in meccanica classica che in meccaniga-q
tistica. Anticipando la discussione piu generale sulfersetrie, discutiamo qui le conse-
guenze della simmetria della parita (simmetriayes —x) del sistema.

Molti sistemi come buca di potenziale, il sistema con il paiale delta, etc, possiedono
la proprieta che I'Hamiltoniana & invariante per I'opecae di riflessione spaziale,

PH(X,p) P =H(—x,—p) =H(x p).
Se definiamo la parita sulla funzione d’'onda

PY(X) = W(—x),

segue dall’'equazione di Schrodinger cheyg® (x) & l'autofunzione dell-simo livello
energetico, corEn, PP (x) = YW (—x) lo & anche. Visto che in una dimensione non ci
sono degenerazione dei livelli discreti, segue che

PO (=x) = =M (x) : (2.385)

ogni autofunzione di energia deve essere o pari o dispaettis ax — —x. Secondo il
teorema do oscillazione, lo stato fondamentale non ha pedtjo & pari. Il primo stato di
eccitazione ha un nodo ed ¢ dispari, e cosivia. Tali aiatiche sono effettivamente pos-
sedute dalle autofunzioni in tutti gli esempi considetatbuche di potenziale, il sistema
con il potenziale delta, etc.

E interessante considerare il sistema di doppia buca dnpiatie come quella in Fig.
2.14. Se la barriera centrale &€ molto alta, si avranno asprativamente due buche di
potenziali (simmetriche), con i primi livelli di energia= Egp, Ey, ..., e le funzioni d’'onda
sarannap(L") (x) e l]Jg') (x) = mﬁn)(fx). In altre parole avremo una doppia degenerazione
dei livelli, cosa che e tuttavia proibita dal teorema di mayenerazione. Fisicamente, la
particella che si muove in una delle buche non dovrebbe gecsirdell’altra buca se la
barriera centrale & sufficientemente alta, ma la conahési@miva - doppia degenerazione
dei livelli - non puo essere corretta. Come si evita la cafdizione?

Il punto & che, dovuto all’effetto tunnel, 'ampiezza padare da una buca all’altra non
e nulla (anche se € molto piccola) comunque alta sia lagvarcentrale. D’altra parte, dalla
discussione sulla parita qui sopra, & chiaro che ognifanzione di energia deve avere la
parita definita. Segue che lo stato fondamentale del sisteta combinazione simmetrica

n 1 n n
WO = s (W09 + YR (); (2.386)
mentre il primo stato eccitato &
rimo 1 n n
WP = = W () — W (x)). (2.387)

Se consideriamo una situazione fisica dove I'energia nileva piccola rispetto B; — Eo,
un tale sistema pu0 essere approssimato con un sistema *gatii, descritta da

Eo —¢
H( 0 Eo>’ (2.388)

nella base dijJ(LO) (x) e ng)) (x), dovee descrive I'ampiezza di penetrazione da una buca
all'altra. La diagonalizzazione ¢ da i livelli di energigE T &, cony( o9 (x) e yy(P1imo) (x)
come autofunzioni corrispendenti.
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Figura 2.14: Una doppia buca di potenziale

2.3.2 Problemi

1. Altempot = 0 lo stato di una particella libera & espresso dalla fureiionda
X2
W(x,0) = Aex 2 + ikox}

a) Si calcoli il fattoreA e la regione dove la particella & localizzata.

b) Si determini la densita di corrente di probabijita

c) Si determinind¥(x,t), p(x,t) ej(xt).

d) Si trovino i valori di aspettazione della posizione e’tajpulso al tempad = 0.

e) Si calcolino< Ax? > e < Ap? > al tempat = 0 e si verifichi la relazione di indetermi-
nazione per queste due quantita.

2. Una particella si trova in una buca di potenziale unidisi@male 0< x < a, per la
gualeV = 0 dentro la buca ¥ = = al di fuori. Sirisolva I'equazione di Schrodinger
dipendente dal tempo per questo sistema.

3. Si trovino le funzioni d’'onda e i livelli energetici per amparticella in un potenziale
V(x) della forma

0 pex < —a,
V(X)=<¢ Vo per—a<x<a,
0 pex > a.

N

. Sitrovino i livelli energetici e le funzioni d’onda di urscillatore armonico unidimen-
sionale che & posto in un campo elettrico costante E. Laaafettrica dell'oscilla-
tore ée.

5. Si consideri un oscillatore armonico unidimensionalesne n-mo livello energetico.
Sitrovino< x2 > e il valore di aspettazione dell’energia potenziale perstpeaso.

6. Si calcoli I'energia cinetica media di un oscillatore amito unidemensionale la cui
energia &ho.

7. Si trovino i livelli energetici e le funzioni d’'onda per kauca di potenziale unidimen-
sionale Coulombiano

8. Si studi I'evoluzione temporale del pacchetto d’ondaallistantet = 0 ha la forma
Y(x,0) = T Y4ql/2e-0*-a)/2 (2.389)

(a = /mw/h.) L'Hamiltoniana & quella dell'oscillatore armonico.
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9. Disegnare la variazione dello spettro del sistema d&scosl sottocapitolo 2.2.7, come
funzione di6 nell'intervallo, 0< 6 < 21

2.4 Complemento sul sistema con il potenzialgd(x)

In questo complemento, illusteremo la relazione di ortordalita e la relazione di comple-
tezza in un sistema in cui lo spettro contiene sia la parterelis che quella continua. 1l
sistema e quella di una buca delta,

2
H— %n _g8(x), g>0 (2.390)

gia discusso in una sezione precendente.

2.4.1 Spettro discreto

In questo sistema esiste un solo stato legato,

)y, _ ) VKES  x<0 2301
LY {\/ReKX x>0, (2.391)
dove 7
mg m
=—  E=-—2. 2.392
TR 07 TR (2:392)

2.4.2 Spettro continuo
Si puo porre, per gli stati dt > 0,

A Be ™ x<0
X) = _ : ’ 2.393
Wi {CékXJr De ™ x>0, ( )
dove -
k=h
E= > (2.394)
La condizione di continuita tra le due regionil e Il &:
A+B=C+D. (2.395)
La condizione di continuita per la derivata prima da (@#&H.316):
2img . .
C-D=A-B+ 2 (A+B)=(1+42ia)A—(1-2ia)B, (2.396)
dove
mg K
—_2_250. 2.397
K >0 (2.397)
Risolvendo (2.395) e (2.396) p€tD, si ha
C=(1+ia)A+iaB, (2.398)
D=—-iadA+ (1—ia)B. (2.399)

<g> =5 (@) , (2.400)
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dove

_(1+ia g . 1 (l—ia —ia K
S(—iu 1—ior)' S ( ia 1+ia)’ a= (2.401)

€ lamatrice di transizionelinverso e

OO 2)E) e

Per qualsiasi valore direale la (2.321) con tali coefficienti rappresenta autoptasibili
(continui) del’Hamiltoniana.

Per le applicazioni fisiche e per la considerazione sottoyiene introdurre gli stati R
(right mover) e L (left mover) corrispondenti alla partieeincidente dax = —o, e quelli
corrispondenti a particella incidente gla +. Gli stati R e L sono analoghi degli stati
etkX nel caso libero. Essi sono (poneride= 0 0 A = 0, rispettivamente)

x|

® Tl -F(ke ™), x<0,
Wi () = { La-Frye, x>0, (2.403)
dove 1
FR = Tk (2.404)
e .
L (1-FK)e ™, x<0,
qu ( ) { ﬁ[e ikx (k) e"‘x], X > 07 (2-405)

con lo stessé& (k). k > 0 sopra, e la normalizzazione € stata fissata di modo chialdori
di ortonomalita prende la forma canonica.

2.4.3 Ortogonalita tra lo stato discreto e uno stato nel continuo

Facendo uso di mg

Kk = ik = k(15 i0) (2.406)

si ha infatti
0 . . 0 ) )
<l~|Jcont|quis> :/ dx[A*e"kX+B*e'kX]er+/ dX[C*eilkX+D*elkX]ein
oo 0

A* n B* n C* n D*
K—ik K+ik K+ik kK—ik

A*+D* B*4+C* 1 1+4ia,, .. 11— .
= ik T etk _—_il<1+ior(C +D )Jr_kl—m((C +07)
= 0. (2.407)
2.4.4 Ortogonalita tra gli stati del continuo
Prendiamo due stati di tipo R:
<k/|k _ _/ Ik’X_F*(k)eik/X][eikX_F(k)efikX]
- _E* _ —ik’x jkx
21'[/0 dx(1— F*(K)) (1— F(K)) e K*gkx, (2.408)

Utilizzando le formule

_ (k) +i 2, (2.400)

/ dx e "‘X—/ dxd* = lim dxé"x & — lim 2

e—0+ e—0+ €—ik
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dove? indica il valor principale di Cauchy, si ha

]KIKIR = o [Tk~ K) i g — F O (k4 K) — )
— F(k’)*(né(k+k’)+i%)JrF(k’)*F(k)(né(k—k’)—i%)
+ (1—F(k’)*)(l—F(k))(né(k—k’)—i&)]. (2.410)
Notando
d(k+K)=0; 1+F(K)Y'F(K) — (L-FK))L—-F(K)|kew = 2; (2.411)
1-F(K)*F(K) —(1—F(K))(1—F(K) = k(k—K) ; 2.412
- ( ) ()_( - ( ))( - ())_(1+Ik/K)(1flk'/K), ( )
e _ w(k+K)
Fk) —F () T (1+ik/k)(1—ik'/K)’ (2.413)
e infine P P
(k+K) R (k—K) T 1 (2.414)
troviamo
rRK [K)r = 8(k—K'). (2.415)
Analoghi calcoli dimostrano che
(KK =3k—K),  LKIKr=r(K[KL=0. (2.416)
2.45 Completezza
lllustriamo ora la relazione di completezza, Eq.(2.138),
S Un(@Wi(e) + [ d T (@i (d) = 8(a— ) (2.417)

che in questo sistema coinvolge sia un termine di statoetiser I'integrale sugli stati del
continuo. Calcoliamo il contributo del continuo

/O " kgl () wR* () + /0 "kl () g (). (2.418)

dove le funzioni d’onda di una particella del tipo R (rightwer) e del tipo L(left mover)
sono definite nelle (2.403), (2.405). Ora per 0, X > 0, troviamo

® e ® o Ry L [ B e ek X)
[ kT 00w 0¢) = 5 [ dk(1-F ()1 —F* (k)¢
1 [ iK iK K2
51/0 KL+ Tk "k T R (k)

1 /wdk[l— K—Z]eik(xfx’).
21 Jo (k—iK) (k+iK) ’

] eik(Xfx’)

| dkuld 00w () i |} dkle - Rk € — F (e ™| =

:21'[

e ikxex) L K k) K i) K
21'[/0 dkle * koik® KHiKo TSI k1K)

2
eik(xfx’) I.
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Percio (ricordando che> 0, X > 0),

@ . * 1 7= ik(x— .
Ak 0w 06+ U 00 w060 = o [ k(e

= J(x—X) — ke K) = §(x—x) — O (x) PO (x), (2.419)

ki)

dove il secondo integrale € stato fatto col teorema di tesid\bbiamo quindi dimostrato
esplicitamente (pex > 0, X > 0) la relazione di completezza,

YOO (x) + /0 " Ak WP () + 4 9 W ()] = 3(x—X).  (2.420)
Perx < 0,x > 0, il contributo dello spettro continuo

7k 00w 0+ 0 09wl ()

0

— %_[/Omdk([eikX,F(k)e*ikx](1*F*(k))e*ikX’+(17F(k))efiKX[eikx’7F*(k)e,ikx/])

1 r® - iK
- = Kk ik(x—x) ik(x—x)
7 | aie krikS )

= J(x—X) — ke = §(x—x) — PO (x)pO*(x) (2.421)

che e il risultato corretto.

E interessante considerare il caso di potena&ke ripulsivo, che corrisponde a pren-
dereil segn@ < 0 nella (2.390). In questo caso non esiste nessun statoldbadntributo
del continuo deve dare esattamedite— X' ). La dimostrazione & semplice: I'unico cambia-
mento nel precedente € che ara 0. | passaggi fino alla (2.419) non subiscono modifiche
sostanziali, poiché coinvolgono soltanto cancellazagebriche. Nel secondo termine
della (2.419), pex > 0, X > 0, il polo dell'integrando ora sta nel piano inferiore: exde
x+X > 0, l'integrale sk da zero grazie al teorema di Cauchy. Percio

ek 00w 00+ W w1 ex—x) (2422

semplicemente, come deve essere. Lo stesso vale per (Zh21)a nel secondo membro
semplicement&(x — x').
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