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0.1. ERRATA 1

0.1 Errata
L’Eq. (2.261) va sostituita con:

(x2)nm =
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2.1 Prinćıpi e Legge della Meccanica Quantistica

In questo capitolo sono introdotti i postulati principali ela legge della meccanica quanti-
stica. Lo stato quantistico è descritto da una funzione d’onda; le variabili dinamiche da
operatori hermitiani; infine l’evoluzione temporale dellostato dall’equazione di Schrödin-
ger. Le predizioni della nuova meccanica sono formulate in termini di probablilità che la
misura di una variabile, in un dato stato, dia uno dei possibili valori. Questi ultimi sono
autovalori del relativo operatore Hermitiano.

2.1.1 Lo stato quantistico e il principio di sovrapposizione

La discussione dell’esperimento di Tonomura et. al., discussa nell’Introduzione è una con-
ferma diretta della relazione di de Broglie, (1.123). Questi ci porta a definire uno stato
quantistico non in termini di valori simultanei{p,q} delle variabili canoniche, ma con una
sorta di onda. Infatti, abbiamo il primo

Postulato Fondamentale della Meccanica Quantistica:

lo stato è descritto da una funzione complessa

stato quantistico∼ ψ({q},t) (2.1)

chiamatafunzione d’onda. Essa dipende dalle coordinate canoniche e dal tempo ma non
dagli impulsi.1

La conoscenza della funzione d’onda equivale alla completaconoscenza dello stato
quantistico. Essa permette di calcolare le probabilità diottenere determinati risultati in
qualsiasi tipo di misura.

Per esempio consideriamo la posizione di una particella, o più in generale, le coordi-
nate generalizzate del sistema (q). La probabilità di trovare il sistema nell’intervallo di
coordinate[q,q+dq] è, per postulato dato da

dP= |ψ({q},t)|2dq (2.2)

(dq≡ dq1dq2 . . .dqs). Per una particella in tre dimensioni la probabilità che essa si trovi in
un volume attorno al puntor è

|ψ(r ,t)|2d3r . (2.3)

Poiché la probabilità totale deve essere 1, si deve imporre

||ψ||2 =

Z

|ψ({q},t)|2dq= 1. (2.4)

L’eq.(2.4) è nota comecondizione di normalizzazione. Ogni funzione d’onda per la quale
l’integrale

R |ψ({q},t)|2dq converge, è normalizzabile, con la moltiplicazione di un nu-
mero opportuno.2 Segue che la funzioneψ e un’altra funzionecψ dovec è un numero
complesso costante qualsiasi diverso da zero, rappresentano lo stesso stato,i.e.,

ψ ∼ cψ, c 6= 0. (2.5)

In altre parole, lo stato quantistico è descritto dal raggio di ψ, nello spazio di funzioni
normalizzabili.3

1Tale descrizione appare introdurre la perdita della simmetria per lo scambio tra le coordinate e gli impulsi,
che caratterizza il formalismo canonico della fisica classica. In realtà la legge della meccanica quantistica ha
una completa simmetria perq ↔ p; l’apparente violazione di questa simmetria in (2.1) è dovuta alla scelta del
linguaggio, alla particolare scelta dellarappresentazioneper lo stato quantistico, come sarà spiegato nei capitoli
successivi.

2Per esempio,ψ(r ,t) = e+r2
non è normalizzabile, pertanto non rappresenta nessuno stato fisico.

3Più precisamente,ψ deve appartenere ad uno spazio di Hilbert,H .
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Il principio di sovrapposizioneafferma che seψ1 e ψ2 sono due stati possibili (fisici)
qualsiasi4 di un sistema, un terzo stato descritto da

ψ = c1ψ1 +c2ψ2 (2.6)

dovec1,c2 sono due costanti complesse arbitrarie, è anche esso uno stato possibile (fisico).
Significa che l’insieme degli stati ammissibili di un dato sistema è descritto da uno spazio
lineare di funzioni d’onda,H .

Per consistenza, il principio di sovrapposizione richiedeche l’evoluzione temporale
della funzione d’onda sia descritta da un’equazione lineare in ψ, i.e., del tipo

Sψ = 0. (2.7)

doveS è un operatore lineare, i.e., un operatore tale che

S(c1ψ1 +c2ψ2) = c1Sψ1 +c2Sψ2. (2.8)

La forma esplicita dell’operatoreS sarà discussa in seguito.
La descrizione dello stato quantistico in termini di funzione d’onda introduce una certa

asomiglianza con quella della dinamica di onde classiche, eper questa ragione è stata usata
in passato la denominazione di “meccanica ondulatoria” perla dinamica di Schrödinger.
Tuttavia, esistono delle differenze essenziali tra la dinamica delle onde classiche e quel-
la dello stato quantistico. Per esempio, in meccanica quantistica la funzione d’ondaψ e
un’altra funzione d’ondacψ (c 6= 0 ) rappresentano lo stesso stato, come abbiamo appena
accennato, mentre due funzioni che differiscono di un fattore moltiplicativo rappresentano
due onde classiche di diversa ampiezza, perciò di diversa energia, fisicamente distinguibili.

Il concetto stesso di sovrapposizione richiede un’interpretazione drasticamente diversa
in meccanica quantistica, rispetto a quella delle onde classiche. Consideriamo per esempio
due stati (quantistici)A eB.5 Siano questi stati tali che la misura di una determinata quantità
fisica (O) dia con certezza (i.e., con probabilità 1) il risultatoa nello statoA, e con certezza
il risultato b, nello statoB. Ora secondo il principio di sovrapposizione esiste uno stato
fisicoC descritto da

ψC = cA ψA +cBψB, (2.9)

doveψA e ψB sono le funzioni d’onda (normalizzate) degli statiA e B; cA,cB sono due
numeri complessi arbitrari. Le proprietà fisiche dello stato C saranno in qualche modo in-
termedie tra quelle dello statoA e quelle dello statoB. Qual’è il risultato di una misura
della stessa quantitàO fatta nello statoC? Secondo la regola della meccanica quantistica,
il risultato di una singola misura non può mai essere diverso daa oppure dab. Più precisa-
mente, la meccanica quantistica predice che le probabilit`a per ottenere i risultatia eb sono
rispettivamente

Pa =
|cA|2

|cA|2 + |cB|2
; Pb =

|cB|2
|cA|2 + |cB|2

, (2.10)

e zero per tutti gli altri possibili valori diO. In altri termini, il carattere intermedio dello
stato C si manifesta nelle probabilità di ottenere un determinato risultato in un’osserva-
zione, e non nei risultati stessi di singole misure (Dirac). Queste “regole” della nuova
meccanica saranno formulate nella successive sezioni.

Osservazioni

• Secondo quanto detto sopra le funzioni d’ondaψ eeiαψ (conα reale), rappresentano
lo stesso stato. La fase costante davanti alla funzione d’onda non ha un significato
fisico. Ma ovviamenteψA = c1ψ1 + c2ψ2 e ψB = c1ψ1 + c2eiαψ2 sono due stati
diversi (perc1c2 6= 0).

4Ci sono eccezioni a questa regola (regola di superselezione).
5D’ora in poi, eccetto quando c’è un rischio di un’ambiguit`a o un malinteso, useremo semplicemente la parola

“stato” al posto di “stato quantistico.”
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• Per due sistemiA e B non-interagenti tra di loro e scorrelati la funzione d’ondasi
fattorizza:

ψA,B = ψA ψB. (2.11)

Si noti che in presenza di particelle identiche, la funzioned’onda di molti corpi deve
avere una certa proprietà di simmetria per scambi di questeparticelle, e questo intro-
duce una correlazione anche tra particelle non-interagenti. Questo aspetto peculiare
della meccanica quantistica, di fondamentale importanza nella fisica dei molti corpi,
sarà discusso nel Capitolo??

Polarizzazione del fotone
Lo stato di polarizzazione della luce è descritta in teoriaclassica dal vettore di polarizzazione

A = Aλ(k)ελ(k)eik·r−iωt +h.c. (2.12)

Per semplicità abbiamo assunto una luce monocromatica. Ingauge di radiazione,

E = −1
c

∂A
∂t

, B = ∇×A, ε ·k = 0. (2.13)

L’ultima condizione significa che ci sono due polarizzazioni indipendenti. La luce polarizzata linear-
mente corrisponde a, per es.,

ε1 = (1,0,0), k = (0,0,k), (2.14)

con

Ex =
A1

c
ω cos(k · r −ωt), Ey = 0, (2.15)

e analogamente perε2 = (0,1,0). La luce polarizzata linearmente, ma in direzione(sinθ,cosθ) (nel
piano perpendicolare alla direzione della propagazione) `e descritta da

ε = (cosθ,sinθ,0). (2.16)

La luce con polarizzazione circolare, corrisponde per es. a

ε1 =
1√
2
(1, i,0),

Ex =
A+

√
2c

ω cos(k · r −ωt), Ey =
A+

√
2c

ω sin(k · r −ωt), (2.17)

una polarizzazione elittica aε = 1√
5
(2, i,0), etc.

Secondo la meccanica quantistica la luce va considerato come un fascio di fotoni, e l’origine
della proprità di polarizzazione può essere attribuita ai due possibili stati indipendenti del singolo
fotone. Tralasciando altre caratteristiche (l’impulso, direzione della propagazione), lo stato di un
singolo fotone è descritto da una combinazione generale

|ψ〉 = c1 |1〉+c2 |2〉, |c1|2 + |c2|2 = 1. (2.18)

|1〉, |2〉 rappresentano due stati ortonormali di polarizzazioni lineari nelle direzionix e y, corrispon-
dono alle luci polarizzati linearmente (2.14), e soddisfano

〈1|1〉 = 〈2|2〉 = 1, 〈1|2〉 = 0. (2.19)

Certi cristalli hanno la proprietà di fare passare solo la luce polarizzata lungo un asse caratteristi-
co, chiamato asse di polarizzazione. Quando un fascio incidente ha una polarizzazione lineare nella
direzione che fa un angoloθ rispetto all’asse di polarizzazione, si trova empiricamente che l’intensità
di luce che passa è

I(θ) = I(0) cos2 θ (2.20)

(Legge di Malus).
Ora consideriamo lo stesso esperimento dal punto di vista disingoli fotoni che incidono sul

cristallo, con l’asse di polarizzazione nella direzione dix̂. Se il fotone ha la polarizzazione lineare
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1, passerà con certezza, con probabilitàP = 1. Se esso è di tipo|2〉, invece non passerà (probabilità
nulla di passare). Cosa succede se il fotone incidente è nello stato,

|θ〉 = cosθ |1〉+sinθ |2〉 (2.21)

(stato di polarizzazione lineare nella direzioneθ dall’assex)? L’unica risposta sensata - ed è la
predizione della meccanica quantistica - è che il fotone hala probabilità P+ = |c1|2 = cos2 θ di
passare, e laprobabilità P− = |c2|2 = sin2θ di non passare.

Per una luce polarizzata perfettamente nella direzioneθ, composta di molti fotoni nello stato|θ〉,
ritroviamo la legge di Malus.

In questo esempio, vediamo che l’interpretazione probabilistica della meccanica quantistica è
una diretta conseguenza dei fatti empirici, o meglio, l’unica formulazione logica possibile di questi
fatti.

2.1.2 Principio di indeterminazione di Heisenberg

Il fatto che l’elettrone sia descritto da una sorta di onda, funzione d’onda, significa che il
concetto classico di traiettoria perde validità. Esso nonpuò avere simultaneamente valori
definiti dell’impulso e della posizione. Questo non significa che i concetti stessi come
la posizione, l’impulso e l’energia perdano totalmente senso. È la descrizione dello stato
quantistico che differisce sostanzialmente da quella della meccanica classica, dove “lo stato
fisico” è completamente specificato dai valori contemporanei di qi , pi ;E, ....

D’altra parte, nei limiti in cui la costante di Planckh può essere considerata piccola,
le leggi della meccanica quantistica devono essere consistenti con quelle della meccanica
classica. In qualche modo, allora, la costanteh dovrà segnare il confine tra il dominio
quantistico e quello classico.

L’espressione matematica della suddetta limitazione per la determinazione simulta-
nea di qi e pi è stata scoperta da Heisenberg. Essa viene espressa da un insieme di
disuguaglianze:

∆x ·∆px ≥ h̄; ∆y ·∆py ≥ h̄; ∆z·∆pz ≥ h̄; (2.22)

o più generale, per una coppia canonicaqualsiasi,

∆qi ·∆pi ≥ h̄, (2.23)

dove

h̄≡ h
2π

≃ 1.054·10−27 (erg·sec) (2.24)

Queste relazioni sono chiamaterelazioni di Heisenberg; o relazioni d’indeterminazione di
Heisenberg.

La relazione d’indeterminazione segue dalla descrizione di una particella come un pac-
chetto d’onda. Per esempio, consideriamo un pacchetto d’onda di forma Gaussiana in una
dimensione, che at = 0 è dato da:

ψ(x,0) = cost.e−x2/d2
. (2.25)

Notiamo che questo pacchetto è concentrato attorno ax = 0 ma ha una dispersione,

∆x =
√

〈(x−〈x〉)2〉 ∼ d, (2.26)

che può essere interpretato come una sorta di indeterminazione della sua posizione.6

6Come accennato nella sezione precedente, il calcolo dei valori medii nella (2.26) coinvolge la densità di
probabilità|ψ|2 anziché la funzioneψ stessa.



40 CAPITOLO 2. PRINC̀IPI DELLA MECCANICA QUANTISTICA

D’altra parteψ(x) = ψ(x,0) può essere visto come una sovrapposizione di onde piane:
la sua trasformata di Fourier è

ψ(x) =

Z ∞

0
dλ
(

a(λ)e2πix/λ +a∗(λ)e−2πix/λ
)

=

Z ∞

−∞
dλa(λ)e2πix/λ (2.27)

doveλ è la lunghezza d’onda ea(−λ)≡ a∗(λ).
Secondo de Broglie vale la relazione

p =
h
λ

(2.28)

per ogni particella (onda di de Broglie): la equazione precedente può essere riletta allora
come sovrapposizione di diverse componenti di impulsop:

ψ(x) =

Z ∞

−∞
dpψ̃(p)eipx/h̄ (2.29)

dove è stato introdotto ¯h≡ h/2π. La componente di Fourier̃ψ(p) si calcola facilmente nel
caso di un’onda Gaussiana,ψ(x) = e−x2/d2

:

ψ̃(p) =
Z ∞

−∞

dx
2πh̄

e−ipx/h̄e−x2/d2

=

Z ∞

−∞

dx
2πh̄

e−(x+ipd2/2h̄)2/d2
e−d2p2/4h̄2

= cost.e−d2p2/4h̄2
. (2.30)

Tale risultato è interpretabile come un’indeterminazione dell’impulso dell’ordine di

∆p∼ h̄
d
. (2.31)

Dalle equazioni (2.26) e (2.31) segue la relazione di Heisenberg.
Risulta che il pacchetto Gaussiano minimizza il prodotto∆x∆p: per un pacchetto

generico si trova (vedi dopo) una disuguaglianza come nelleeq.(2.22).
Le relazioni d’indeterminazione implicano che in uno statoin cui la posizione di un

elettrone è esattamente nota, la conoscenza dell’impulsoè completamente persa, o vice
versa, ed in ogni modo il prodotto∆q∆p non può essere minore di ¯h.

Il significato della relazione di Heisenberg va precisato meglio. È naturale chiedersi
se tale relazione abbia affatto senso. Infatti, non basterebbe prendere una particella di
cui l’impulso, pz, per es., è perfettamente noto grazie alla preparazione antecendente, e
misurarnela posizione zcon una precisione che si vuole, per ottenere uno “stato” in cui la
posizione e l’impulso sono perfettamente determinati contemporaneamente, o per lo meno
uno stato arbitrariamente vicino a tale stato?

Queste questioni sono stati studiate da Heisenberg, attraverso esame di una serie di
“Gedanken experiments” (le esperienze pensate, ipotetiche) 7. Consideriamo qui solo due
esempi. La prima riguarda la misura della posizione di un elettrone con un microscopio
ottico. (Fig.2.1) La luce entra orizzontalmente, viene diffusa dall’elettrone e entra nella
lente dell’obiettivo. Come è noto dall’ottica, la risoluzione orizzontale di tale apparecchio
è data dalla formula:

∆x∼ λ
sinε

(2.32)

7“Principi Fisici della Meccanica Quantistica (Bolinghieri); Physical Foundation of Quantum Mechanics” di
Heisenberg.
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ε
Fotone 

Elettrone

Figura 2.1:Osservazione della posizione orizzontale di un elettrone con un microscopio

doveλ è la lunghezza d’onda della luce usata, edε è l’apertura angolare dell’obiettivo. A
causa della misura, l’elettrone riceverà un rinculo dell’ordine dihν/c, i.e., dell’ordine de-
l’impulso del fotone, da scattering Compton (vedi il Problema 2 della sezione precedente).
Siccome la direzione del fotone è nota solo entro il limite determinato dall’angoloε, la
componente orizzontale dell’impulso dell’elettrone sar`a anche essa affetta da un’incognita
di

∆px ∼
hν
c

sinε ∼ h
λ

sinε (2.33)

da cui segue la relazione
∆x∆px ∼ h. (2.34)

La dualità onda-corpuscolo della luce è essenziale nell’argomentazione.
Un altro “Gedanken experiment” è la misura della posizioneverticale (z) dell’elettrone

che entra orizzontalmente in una fenditura (Fig. 2.2). Supponiamo che il fascio di elettroni
sia ben collimato di modo che il suo impulso nella direzione verticale possa essere con-
siderato zero. L’apertura della fenditurad introduce un’indeterminazione nella posizione
dell’elettrone: essa sarà misurata con la precisione di

∆z∼ d (2.35)

se l’elettrone attraversa la fenditura. Ora, secondo de Broglie l’elettrone con impulsop
si comporta come un’onda di lunghezza d’ondaλ = h/p: come tale, esso subirà una
diffrazione al passaggio dalla fenditura stretta. Questa onda si diffonde di un angoloα
dove

sinα ∼ λ
d

(2.36)

dove è stata usato un altro risultato ben noto in ottica. Perciò l’elettrone, al passaggio dalla
fenditura, acquista una componente verticale dell’impulso, nota entro il limite di

∆pz ∼ |p|sinα =
h
λ

λ
d

=
h
d

. (2.37)

Per il prodotto delle indeterminazioni della posizione e dell’impulso (le componenti verti-
cali) vale perciò la relazione

∆z∆pz ∼ h. (2.38)

Questa deduzione utilizza la dualità onda-corpuscolo dell’elettrone.
Queste discussioni dimostrano che c’è un limite nella precisione della determinazio-

ne simultanea delle variabili canonicamente coniugate, se interpretiamo la simultaneità
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z
p

Figura 2.2: Determinazione della posizione verticale di un elettrone con il passaggio per una
fenditura

nel senso fisico.8 Tale limite è un limite fisico, indipendente dalla condizione esterna del-
l’osservazione (tecnica, perizia, esperienza, qualità dell’apparato di misura, ecc.); esso è
dovuto alla proprietà dinamica del processo fisico coinvolto.

Infatti queste argomentazioni di Heisenberg mettono in risalto un aspetto caratteristico
importante della meccanica quantistica. Nelle esperienzeche coinvolgono i sistemi atomici
o sub-atomici la perturbazione dovuta al processo di una misura non può essere controllata
dall’osservatore oltre un certo limite, essendo tale limite una proprietà fisica dei processi
stessi. Il determinismo nel senso classico è generalmenteperso nel processo di osservazio-
ne. L’interpretazione probabilistica delle predizioni della meccanica quantistica, associata
al processo della misura, è legata intimamente al principio d’indeterminazione.

Viceversa, i sitemi lasciati indistrubati evolvono in maniera perfettamente deterministi-
ca. La funzione d’onda obbedisce l’equazione di Schrödinger, un’equazione differenziale
nel tempot.

Tutto ciò è in contrasto con quanto accade in meccanica classica. In processi macro-
scopici, il disturbo causato dalla misura (l’apparato e i processi) all’oggetto di misura è
trascurabile. Il concetto classico di determinismo è basato su questo fatto. Dal punto di vi-
sta più generale, tuttavia, c’è da tenere presente che il determinismo tradizionale ha - negli
ultimi decenni - subito una notevole revisione, anche nell’ambito della meccanica classica,
collegata con i fenomeni nonlineari, ilcaos, ecc.

2.1.3 Operatori, autovalori e autostati, risultati di un’osservazione

Abbiamo visto che lo stato quantistico è descritto da una funzione complessa - funzio-
ne d’onda,ψ({q},t). Come sono descritte le variabili dinamiche? Quali sono i risultati
possibili di una misura? Qual’è la predizione della meccanica quantistica?

In meccanica quantistica, ad ogni variabile dinamicaf viene associato unoperatore
lineare f̂ , che agisce nello spazioH delle funzioni d’onda. Un operatore linearef̂ soddisfa
per definizione,

f̂ (c1ψ1 +c2ψ2) = c1 f̂ ψ1 +c2 f̂ ψ2, (2.39)

dovec1c2 sono costanti complesse arbitrarie.9 Le relazioni di Heisenberg implicano l’in-
troduzione del concetto di unamedia quantistica, o valore d’aspettazionedi un operatore
in un dato stato. Esso può essere definito, nel caso dell’operatore di posizione, come

〈q〉ψ =

Z

dqq|ψ(q)|2 =

Z

dqψ∗(q)qψ(q), (2.40)

8Al contrario, il prodotto tra l’indeterminazione dipz un istanteprima e l’indeterminazione diz immediata-
mentedopo il passagio dell’elettrone per la fenditura, nel secondo esempio discusso qui, ha solo un significato
filosofico, non essendo tale prodotto utilizzabile come condizione iniziale per processi successivi.

9Esempi: la funzione d’onda di una particella in tre dimensioni ha la formaψ(r ,t); gli operatori differenziali
∂
∂t , ∂

∂x , ∂
∂z, .. ∇2 = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 , sono operatori lineari; l’operatoreψ →U(r)ψ è lineare, mentrêQψ = ψ2 non

è lineare.
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visto che|ψ(q)|2 è la densità di probabilità. Generalizzando, è naturale definire il valor
medio dell’operatore genericôf nello statoψ con

〈ψ| f̂ |ψ〉 =

Z

dqψ∗(q) f̂ ψ(q); (2.41)

ma la relazione tra questa quantità e la media dei risultatisperimentali della variabilef non
è ovvia.

Infatti, il risultato di una singola misura della variabiledinamicaf è uno degliautova-
lori di f̂ , fn:

f̂ ψn = fnψn, ||ψn|| = 1. (2.42)

Le autofunzioniψn descrivono gli autostati dell’operatore: stato in cui la misura di f dà
con certezza il valorefn.

Un generico stato è descritto da una combinazione lineare

ψ(q) = ∑
n

cn ψn(q). (2.43)

di autostati{ψn}. Il secondo

Postulato Fondamentale della Meccanica Quantistica

asserisce che la probabilità di ottenere il risultatofn nella misura dif fatta nello stato (2.43)
è data da

Pn = |cn|2 (2.44)

Facendo uso dell’ortonormalità degli autostati10

〈ψn|ψm〉 =

Z

dqψ∗
nψm = δnm, (2.45)

(l’ortogonalità degli autostati relativi ad autovalori diversi sarà dimostrata nella sezione
successiva), la condizione della normalizzazione dello statoψ,

||ψ|| = 1,

implica che

∑
n

Pn = ∑
n
|cn|2 = 1. (2.46)

Segue allora che il valore d’aspettazione dell’operatoref̂ nello statoψ, (3.84), è uguale a

〈ψ| f̂ |ψ〉 =

Z

dqψ∗(q) f̂ ψ(q) = ∑
n
|cn|2 fn = ∑

n
Pn fn, (2.47)

dove abbiamo usato la linearità dell’operatore. (2.47) ègiustamente la quantità da confron-
tare con il risultato mediato delle misure ripetute.

Una formula alternativa per la probabilità (2.44) è

Pn = |〈ψn|ψ〉|2 (2.48)

visto che il coefficiente dello sviluppo, usando la relazione di ortonormalità, (2.45), è
uguale a

〈ψn|ψ〉 ≡
Z

dqψn(q)∗ ψ(q) = cn. (2.49)

In altre parole,la probabilità di trovare un determinato risultato nella misura di fè il
modulo quadrato della proiezione della funzione d’onda su relativa autofunzione.

10Nelle (2.45), (2.47), (2.49) introduciamo la notazione di Dirac, con i “ket”, |〉, e i “bra”, 〈|.
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2.1.4 Risultati reali per una misura; Operatori Hermitiani

Il fatto che il risultato di misura di una quantità fisica siaun numero reale, impone una
condizione particolare sull’operatore associato. Infatti, visti i postulati della meccanica
quantistica,f̂ deve essere tale che i suoi autovalorifn (i.e., possibili risultati sperimentali)
e di conseguenza il suo valor medio siano in qualsiasi stato reali.

Prima di tutto definiamo iltrasposto fT di un operatore. Dato uno statoψ, se esiste una
funzioneχ ∈ H tale che per qualsiasiφ ∈ H vale la relazione

Z

dq( f φ∗)ψ =

Z

dqφ∗ χ, (2.50)

allora
χ ≡ f T ψ. (2.51)

Il coniugato Hermitianodi un operatore è definito come

f † ≡ ( f T)∗ = ( f ∗)T . (2.52)

Un operatore èHermitiano se
f † = f , (2.53)

i.e.,se
〈φ| f ψ〉 = 〈ψ| f φ〉∗ ≡ 〈 f φ|ψ〉, ∀ψ,φ ∈ H . (2.54)

Per un operatore Hermitianof si ha infatti〈 f 〉 = 〈 f 〉∗, prendendoψ = φ in (2.54). In
particolare, perψ = ψn, si trova f ∗n = fn, come richiesto.

Nota:
L’Hermiticità di f è anche necessaria. Infatti, supponiamo che valga〈ψ| f |ψ〉 = 〈ψ| f |ψ〉∗ per

qualsiasiψ. Ponendoψ = χ+eiα φ, troviamo che

eiα 〈χ| f |φ〉+e−iα 〈φ| f |χ〉 ∈ R, (2.55)

(reale) per qualsiasi valori diα costante reale. Segue che

〈φ| f |χ〉 = 〈χ| f |φ〉∗, (2.56)

per ogni scelta diχ, φ, che significa chef è Hermitiano, per definizione ((2.54)).

Arriviamo alla conclusione chead ogni variabile dinamica è associato un operatore
lineare e Hermitiano.

Esempi: l’operatorex, y, x2, i∂/∂x, i∂/∂t ecc., sono Hermitiani;∂/∂x non è Hermitiano.

Teorema: Gli autostati corrispondenti ad autovalori diversi di un operatore Hermitiano
sono ortogonali.

Dall’eq.(2.42) segue
Z

dqψ∗
m f ψn = fn

Z

dqψ∗
mψn; (2.57)

e un’analoga relazione in cuin em sono scambiati,
Z

dqψ∗
n f ψm = fm

Z

dqψ∗
nψm. (2.58)

Prendendo ora la combinazione, (2.57) - (2.58)∗, si trova

( fn− fm)

Z

dqψ∗
mψn =

Z

dqψ∗
m( f − f †)ψn = 0, (2.59)

dove è stato usato il fatto che{ fn} sono numeri reali, ef † = f . Segue
Z

dqψ∗
mψn = 0, se fn 6= fm. (2.60)

♠
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2.1.5 Prodotti di operatori, Commutatori, Osservabili compatibili

Il prodotto di due operatori è definito da

f gψ ≡ f (gψ). (2.61)

In generale gli operatorif g e g f sono diversi. Ilcommutatoretra due operatorif e g è
definifto da

[ f ,g] ≡ f g−g f. (2.62)

Se[ f ,g] = 0, i due operatoricommutano.
Inoltre, i commutatori soddisfano all’identità di Jacobi,

[ f , [g,h]]+ [g, [h, f ]]+ [h, [ f ,g]] = 0 (2.63)

(cfr. vedi 1.2.2.)
Nella discussione delle osservabili gioca un ruolo importante il seguente

Teorema:
Se due operatori f e g commutano, esiste una base di stati ortonormali e completi{ψn}

tale che
f ψn = fnψn; gψn = gnψn. (2.64)

In altre parole si possono trovare gli stati che sono simultaneamente autostati sia dif che
di g. I due operatori corrispondono perciò a due quantità fisiche (osservabili) compatibili,
che possono avere simultaneamente valori definiti.
Dimostrazione: Nel sottospazio di autostati dig con determinato autovaloregn, ψi

n

gψi
n = gn ψi

n : i = 1,2, . . . , (2.65)

g agisce come un operatore unità (a parte una moltiplicazione di un numero),

Gi j =

Z

dqψ j∗gψi = gnδi j .

L’operatoref in questo sottospazio in generale non è diagonale,

f ψi
n = Fi j ψ j

n, (2.66)

dove abbiamo utilizzato la linearità dif e il fatto chef eg commutano, per concludere che
f ψi

n è un autostato dig con autovaloregn. Dal fatto che l’operatoref è Hermitiano segue
che (sopprimendo l’indicen)

Fi j =
Z

dqψ j∗ f ψi =
Z

dq( f ∗ψ j∗)ψi = (
Z

dqψi∗ f ψ j)∗ = F∗
ji :

F è una matrice Hermitiana. Una matrice Hermitiana può essere diagonalizzata con un
atrasformazione unitaria

ψi = Ui j φ j , φi = (U−1)i j ψ j = U†
i j ψ

j , (2.67)

U†FU = F̃ =











f1 0 · · ·
0 f2 . . .
...

...
. . .

0 0 . . .











, (2.68)

U†U = UU† = 1. (2.69)

Nella nuova base,

f φi = U†
i j f ψ j = U†

i j Fjkψk = U†
i j FjkUklφl

= (U†FU)il φl = fiφi . (2.70)
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Chiramente una matrice unitàGi j è invariante per qualsiasi trasformazione unitaria, perciò
gli stati φi sono autostati simutanei dif e dig.

In breve, si tratta semplicemente di diagonalizzare l’operatoref nello spazio di autostati
(degeneri) appartenenti ad un autovalore dig, o vice versa. ♠

Ricapitolando, se[ f ,g] = 0, i due operatori corrispondono a due quantità fisiche di cui
valori possono essere simultaneamente precisati: sono simultaneamente osservabili con
arbitraria precisione e non sono condizionate dalle relazioni d’indeterminazione.

La discussione sopra chiaramente può essere generalizzata al caso di più operatori che
commutano tra di loro. Partendo da un operatore qualsiasi, si arriva al concetto diosserva-
bili massimali, i.e., un insieme massimale di tutte le variabili dinamiche{Oi} con relativi
operatori che commutano tra di loro. Gli autovalori di tale osservabili massimali forni-
scono una caratterizzazione completa dello stato. La scelta di tale insieme massimale di
osservabili non è in generale univoca.

Vice versa, la relazione di Heisenberg si riferisce, appunto, a coppie di variabili di-
namiche che non commutano, e in particolare a coppie canoniche delle variabili (vedi
Sez. 2.1.6).

Esercizio:
Il valor medio di un operatore di formaA†A in qualsiasi stato è semipositivo definito.

〈A†A〉ψ =
Z

dqψ∗A†Aψ =
Z

dq|Aψ|2 ≥ 0. (2.71)

Esercizio: Dimostrare

(AB)† = B†A†

2.1.6 Operatori di posizione e di impulso, Commutatori fondamentali,
Relazione di Heisenberg

L’operatore di posizione (coordinate generalizzate) agisce in modo semplice

q̂ψ(q,t) = q ψ(q,t), (2.72)

esso corrisponde alla moltiplicazione diq (questo fatto era implicito nella definizione di
〈q〉.)

L’operatore dell’impulso canonicamente coniugato aq è

p̂ = −i h̄
∂
∂q

, (2.73)

e per una particella in tre dimensione,

p = −ih̄∇ (2.74)

Segue che le due variabili canonicamente coniugate soddisfano la relazione di commutato-
re,

[q̂, p̂] = i h̄ . (2.75)

Per una particella in tre dimensione,

[xi , p j ] = i h̄δi j . (2.76)

Le componenti di ˆq commutano tra loro, ed cosı̀ anche le componenti di ˆp:

[xi ,x j ] = [pi , p j ] = 0. (2.77)

Osservazione
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La somiglianza tra queste relazioni e quelle soddisfatte daparentesi di Poisson in mec-
canica classica, (1.37), non è casuale. Dal punto di vista formale, infatti, la meccanica
quantistica può essere vista come una deformazione,

{ f ,g}→ 1
ih̄

[ f ,g], (2.78)

della meccanica classica, espressa in termini di parentesidi Poisson.

Relazione di Indeterminazione di Heisenberg
Ora che abbiamo definito operatori, l’azione di un operatoresugli stati, i commutatori

tra operatori e il valor medio di un operatore in uno stato, siamo finalmente in grado di
dimostrare la relazione di Heisenberg in modo più rigoroso. La discussione della sezione
2.1.2 lasciava molti punti oscuri. Dimostriamo infatti che, per una qualsiasi coppia di
operatori HermitianiQ,P che soddisfano

[Q,P] = ih̄, (2.79)

è valida la relazione di Heisenberg, (2.85) qui sotto. Si noti il fattore 1
2.

L’indeterminazione diQ o di P è definito da

∆Q≡
√

〈(Q−Q0)2〉, ∆P≡
√

〈(P−P0)2〉,

dove

Q0 = 〈Q〉 = 〈ψ|Q|ψ〉; P0 = 〈P〉 = 〈ψ|P|ψ〉, (2.80)

sono i valor medi dei due operatori nello statoψ. Consideriamo un operatore

A = Q−Q0+ iα(P−P0), (2.81)

doveα è un numero reale qualsiasi. Facendo uso del fatto che

〈ψ|A†A|ψ〉 ≥ 0, (2.82)

per qualsiasi operatoreA, si ha

〈(Q−Q0)
2〉−αh̄+ α2〈(P−P0)

2〉 ≥ 0, (2.83)

una disuguaglianza valida per qualsiasiα. Un’espressione quadratica è semidefinita positi-
va quando il suo discriminante è negativo o zero:

h̄2−4(∆Q)2 · (∆P)2 ≤ 0; (2.84)

i.e.,

∆Q ·∆P≥ h̄
2
, (2.85)

dove abbiamo definito lo scarto quadrato come media sullo stato in questione,

(∆Q)2 ≡ 〈(Q−Q0)
2〉 = 〈Q2−Q2

0〉 = 〈Q2〉− 〈Q〉2, (2.86)

(∆P)2 ≡ 〈(P−P0)
2〉 = 〈P2|〉− 〈|P〉2. (2.87)

♠



48 CAPITOLO 2. PRINC̀IPI DELLA MECCANICA QUANTISTICA

2.1.7 Evoluzione del sistema, Equazione di Schrödinger

L’evoluzione temporale degli stati deve essere descritta da un’equazione lineare, come ab-
biamo già accennato. L’equazione fondamentale della meccanica quantistica che descrive
l’evoluzione temporale dello stato,Equazione di Schrödinger, è:

ih̄
∂
∂t

ψ(q,t) = Ĥ(q̂, p̂; t)ψ(q,t) (2.88)

dove Ĥ è l’operatore dell’energia, l’Hamiltoniana. La (2.88) sostituisce l’equazione di
Newton. Per ipotesi, l’HamiltonianâH è uguale a,

Ĥ(q̂, p̂; t) = H(q, p; t)|q→q̂=q; p→p̂=−ih̄ ∂
∂q

(2.89)

doveH(q, p; t) è la Hamiltoniana classica.
In altre parole, la regola fondamentale della meccanica quantistica è l’associazione

H → i h̄
∂
∂t

; pi →−i h̄
∂

∂xi
(2.90)

La relazione tra l’impulso e l’energia,

H = H(q, p; t) (2.91)

(per es.,H(q, p) = p2

2m +V(q)) si traduce in unacondizione sullo stato fisico (funzione
d’onda), che è l’equazione di Schrödinger.11

Onda piana
È possibile dare una motivazione euristica per questa procedura, considerando un’onda piana

ψ0 = cost.e−i(ωt−τx), (2.92)

che rappresenta una luce monocromatica con polarizzazionefissa. L’idea è di considerarla come
soluzione di un’equazione quantistica. Applicandoih̄ ∂

∂t suψ0 si ha

i h̄
∂
∂t

ψ0 = h̄ωψ0 = hνψ0 (ω = 2πν). (2.93)

Ma sappiamo che per (il quanto di) una luce monocromaticahν è la sua energia,hν = E ,

i h̄
∂
∂t

ψ0 = E ψ0 : (2.94)

i.e., l’autovalore di H è l’energia. D’altra parte, la relazione di de Broglie rivela che

τ =
2π
λ

=
p
h̄

, (2.95)

di conseguenza

−i h̄
∂

∂x
ψ0 = pψ0. (2.96)

Questa relazione suggerisce che−ih̄ ∂
∂x è l’operatore che rappresenta l’impulso.

Inoltre, tra l’autovalore di energiaE = hν e quello dell’impulsop= h/λ esiste una nota relazione
E = pc, la relazione cinematica (relativistica) corretta tra l’energia e l’impulso di una particella libera
e senza massa (fotone).

11È un fatto misterioso, che queste regole scoperte nell’ambito di meccanica quantistica non relativistica, hanno
una struttura perfettamente compatibile con il principio della relatività speciale,pµ → i h̄ ∂

∂xµ . Tale è la base delle
equazioni relativistiche, come l’equazioni di Dirac, o quella di Klein-Gordon.
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L’equazione quantistica in questione è l’equazione di D’Alembert,

[
1
c2

∂2

∂t2 −∆ ]ψ = 0, (2.97)

che non è altro che l’equazione di Maxwell nel vuoto per i potenziali scalare e vettoriale (ψ = φ,Ai)
nella gauge di radiazione. Nel caso nonrelativistico si ottiene l’equazione di Schrödinger.

Questa osservazione euristica per la legge della meccanicaquantistica non è che uno dei modi per
vedere la sua ragionevolezza, e in nessun modo la giustifica né dimostra la sua unicità. L’aspetto non
“usuale”, rispetto alla legge classica, tuttavia, riflettesemplicemente il fatto che la nostra intuizione
è basata (o meglio, si è evoluta basandosi) sulle esperienze su scala macroscopica (la sensazione
che il moto di una particella abbia una traiettoria ben marcata, etc.). Tale intuizione è decisamente
inadeguata al mondo atomico. In ultima istanza, la giustificazione delle leggi di meccanica quantistica
è la sua correttezza empirica,i.e.,sta nelle innumerevoli conferme sperimentali, come del resto lo è
l’equazione di Newton.

La correttezza e consistenza dell’equazione di Schrödinger e della regola di meccanica quantisti-
ca si può verificare tuttavia anche dal fatto che essa dà il risultato classico corretto, nel limite ¯h→ 0
(vedi dopo).

Esempi:

• Per una particella in tre dimensioni,

H =
p2

2m
+V(r) = − h̄2

2m
∇2 +V(r) (2.98)

ed è Hermitiano.

•
H =

p2

2m
+gr ·p, p = −i h̄∇, (2.99)

non è Hermitiano, pertanto non è accettabile come buona Hamiltoniana;

•
H =

p2

2m
+

g
2

(r ·p+p · r) (2.100)

è invece Hermitiano ed è accettabile come operatore quantistico.

Quest’ultimo esempio mette in chiara luce il problema di “operator-ordering”, una sor-
ta di ambiguità nel trovare l’operatore Hamiltoniano, perl’Hamiltoniana classica di un
sistema.

Consideriamo ora i sistemi per i quali l’Hamiltoniana è indipendente dal tempo,

H = H(q̂, p̂; 6 t). (2.101)

L’equazione agli autovalori perH,

Hψn = Enψn, (2.102)

è chiamata anche essaequazione di Schrödinger, o equazione di Schrödinger indipendente
dal dal tempo,En autovalori d’energia. Ora,

d
dt

En =
d
dt

Z

dqψ∗
nEnψn =

d
dt

Z

dqψ∗
nHψn

=
1
ih̄

Z

dqψ∗
n[H,H]ψn = 0, (2.103)

perciò
En = cost. (2.104)
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Gli autovalori di energia di un’Hamiltoniana indipendentedal tempo sono costanti del
moto, da cui il nomestati stazionariper autostati corrispondenti.

La funzione d’onda di uno stato stazionariodipendedal tempo, ma in modo semplice.
Risolvendo l’eq. di Schrödinger, (2.88), si ha in questi casi

ψn(t) = e−iEnt/h̄ψn(0), (2.105)

doveψn(0) è la funzione d’onda all’istantet = 0.
La soluzione generaledella eq. (2.88) per uno stato genericoψ (i.e., non necessaria-

mente stazionario) è data da:

ψ(t) = ∑
n

ane−iEnt/h̄ψn(0). (2.106)

dove i coefficienti dello sviluppo sono determinati dalla condizione al contorno,ψ(t)|t=0 =
ψ(0),

ψ(0) = ∑
n

anψn(0), an = 〈ψn|ψ(0)〉.

Più in generale, la dipendenza temporale delvalor mediodi un operatoreO in uno stato
ψ,

〈O〉ψ ≡ 〈ψ|O|ψ〉 ≡
Z

dqψ∗Oψ, (2.107)

è data da:
d
dt
〈O〉ψ = 〈ψ|( ∂

∂t
O+

1
ih̄

[O,H])|ψ〉. (2.108)

Segue dunque che se(∂/∂t)O = 0, e se l’operatore commuta conH, allora

d
dt
〈O〉ψ = 0. (2.109)

In questo caso l’operatoreO èconservato. È interessante notare la somiglianza dell’eq.(2.108)
con l’equazione che descrive la dipendenza temporale di unavariabile nella meccanica
classica, in termini di parentesi di Poisson.
Esercizio: Verificare l’eq.(2.103), l’eq.(2.106) e l’eq.(2.108).

2.1.8 Spettro continuo; la funzione delta di Dirac; autostati di posizio-
ne

Finora gli autovalori di operatori sono stati assunti discreti. In meccanica quantistica, certi
operatori prendono autovalori continui (per es., l’operatore della posizione,r , l’energia per
l’elettrone non legato, ecc.). L’equazione agli autovalori prende la forma

f̂ ψ f (q) = f ψ f (q) (2.110)

dove oraf prende valori continui. (cfr. (2.42)) Una funzione generica può essere sviluppata
in termini di autostatiψ f

ψ(q) =
Z

d f a( f )ψ f (q) (2.111)

(cfr. (2.43)). La probabilità di trovare il risultato traf e f +d f nello statoψ è

dP= |a( f )|2d f. (2.112)

(cfr. (2.44)). Poiché la probabilità totale è uno,
Z

d f |a( f )|2 = 1; (2.113)



2.1. PRINĆIPI E LEGGE DELLA MECCANICA QUANTISTICA 51

mentre la condizione di normalizzazione della funzione d’onda è
Z

dqψ(q)∗ψ(q) = 1. (2.114)

La relazione di “ortonormalità” degli autostati è più sottile nel caso di spettro continuo.
Sostituendo il coniugato complesso di (2.111) nell’eq.(2.114) si trova

1 =

Z

d f a( f )∗[
Z

dqψ∗
f (q)ψ(q)], (2.115)

da cui (cfr. (2.113))
Z

dqψ∗
f (q)ψ(q) = 〈 f |ψ〉 = a( f ), (2.116)

che è analogo dell’eq.(2.49). Un’ulteriore sostituzionedell’eq.(2.111) in (2.116) da luogo
ad una relazione di consistenza:

a( f ) =

Z

d f ′a( f ′)[
Z

dqψ∗
f (q)ψ f ′(q)]. (2.117)

Nel caso di autovalori discreti, la relazione di ortonormalizzazione (2.60) segue da una
analoga equazione. Perché l’eq.(2.117) sia valida per qualsiasia( f ), l’espressione dentro
la parentesi quadrata deve essere identicamente nulla perf 6= f ′. D’altra parte l’integrale
su f ′ deve ridare

R

d f ′a( f ′)[. . .] = a( f ) : è evidente che[. . .] non può essere una funzione
nel senso normale. Talefunzione generalizzatao distribuzionèe stata introdotta da Dirac e
si chiama funzioneδ(x) di Dirac.
Definizione

δ(x) = 0; x 6= 0; δ(0) = ∞; (2.118)

e
Z b

a
dxδ(x)g(x) =

{

g(0), se a < 0 < b;

0, altrimenti,
(2.119)

per una funzione qualsiasig(x) continua ax = 0. ♠
Segue dalla definizione

Z b

a
dxδ(x−c)g(x) =

{

g(c), se a < c < b;

0, altrimenti.
(2.120)

Alcune tra le più importanti proprietà della funzione delta sono:

δ(−x) = δ(x);

δ(ax) =
1
|a|δ(x);

f (x)δ(x−y) = f (y)δ(x−y);

xδ(x) = 0;

d
dx

θ(x) = δ(x); θ(x) =

{

1, sex≥ 0;

0, sex < 0;

δ( f (x)) =
r

∑
i=1

1
| f ′(xi)|

δ(x−xi), f (xi) = 0, i = 1,2, . . . r. (2.121)

La funzioneδ(x) è pari, perciò

Z ∞

0
dxδ(x) f (x) =

1
2

f (0). (2.122)
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La funzione delta può essere definita come limite di una funzione. Alcuni esempi (le
operazioni di limite vanno fatte fuori l’integrazione):

δ(x) ≡ lim
ε→0

1√
πε

e−x2/ε2
; (2.123)

δ(x) ≡ lim
L→∞

sin(Lx)
πx

; (2.124)

δ(x) ≡ lim
L→∞

sin2(Lx)
πLx2 ; (2.125)

δ(x) = lim
ε→0+

1
π

ε
ε2 +x2 ; (2.126)

1
x− i ε

=
P

x
+ π i δ(x), (2.127)

doveP è il valore principale di Cauchy.
Dimostrazione di (2.124): Supponiamo chea < 0 < b.

lim
L→∞

Z b

a
dx

sin(Lx)
πx

f (x) = lim
L→∞

Z b

a
dx

sin(Lx)
πx

( f (0)+x f ′(0)+ . . .)

= lim
L→∞

[ f (0)

Z b

a
dx

sin(Lx)
πx

+O(
1
L

)]

=
f (0)

π

Z ∞

−∞
dz

sinz
z

= f (0), (2.128)

dove l’ultimo integrale può essere calcolato con il metododi integrale nel piano complesso.
Vedi il Complimento di questa Sezione. ♠ La dimostrazione di (2.125) è analoga.
(Dimostratela)

In termini di funzioneδ(x), la relazione di “ortonormalità” nel caso di autovalori con-
tinui dunque prende la seguente forma:

Z

dqψ∗
f (q)ψ f ′(q) = δ( f − f ′). (2.129)

(cfr. (2.45) nel caso di autovalori discreti.)

Un’importante applicazione della funzione delta è il seguente integrale,

Z ∞

−∞
dxeix(k−k′) = 2πδ(k−k′), (2.130)

e analogamente in tre dimensioni

Z

dr ei(k−k′)·r = (2π)3δ3(k −k′). (2.131)

Sfruttando questi risultati si può dimostrare la formula inversa delle trasformazioni di
Fourier: se

F(x) =

Z ∞

−∞
dke−ikxF̃(k), (2.132)

la trasformata di Fourierdi F(x), F̃(k), è data da:

F̃(k) =
1
2π

Z ∞

−∞
dxeikxF(x). (2.133)
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2.1.9 Relazione di Completezza

Esistono delle relazioni di completezza, in un certo senso duali alle relazioni di ortonorma-
lità. Sostituendo (2.116) in (2.111) troviamo infatti

ψ(q) =

Z

dq′ ψ(q′) [
Z

d f ψ∗
f (q

′)ψ f (q)]; (2.134)

la consistenza richiede allora che sia valida la seguente relazione
Z

d f ψ f (q)ψ∗
f (q

′) = δ(q−q′) (2.135)

(chiamatarelazione di completezza). Il secondo membro è simbolico: per una particella in
tre dimensione,q→ r , per esempio

δ(q−q′) → δ3(r − r ′) ≡ δ(x−x′)δ(y−y′)δ(z−z′). (2.136)

Analogamente per autovalori discreti troviamo

∑
n

ψn(q)ψ∗
n(q

′) = δ(q−q′). (2.137)

Infine, per un operatore che possiede sia autovalori discreti (detti propri) che autovalori
continui (detti impropri) vale la relazione di completezza,

∑
n

ψn(q)ψ∗
n(q

′)+
Z

d f ψ f (q)ψ∗
f (q

′) = δ(q−q′). (2.138)

Il significato della completezza delle autofunzioni{ψn} sta nel fatto chequalsiasistato
ψ può essere sviluppato in termini di esse:

ψ(q) = ∑
n

an ψn(q)+
Z

d f a( f )ψ f (q) = ∑
n
〈n|ψ〉ψn(q)+

Z

d f 〈 f |ψ〉ψ f (q). (2.139)

2.1.10 Autostati di posizione; autostati di impulso

Gli autostati di posizionesono dati in termini di funzione delta. In una dimensione,

ψx0(x) = δ(x−x0), (2.140)

rappresenta una particella localizzata inx0 (questo è ovvio intuitivamente), e soddisfa
xψx0(x) = x0ψx0(x) grazie alla proprietà della funzione delta. L’insieme di autostatiψx0(x)
soddisfano le relazioni (2.129) e (2.136), come si verifica facilmente facendo uso di (2.121).

L’operatore di impulso è
p̂ = −ih̄∇. (2.141)

Autostati dell’impulsosono dati da:

ψp0(r) =
1

(2πh̄)3/2
e

ip0·r
h̄ , (2.142)

dove p0 è un vettore numerico (i.e., non un operatore).ψp0 soddisfa l’equazione agli
autovalori,

p̂ψp0 = p0 ψp0. (2.143)

In generale, gli autovalori dell’impulso sono continui: larelazione di ortonormalità (con la
particolare normalizzazione degli autostati (2.142) ) è:

Z

dr ψ∗
p(r)ψp′(r) = δ3(p−p′); (2.144)
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mentre la completezza di stati{ψp} si esprime come

Z

dpψp(r)ψ∗
p(r

′) = δ3(r − r ′). (2.145)

Dimostriamo ora la relazione (omettendo il simbolo “cappello” )

H(r + r0,p) = e
ip·r0

h̄ H(r ,p)e
−ip·r0

h̄ , (2.146)

per un operatore qualsiasi.
Dimostrazione:È sufficiente considerare il caso di una dimensione: calcoliamo

G(x,α) ≡ e
ipα
h̄ F(x)e

−ipα
h̄ ; p≡−ih̄

d
dx

. (2.147)

G(x,0) = F(x) ovviamente. La prima derivata rispetto adα a α = 0 è

d
dα

G(x,α)|α=0 = e
ipα
h̄ [ip/h̄,F(x)]e

−ipα
h̄ |α=0 = F ′(x), (2.148)

dove è stato usato il commutatore,

[ip/h̄,F(x)] = [
d
dx

,F(x)] =
d
dx

·F(x)−F(x)
d
dx

= F ′(x). (2.149)

Analogamente si trova che
d2

dα2 G(x,α)|α=0 = F ′′(x), (2.150)

ecc. Si ottiene cosı̀

G(x,α) = ∑
n

αn

n!
dn

dαn G(x,α)|α=0 = ∑
n

αn

n!
dn

dxn F(x) = F(x+ α). (2.151)

La formula (2.146) dimostra che l’operatore di impulso genera latraslazionedella po-
sizione. Applichiamo ora questa formula all’Hamiltoniana. Se l’Hamiltoniana è invariante
per traslazione, i.e.,

H(r + r0,p) = H(r ,p), (2.152)

allora
H(r ,p) = e

ip·r0
h̄ H(r ,p)e

−ip·r0
h̄ . (2.153)

Sviluppando il secondo membro inr0 al primo ordine, si ottiene

[pi ,H] = 0 : (2.154)

cioè, se il sistema è invariante per traslazione l’impulso commuta con l’Hamiltoniana: esso
è conservato (vedi (2.108)). Questo risultato generalizza un’analoga e ben nota relazione
tra l’invarianza per traslazione e la conservazione dell’impulso in meccanica classica.

Notiamo infine che le proprietà degli autostati dell’impulso e quelli della posizione sono
in accordo con le relazioni di Heisenberg. Infatti, nello statoψp0 l’impulso della particella
è ben definito; in compenso la sua posizione è completamente indefinita, e come si vede da
|ψp0|2 = cost.. Viceversa, nell’autostato della posizioneψx0(x) = δ(x− x0) la posizione è
perfettamente definita mentre l’impulso è del tutto indefinito, come risulta dallo sviluppo
di Fourier,

δ3(r − r ′) =
1

(2πh̄)3

Z

d3peip·(r−r ′)/h̄a(p); a(p) = 1. (2.155)

Nota e Riflessione
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Uno studente attento avrà notato che autostati che appartengono ad uno spettro con-
tinuo (autovalori continui) non sono normalizzabili. (Peresempio si paragoni (2.4) con
(2.144).) Possono essere tali stati considerati “fisici” o comunque accettabili in meccanica
quantistica, in vista dell’interpretazione di funzione d’onda, discussa in Sec.2.1.1?

Dal punto di vista matematico, in meccanica quantistica si avrà in generale a che fa-
re con uno spazio vettoriale (di funzioni d’onda) di infinitadimensione; le operazioni di
somma, limite, ecc. vanno definite in modo consistente in tale spazio. Questo rende indi-
spensabile considerare spazichiusi, i.e., spazi che contengono, insieme ad ogni successione
{ψN}, N = 1,2, . . . , ψN ∈ H , anche il suo limite limN→∞ ψN come suo elemento. Le pro-
prietà di questi spazi (spazi di Hilbert) saranno discussecon più esattezza in Sec.??. Gli
autostati dell’impulso (in una dimensione) in certo senso possono essere considerati come
limiti di una successione,

ψN = cost.eikxe−(x−x0)
2/d2N2

, N = 1,2,3, . . . (2.156)

C’è una differenza evidente, dal punto di vista fisico, tra autostati di energia con auto-
valori discreti e quelli corrispondenti allo spettro continuo. I primi, avendo funzioni d’onda
normalizzabili, descrivono infattistati legati, i.e., stati in cui la particella è confinata in una
regione finita dello spazio; la probabilità per trovare la particella si annulla a|r | → ∞. Vice
versa, i secondi, con|ψ|2 → cost. a|r | → ∞, descrivono stati discattering.

Ovviamente i concetti come onda piana (con loro infinita estensione spaziale) o par-
ticella completamente localizzazta in un punto spaziale, sono un’idealizzazione. Nessun
sistema fisico ha realmente un’estensione infinita, per esempio. Nonostante ciò, è auspi-
cabile, ed è il caso in molte teorie fisiche (la meccanica quantistica inclusa ), che lastrut-
tura matematica di una teoria fisica sia tale che la descrizione di situazioniidealizzate
sia naturalmente contenuta nella teoria stessa, spesso in modo particolarmente semplice e
elegante.

2.1.11 Problemi

1. Si dimostri che:

a) ( f †)† = f ;

b) ( f g)† = g† f †;

c) [ f ,gh] = g[ f ,h]+ [ f ,g]h, [ f g,h] = f [g,h]+ [ f ,h]g;

d) x è un operatore hermitiano;

e)−i ∂
∂x è un operatore hermitiano;

f) Se f eg sono hermitiani, lo sono anchef g+g f e i[ f ,g];

g) Le seguenti matrici sono hermitiane:

σ1 =

(

0 1
1 0

)

σ2 =

(

0 −i
i 0

)

σ3 =

(

1 0
0 −1

)

mentreσ1σ2 è antihermitiana.

h) Per tre operatori qualsiasif̂ , ĝ, ĥ vale l’identità di Jacobi:

[[ f̂ , ĝ], ĥ]+ [[ĝ, ĥ], f̂ ]+ [[ĥ, f̂ ], ĝ] = 0
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i) Si ricavi il passaggio dalle parentesi di Poisson classiche a quelle quantistiche (com-
mutatori tra operatori) assumendo che le loro proprietà siano le stesse. Si usi in
particolare la proprietà:

{ f ,gh} = g{ f ,h}+{ f ,g}h

e si assuma che la parentesi di Poisson quantistica di grandezze hermitiane sia hermitiana
e che le dimensioni fisiche delle parentesi di Poisson siano le stesse nel caso classico
e in quello quantistico.

j) SeA è un operatore qualsiasiA†A ha autovalori non negativi.

2. Verificare le proprietà della funzioneδ(x), (2.121).

3. Si trovino le espressioni esplicite dei seguenti operatori:

(

d
dx

+x

)2

;

(

d
dx

+
1
x

)3

;

(

x
d
dx

)2

(

d
dx

x

)2

; [ih̄∇+A(r)]2 ; (L−M)(L+M)

4. Si trovino le regole di commutazione dei seguenti operatori:

x,
d
dx

; ih̄∇,A(r) ;
∂

∂ϕ
, f (r,θ,ϕ)

5. Si trovi l’hermitiano coniugato degli operatori:

∂
∂x

;
∂n

∂xn

6. Dati due operatoriL edM che soddisfano[L,M] = 1 si calcolino:

[L,M2] ; [ f (L),M].

7. Dati due operatoriA eB che non commutano, conA invertibile, provare che:

a)A−1B2A = (A−1BA)2;

b) A−1BnA = (A−1BA)n;

c) A−1 f (B)A = f (A−1BA).

8. Sianoc un numero eζ un parametro. Dimostrare che:

[A,B] = c implica eζABe−ζA = B+Cζ

9. Trovare le autofunzioni e gli autovalori dei seguenti operatori:

d
dx

; i
d
dx

; x+
d
dx

;
d
dϕ

; sin
d
dϕ

cos
d
dϕ

; eia d
dϕ ;

d2

dx2 +
2
x

d
dx

(Suggerimento per l’ultimo: fate agire l’operatore suf (x)
x e studiate l’equazione per

f (x).)
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C z=0

z

Figura 2.3:

2.1.12 Complemento: Integrale nel piano complesso e teorema di re-
siduo

L’integrale

I =

Z ∞

−∞
dz

sinz
z

nella (2.128) può essere valutato facilmente col metodo diintegrale nel piano complesso.
Poiché l’integrando è analitico (olomorfo) attorno az= 0, si può modificare il cammino
dell’integrazione, sostituendo un segmento di retta attorno all’origine con un semicerchio,
per evitarez= 0. (Fig. 2.3)

I =

Z

C
dz

sinz
z

=

Z

C
dz[

ei z

2iz
− ei z

2iz
],

Ora che il cammino non passa az= 0 si può spezzare l’integrale,

I = I1 + I2, I1 =

Z

C
dz

ei z

2iz
, I2 = −

Z

C
dz

e−i z

2iz
,

e in ciascuno diIi , i = 1,2, aggiungiamo un semicerchio di raggioR(R→∞), nel semipiano
superiore inI1 e nel semipiano inferiore perI2 (vedi le figure),

I1 =

Z

C1

dz
ei z

2iz
, I2 = −

Z

C2

dz
e−i z

2iz
.

Tale scelta è dettata dalla convergenza degli integrali a|z| → ∞. Il contributo da semicerchi
grandi è trascurabile, per cui tale modifica non cambia il valore degli integrali. Secondo il
teorema del residuo (teorema di Cauchy), il primo integraleè zero, il secondo è uguale a
(−2π i) volte il residuo az= 0: perciòI1 = 0, I2 = π, I = I1 + I2 = π.

C1 z=0

C2

z=0
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2.2 Equazione di Schr̈odinger: Propriet à Generali

In questo capitolo le proprietà generali dell’equazione di Schrödinger sono discusse e
saranno illustrate con alcuni sistemi uni-dimensionali.

2.2.1 Proprietà generali dell’Equazione di Schr̈odinger; Teorema di
Ehrenfest; Denisità e corrente di probabilità

Consideriamo una particella in tre dimensioni. L’equazione di Schrödinger indipendente
dal tempo

Hψ = Eψ, (2.157)

dove

H =
p2

2m
+V(r) = − h̄2∇2

2m
+V(r). (2.158)

è un’equazione differenziale del secondo grado. Di conseguenza la sua soluzione richiede
un’opportuna condizione al contorno sul valore della funzione d’onda e delle sue derivate
prime. In accordo con la sua interpretazione, richiederemoche la funzione d’onda sia
continua e monodroma, dappertutto. Imporremo tale continuità anche dove il potenzialeV
risulta discontinuo, ma finito.

La condizione di continuità sulla derivata prima al puntor0 segue dall’equazione di
Schrödinger (scriviamo in una dimensione per semplicità, ax vicino ax0)

− h̄2

2m
ψ′′(x) = (E−V(x))ψ(x). (2.159)

Integrando infatti i due membri nell’intervallo[x0− ε,x0 + ε], si ha

ψ′(x0 + ε)−ψ′(x0− ε) ≃ 2ε
2m

h̄2 (E−V(x0))ψ(x0) → 0, (2.160)

se il potenziale è finito ax = x0. Segue che la derivata prima della funzione d’onda è
continua, dappertutto nella regione dove il potenziale è finito. (Vedi la sezione 2.2.8 sulla
condizione di continuazione in presenza di potenziale di tipo δ(x−x0). )

Dalla proprietà
〈p2〉 ≥ 0, (2.161)

valida per qualsiasi operatore di formaA†A, segue immediatamente che gli autovalori di
energiaEn soddisfano

En > Vmin, (2.162)

doveVmin è il minimo del potenziale.
Supponiamo cheV(r) → 0 a |r | → ∞, ma che il potenziale possa essere negativo ar

finito. Risulta che tutti gli stati conE < 0 corrispondono a livelli discreti, i.e., a stati legati.
La funziona d’onda non si annulla necessariamente nelle regioni classicamente proi-

bite, i.e., doveE < V(r). Il valore di ψ è determinato dall’equazione di Schrödinger e
dalle opportune condizioni al contorno. Una conseguenza diquesto fatto è che le particelle
possano infatti penetrare, con probabilità finita, le barriere di potenziale che sono insor-
montabili dal punto di vista classico (conservazione dell’energia). Questi fenomeni (effetto
tunnel), tra i più importanti che caratterizzano la Meccanica Quantistica, saranno discussi
in più occasioni in seguito.

Teorema di Ehrenfest

Consideriamo il moto di un pacchetto d’onda. L’Hamiltoniana è la (2.158). Dimostria-
mo che:
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I valor medi degli operatori della posizioner , dell’impulsop e del potenziale V(r)
soddisfano alle relazioni “classiche:

d
dt
〈mr〉 = 〈p〉; d

dt
〈p〉 = −〈∇V〉. (2.163)

Dimostrazione: per un operatore generico indipendente daltempo, vale (vedi Sec.2.1)

ih̄
d
dt
〈O〉 = 〈[O,H]〉. (2.164)

PerO = mr il commutatore è

[mr ,H] = [mr ,
p2

2m
] = i h̄p, (2.165)

dove abbiamo usato i commutatori,[x, p2
x] = 2px[x, px] = 2i h̄ px, ecc, nonché il fatto cher

eV(r) commutano. PerO = p, invece, il commutatore[O,H] è uguale a

[p,V(r)] = −ih̄∇V. (2.166)

♠
Ricapitolando, un pacchetto d’onda si muove secondo l’equazione di Newton, fatto che

appare giustificare l’identificazione di tale pacchetto conla distribuzione materiale di una
particella classica (Born). Tale identificazione è errata. Una funzione d’onda rappresenta
la distribuzione diprobabilità. Si noti che un “frammento” dell’elettrone non è stato mai
osservato, la carica elettrica dell’elettrone è sempree, mentre un pacchetto d’onda si può
facilmente spezzare in due, se lo mandiamo contro una barriera.

Densità di corrente; Equazione di continuità
|ψ(r)|2 ≡ ρ rappresenta la densità (di probabilità) della particella. Un’altra quantità

importante che ha una interpretazione fisica diretta è la densità di corrente o di flusso (di
probabilità),j .

Facendo uso dell’equazione di Schrödinger, si ha

d
dt

|ψ|2 = (ψ∗ ∂
∂t

ψ+(
∂
∂t

ψ∗)ψ) =
1
ih̄

(ψ∗Hψ− (H∗ψ∗)ψ)

=
1
ih̄

[ψ∗(− h̄2∇2

2m
ψ)− (− h̄2∇2

2m
ψ∗)ψ]

=
1
ih̄

[∇ · {ψ∗(− h̄2∇
2m

ψ)}+ ∇ · {(h̄2∇
2m

ψ∗)ψ}]
= −∇ · j (2.167)

dove

j =
ih̄
2m

{(∇ψ∗)ψ−ψ∗∇ψ}, (2.168)

i.e.,
d
dt

ρ + ∇ · j = 0 : (2.169)

equazione di continuità. Se prendiamo un volume finitoV nello spazio, si ha

d
dt

Z

V
d3r |ψ|2 = −

I

∂V
dSn · j , (2.170)

(il teorema di Gauss). Queste relazioni permettono di interpretarej come densità di cor-
rente (di probablilità), le (2.169) e (2.170) come espressione della conservazione della
probabilità.
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Per una particella libera, rappresentata da un’onda piana (autostato dell’impulso),

ψp = e−
i
h̄ (Et−p·r), (2.171)

si ha
j =

p
m

= v : (2.172)

uguale alla velocità classica. La funzione d’onda che rappresenta un flusso unitario (in
media una particella attraverso una superficie unitaria in un intervallo unitario di tempo) è
allora data daψp = 1√

ve−
i
h̄(Et−p·r).

Esercizio: Dimostrare che per una particella in un campo magnetico esternoB = ∇×A,

j =
1

2m

[

ψ∗ (p− q
c

A)ψ−{(p− q
c

A)ψ}∗ ψ
]

. (2.173)

Dimostrare che esso è invariante di gauge, se la funzione d’onda si trasforma in modo
opportuno.

Teorema del Viriale
Il teorema del Viriale (1.74) in meccanica classica riguarda una media temporale dei ter-

mini cinetici e termini di potenziale.̀E interessante che esiste un teorema analogo in mec-
canica quantistica, che concerne le medie quantistiche deivari termini dell’Hamiltoniana.
Per dimostrarlo, basta considerare il valor medio del commutatore

[ px+x p,H ] = [ px+x p,
p2

2m
+V(x) ] = 2(ih̄) [2

p2

2m
−xV′ ]

(per semplicità di scrittura consideriamo il caso unidimensionale) in uno stato stazionario,
ψn. Il primo membro si annulla:

〈ψn| [ px+x p,H ] |ψn〉 = 〈ψn|( px+x p)|ψn〉En−En〈ψn|( px+x p)|ψn〉 = 0,

dove abbiamo utilizzato la proprietà di un operatore HermitianoH, che agisce a sinistra e
a destra ugualmente. Segue il teorema,

2〈ψn|
p2

2m
|ψn〉 = 〈ψn|xV′ |ψn〉. (2.174)

La generalizzazione del teorema ai sistemi tridimensionali è immediata:

2〈ψn|
p2

2m
|ψn〉 = 〈ψn| r · ∇V |ψn〉. (2.175)

(cfr. (1.74)).

Teorema di Feynman-Hellman
In molti problemi ci sono uno o più parametri esterni; chiamiamolog genericamente.

Gli autovalori di energiaEn(g) è una funzione di essi. Esiste un semplice teorema

∂En

∂g
=

〈

∂V
∂g

〉

n
, (2.176)

valido se il parametrog appare solo nel potenziale. (Dimostratelo).
Tale teorema resta valido anche nel caso in cui il parametro esternog varia lentamente

col tempo, e dà la variazione adiabatica dei livelli di energia col tempo.
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2.2.2 Equazione di Schr̈odinger in una dimensione

L’equazione di Schrödinger per una particella che si muovein una dimensione è
(

− h̄2

2m
d2

dx2 +V(x)

)

ψ(x) = Eψ(x). (2.177)

Lo studio dell’eq.(2.177) è importante come laboratorio teorico per studiare varie situa-
zioni fisiche che possono sorgere e per imparare il funzionamento della Meccanica Quan-
tistica. Tuttavia, l’interesse in (2.177) è tutt’altro che accademico. Infatti, un problema
dinamico tri-dimensionale si riduce effettivamente a quello uni-dimensionale, nel caso in
cui il potenziale ha una particolare forma,

V = V(x, 6 y, 6 z) : (2.178)

se il potenziale dipende solo dax. La sostituzioneψ(x,y,z) = ψ(x)φ(y)η(z) in (2.158)
infatti dà luogo a una equazione

(

− h̄2

2m
d2

dx2 +V(x)
)

ψ(x)

ψ(x)
+

− h̄2

2m
d2

dy2 φ(y)

φ(y)
+

− h̄2

2m
d2

dz2
η(z)

η(z)
= E. (2.179)

I tre termini del primo membro, ciascuno dipendente solo da una delle variabili, devono
essere costanti. L’equazione è risolta in termini di soluzioni di

(

− h̄2

2m
d2

dx2 +V(x)

)

ψ(x) = E1 ψ(x);

− h̄2

2m
d2

dy2 φ(y) = E2 φ(y);

− h̄2

2m
d2

dz2 η(z) = E3 η(z);

E = E1 +E2+E3, (2.180)

di cui la prima è proprio la (2.177) (le altre sono equazionidi Schrödinger libere).
L’equazione di Schrödinger tridimensionale si riduce, anche nei casi di potenziale a

simmetria centrale,
V = V(r), (2.181)

(vedi Cap.4.1.1)
Esempi

• Per una particella libera,V(x) = 0, l’eq. di Schrödinger è

− h̄2

2m
ψ

′′
= Eψ, (2.182)

oppure

ψ
′′
= −k2ψ, k =

√

2mE

h̄2 ; (2.183)

gli autostati dell’energia sono
e±ikx, (2.184)

o una combinazione lineare qualsiasi di questi due

ψ = Aeikx +Be−ikx, (2.185)

conk≥ 0 arbitrario. La soluzione dipendente dal tempo è

ψ(x,t) = e−iEt/h̄(Aeikx +Be−ikx), E =
k2h̄2

2m
. (2.186)
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Lo spettro di energia (l’intervallo degli autovalori permessi) èE ≥ 0 in questo caso;
per E < 0 la soluzione èψ ∝ exp±|k|x ed è non normalizzabile. Ogni livello con
energia positiva è doppiamente degenere.

• Una particella libera che si muove su un anello (lungo il bordo di un cerchio). La
soluzione è come sopra (2.184), tranne che la funzione d’onda deve soddisfare la
condizioneψ(x+ L) = ψ(x) per essere ben definita. I valori permessi dik sono
quindik = 2πn/L, n = 0,1,2,3, . . . , e lo spettro è discreto in questo caso

En =
(2πn)2h̄2

2mL2 ; (2.187)

ogni livello energetico positivo è doppiamente degenere mentre lo stato fondamentale
conE = 0 è singolo. Vedi il sottocapitolo 2.2.7 per una discussione più approfondita
del sistema.

L’equazione di Schrödinger in una dimensione ha varie priprietà speciali. Una di queste
è il seguente teorema:In un problema uni-dimensionale, non esistono degerazionidei livelli
discreti. In altre parole, ad ogni autovalore En discreto corrisponde uno e soltanto un
autostatoψn.

Dimostrazione: supponiamo, per assurdo, che ci siano due soluzioni normalizzabiliψ1

e ψ2 dell’Eq.(2.177) con lo stesso autovaloreE, i.e.,

ψ
′′
1 = −2m

h̄2 (E−U)ψ1, ψ
′′
2 = −2m

h̄2 (E−U)ψ2. (2.188)

Moltiplicando la prima e la seconda equazione conψ2, ψ1 rispettivamente, e sottraendo
termine per termine, si ottiene

ψ
′′
1ψ2−ψ

′′
2ψ1 = 0. (2.189)

Integrando quest’ultimo,

ψ
′
1(x)ψ2(x)−ψ

′
2(x)ψ1(x) = cost. (2.190)

Ma ψ1 = ψ2 = 0 ax=±∞, essendo ambedue normalizzabili (stati discreti), perci`o cost.= 0
sopra:

ψ
′
1(x)ψ2(x)−ψ

′
2(x)ψ1(x) = 0. (2.191)

Integrando ancora,

logψ1 = logψ2 +cost.., ψ1 = cost.ψ2 : (2.192)

dovremmo dunque concludere che le due funzioni d’onda in realtà rappresentano lo stesso
stato, al contrario all’ipotesi fatta. ♠

Figura 2.4: Andamento generale della funzione d’onda. Fig.a rappresenta la situazione per
E > V(x); Fig.b quella perE < V(x)
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Poiché l’Hamiltoniana è Hermitiana,V(x) e E sono reali. L’equazione di Schrödinger
(2.177) ha i coefficienti reali. Di conseguenza, la funzioned’onda può essere scelta reale.
L’andamento generale della funzione d’onda può essere dedotto da:

ψ
′′
=

2m(V(x)−E)

h̄2 ψ. (2.193)

Nell’intervallo doveE > V(x) (regione classicamente accessibile),
{

ψ′′
> 0 seψ < 0,

ψ′′
< 0 seψ > 0,

(2.194)

i.e., un andamento oscillatorio. Nell’intervallo dix doveE < V(x) (regione classicamente
proibita) abbiamo una situazione opposta

{

ψ′′
> 0 seψ > 0,

ψ′′
< 0 se ψ < 0,

(2.195)

un andamento instabile. In ambedue i casi, la curvatura|ψ′′ | cresce con|E−V(x)|. La
situazione è illustrata in Fig.2.4.

Tenendo conto di queste proprietà non è difficile dimostrare il teorema di oscillazione:
La funzione d’onda dell’n-simo livello discreto di energiaha n−1 nodi (zeri).

Dimostrazione. Supponiamo cheV(x) → ∞ a x → ±∞, di modo che il sistema abbia
solo livelli discreti. L’eq.(2.193) ha due soluzioni (normalizzabili o no) generali. Nella
ricerca di funzione d’onda normalizzabile, basta scegliere una soluzioneψ che tende a zero
ax=−∞. Senza perdita di generalità si può assumere cheψ sia positivo ax< 0 e|x| molto
grande. La normalizzazione diψ può essere fissata di modo cheψ(x1) = 1 dovex1 è un
punto scelto in maniera opportuna. Partiamo con un valore dienergia,E <Vmin e studiamo
come cambia la situazione al crescere diE.

(I) E < V(x), ∀x. ψ è concavo (ψ′′
> 0) dappertutto,ψ continua ad aumentare come

funzione dix: ψ diverge inevitabilmente ax→ ∞. Segue che non ci sono autovalori
al di sotto diVmin. (Questo “teorema” è già stato dimostrato prima).

(II) E è appena maggiore diVmin, E1 > E > Vmin. Supponiamo cheE > V(x) per x1 <
x < x2 e E < V(x) altrimenti. ψ aumenta da zero (ax = −∞) fino a x = x1, dove
ψ(x1) = 1; tra x1 e x2, ψ è convesso; ax > x2 ψ è di nuovo concavo (ψ′′

> 0). È
ovvio, per continuità, che fino a un certo valore diE (appunto,E1) ψ continua a
divergere ax = ∞, e rimane non normalizzabile. (Fig.2.5)

(III) E = E1. All’aumentare diE, l’intervallo x1,x2 doveψ è convessa si allarga e la
curvatura perx fissato aumenta. Per continuità ci deve essere un primo valore di E,
E1, per il qualeψ tende esattamente a zero ax = ∞. La funzione d’onda è allora
normalizzabile: il sistema è nello stato fondamentale. (Fig.2.6)ψ non ha nodi.

(IV) E1 < E < E2. QuandoE è appena al di sopra diE1, la funzione d’onda si annulla ad
un valore dix finito, e diverge comeψ →−∞ ax→ ∞. (Fig.2.7). Si noti cheψ′′

= 0
doveψ = 0, per cui non è possibile cheψ ritorni su dopo aver toccato zero.

(V) E = E2. Al crescere diE, la regione classicamente accessibile (dove la funzione
d’onda oscilla) diventa sempre più grande. PerE = E2 la funzione d’onda tende
esattamente a zero ax = ∞. La funzione d’onda ora ha un nodo. (Fig.2.8)

(VI) Ripetendo l’argomentazione aumentando sempre l’energia, si dimostra che l’n -simo
stato stazionario ha esattamenten−1 nodi.

♠
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Figura 2.5: Andamento della funzione d’onda perVmin < E < E1

Figura 2.6: Andamento della funzione d’onda perE = E1 (Stato fondamentale)

2.2.3 Buche di potenziale

Buca infinitamente alta

Consideriamo come primo esempio non banale di potenziale con stati legati, la buca di
potenziale di profondità infinita,

V(x) = 0, 0 < x < a, II;

V(x) = ∞, x≤ 0 I; x≥ a III (2.196)

La soluzione negli intervalli I e III è
ψ = 0. (2.197)

Nell’intervallo II, l’equazione di Schrödinger è quellalibera:

− h̄2

2m
ψ

′′
= Eψ : (2.198)

con la soluzione generale
ψ = Asin(kx+ δ). (2.199)

La condizione di continuità ax = 0 impone che

Asinδ = 0, → sinδ = 0; (2.200)

mentre quella ax = a dà

ψ = Asin(ka+ δ) = 0, → sin(ka+ δ) = 0. (2.201)

La prima condizione si risolve conδ = 0 (la sceltaδ = π essendo equivalente aA→−A.)
La seconda dà allora la quantizzazione

ka= nπ, En =
k2

nh̄2

2m
=

π2h̄2

2ma2n2, n = 1,2,3, . . . (2.202)
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Figura 2.7: Andamento della funzione d’onda perE1 < E < E2

Figura 2.8: Andamento della funzione d’onda perE = E2 (Il primo stato eccitato)

La funzione d’onda dell’n simo stato (normalizzata) è

ψ(x) =

√

2
a

sin(
πn
a

x). (2.203)

EsercizioUna particella si muove in tre dimensioni, confinata in un potenziale

V(r) = 0, 0 < x < a, 0 < y < b, 0 < z< c;

V(r) = ∞, altrimenti. (2.204)

Trovare gli autosati e gli autovalori dell’energia. Discutere la degenerazione dei livelli
energetici in generale, e nel caso di una scatola isotropa,a = b = c, in particolare.

Buca di potenziale di altezza finita

Consideriamo ora il caso di un potenziale di altezza finita

V(x) = 0, 0 < x < a, II;

V(x) = V0, x≤ 0 I; x≥ a III (2.205)

e cerchiamo le soluzioni di tipo stati legati, con 0< E < V0. La soluzione in II è come
prima:

ψII = Asin(kx+ δ); k =

√
2mE
h̄

. (2.206)

Nelle regioni I e III, l’equazione di Schrödinger prende laforma:

ψ
′′
= −2m(E−V0)

h̄2 ψ = κ2ψ; κ =

√

2m(V0−E)

h̄
> 0. (2.207)

I numeri d’ondak eκ non sono indipendenti:

k2 + κ2 =
2mV0

h̄2 . (2.208)
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La soluzione di (2.207) è exp±κx: la condizione di normalizzazione implica che va
fatta la scelta:

ψI = Beκx;

ψIII = = Ce−κx, (2.209)

nelle regioni I e III, di modo che la funzione d’onda tende a zero sia ax= −∞ che ax= ∞.
La funzione d’onda e la sua derivata prima devono essere continue attraverso i confini

delle diverse regioni, I, II, e II. Ax = 0 si deve imporre dunqueψI = ψII ;ψ′
I = ψ′

II :

B = Asinδ; Bκ = Akcosδ, → tanδ =
k
κ

> 0. (2.210)

Si può prendere, senza perdita di generalità,δ nel primo quadrante,

0≤ δ ≤ π/2; (2.211)

da (2.210) si trova

sinδ =
tanδ√

1+ tan2 δ
=

k√
k2 + κ2

=
kh̄√
2mV0

< 1. (2.212)

La condizione di continuità tra II e III è:

Ce−κa = Asin(ka+ δ); −Cκe−κa = Akcos(ka+ δ), (2.213)

cioè

−κ = kcot(ka+ δ), → tan(ka+ δ) = − k
κ

< 0. (2.214)

Secondo questa condizione l’angoloka+ δ è o nel secondo o nel quarto quadrante. Segue
che

sin(ka+ δ) = ± tan(ka+ δ)
√

1+ tan2(ka+ δ)
= ±sinδ : (2.215)

o semplicemente

ka+ δ =

{

−δ+2nπ, (n = 1,2, . . .) oppure,

−δ+(2n+1)π, (n = 0,1,2, . . .) .
(2.216)

Ma poichéδ soddisfa (2.212), si ottengono le equazioni implicite

ka= −2sin−1 kh̄√
2mV0

+nπ, (n = 1,2,3, . . .) : (2.217)

queste danno (implicitamente) gli autovalori dell’energia.
La (2.217) può essere risolta graficamente. Da (2.215) si trova

κ
k

sinka+coska= ±1. (2.218)

Ponendo
ka/2≡ ξ; κa/2≡ η, (ξ,η > 0). (2.219)

ξ,η soddisfano
ξ tanξ = η, (A), (2.220)

oppure
ξcotξ = −η, (B) (2.221)
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e allo stesso tempo

ξ2 + η2 =
ma2V0

2h̄2 (2.222)

(vedi l’eq.(2.208)). I punti di intersezione tra le due curve (2.220) e (2.222), e quelli
tra (2.221) e (2.222), nel quarto del pianoξ > 0, η > 0, corrispondono agli autovalori
dell’energia.

Tali soluzioni sono facilmente visualizzate nel pianoξ−η: (2.220) e (2.221) rappre-
sentano i vari rami delle curveη = ξ tanξ e η = −ξcotξ mentre (2.222) rappresenta un

cerchio di raggio
√

ma2V0
2h̄2 col centro all’origine. (Fig.2.9). Non è difficile vedere allora che

il numero degli stati legati èn per (n−1)π
2 <

√

ma2V0
2h̄2 ≤ nπ

2 .

(i) 0 <
√

ma2V0
2h̄2 ≤ π

2 : Esiste una sola intersezione tra le curve (2.220) e (2.222), e nessuna
tra (2.221) e (2.222) (vedi la Nota qui sotto). Vuol dire che esiste un solo stato legato;

(ii) π
2 <

√

ma2V0
2h̄2 ≤ π. In questo intervallo ci sono due stati legati, una soluzionecon

0 < ka/2 < π/2 (soluzione del tipoA), un’altra soluzione conπ/2≤ ka/2 < π (tipo
B);

(iii) Per π <
√

ma2V0
2h̄2 ≤ 3π

2 , ci sono tre livelli dell’energia, uno con 0< ka/2< π/2 (solu-

zione del tipoA); uno conπ/2≤ ka/2 < π (tipo B) e il terzo conπ ≤ ka/2 < 3π/2
(del tipoA); ecc.

Il numero dei nodi della funzione d’onda dell’n-simo stato di eccitazione obedisce al
teorema di oscillazione (n− 1) come è facile da verificare. Infine, nel limiteV0 → ∞,
l’eq.(2.217) si riduce aka = nπ, e ψI , ψIII → 0, e ritroviamo le soluzioni per la buca 2
infinita, come ci si aspetta. Il modello illustra il fatto che, in generale, il numero di stati
legati dipende dai dettagli del potenziale.

Nota

La buca con parametri esattamente corrispondenti ad uno deivalori critici

√

ma2V0

2h̄2 =
πn
2

, n = 1,2, . . . , (2.223)

merita una particolare attenzione. Consideriamo infatti come cambia il numero di stati

legati, al variare dei parametri (V0,a,m). Quando la combinazione
√

ma2V0
2h̄2 in aumento

supera uno dei valori critici, il numero di stati legati aumenta di uno. Più precisamente, uno
stato nello spettro continuo diventa normalizzabile (diventa uno stato legato), e entra nello
spettro discreto. (Fig. 2.10). Ma ad esattamente a uno dei valori critici, la soluzione nuova
ha l’energia zero, se misuriamo partendo daV0 (η = 0, vedi Fig. (2.9)), e la funziona d’onda
del nuovo stato nelle regioni fuori buca è costante (κ = 0 nella (2.209)), e la soluzione non
è normalizzabile. Vuol dire che questi soluzioni non rappresentano stati legati, ma uno

stato del continuoche sta per diventare uno stato legato. Soltanto per
√

ma2V0
2h̄2 strettamente

maggiore diπn
2 il nuovo stato rappresenta un nuovo stato legato.

Esercizi:

(i) Se
√

ma2V0
2h̄2 = ε ≪ 1 il sistema ha un solo stato legato. Calcolare approssimativamente,

al primo ordine non banale inε, l’energia di questo stato (come funzione diV0 e di
ε.)
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1 2 3 4 5 6

1

2

3

4

5

Figura 2.9: Soluzione grafica delle Eq.(2.220) e Eq.(2.222), oppure Eq.(2.221) e
Eq.(2.222).

a b

Figura 2.10: Spettro della buca finita con (a)
√

ma2V0
2h̄2 = π

2 − ε, e con (b)
√

ma2V0
2h̄2 = π

2 + ε.

(ii) Considerare il limitea→ 0, V0 → ∞, con il prodottoaV0 ≡ f fisso. Usando il risulta-
to di questo sottocapitolo, dimostrare che esiste un solo stato legato, e determinare
l’energia del livello,E−V0, e la funzione d’onda.

(iii) Calcolare lo spettro discreto del sistema

H =
p2

2m
+V(x), V(x) = − f δ(x), f > 0,

direttamente (vedi Sec. 2.2.8) e verificare che il risultatocoincide con quello del
punto (ii).

(iv) Determinare la funzione d’onda e l’energia dello stato legato (o degli stati legati) del
potenziale,V(x) = − f δ(x+a)− f δ(x−a). Quanti stati legati ha il sistema?

2.2.4 Oscillatore armonico

L’oscillatore armonico unidimensionale è descritto dall’Hamiltoniana

H =
p2

2m
+

1
2

mω2x2, (2.224)

dovem eω sono costanti. L’equazione di SchrödingerHψ = Eψ può essere riscritto come

d2ψ
dx2 +

2m

h̄2 (E− 1
2

mω2x2)ψ = 0. (2.225)
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Introducendo una variabile adimensionale

ξ ≡
√

mω
h̄

x, (2.226)

si ha (ψ′′ ≡ d2

dξ2 )

ψ
′′
+(λ− ξ2)ψ = 0, (2.227)

λ ≡ 2E
h̄ω

> 0. (2.228)

Per grandeξ, ψ′′ ∼ ξ2ψ, perciò il comportamento asintotico diψ è

ψ ∼ (polinomio)e−ξ2/2. (2.229)

Poniamo allora
ψ(ξ) = χ(ξ)e−ξ2/2 (De f.χ) : (2.230)

l’equazione perχ è:
χ
′′ −2ξχ

′
+(λ−1)χ = 0. (2.231)

Supponiamo che una funzione rappresentata da una serie di potenze,

χ(ξ) = ξs(a0 +a1ξ+a2ξ2 + . . .), a0 6= 0; s≥ 0, (2.232)

risolva la (2.231). Allora la sostituzione di (2.232) nel primo membro di (2.231) deve dare
zero identicamente: tutti i coefficienti diξs−2+n (n = 1,2, . . .) si devono annullare. Le
condizioni sono:

s(s−1)a0 = 0,

(s+1)sa1 = 0;

(s+2)(s+1)a2− (2s+1−λ)a0 = 0;

(s+3)(s+2)a3− (2s+3−λ)a1 = 0;

. . . . . .

(s+ ℓ+2)(s+ ℓ+1)aℓ+2− (2s+2ℓ+1−λ)aℓ = 0. (2.233)

La prima di queste relazioni è soddisfatta ses= 0 o s= 1, mentre la seconda richiede
o a1 = 0 o/es= 0. In altre parole la serie inizia o con un termine costante o con un termine
∝ ξ. Consideriamo prima la sottoserie formata dai termini alternativi, con i coefficienti
a0,a2,a4, . . . (determinati da (2.233)). Questa serie o terminerà dopo unnumero finito di
termini o non terminerà. Se essa è una serie infinita (i.e.,non termina), il comportamento
asintotico (a grandeξ) della somma è principalmente determinato dai coefficienti a grande
ℓ. Essi obbediscono alle relazioni:

aℓ+2

aℓ

ℓ→∞−→ 2
ℓ
. (2.234)

È facile trovare che i coefficienti sono dati daa2n ≃ 1
(n−1)! : la somma si comporterà come

∞

∑
n=1

1
(n−1)!

ξ2n ≃ ξ2eξ2
. (2.235)

Un tale comportamento asintotico diχ non è accettabile: esso renderebbeψ non normaliz-
zabile (vedi (2.230)). La seriea0 + a2ξ2 + . . . deve perciò terminare. Essa terminerà se il
parametroλ è tale che

2s+2ℓ+1−λ = 0, (2.236)
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per un valore diℓ (pari). Infatti da (2.233) segue che in tal casoaℓ+2 = aℓ+4 = . . . = 0, e la
serie si riduce ad un polinomio.

Per quanto riguarda l’altra sottoserie con i coefficienti,a1,a3, . . ., essa non può termina-
re. (Persfisso, la condizione 2s+2ℓ+1−λ = 0 perℓ dispari non è compatibile con (2.236).
) Il comportamento asintotico della somma è determinato da(2.234):a2n+1≃ 2n/(2n−1)!!
perciòa1ξ+a3ξ3 +a5ξ5 + . . . ≃ ξexpξ2. Anche questo contributo renderebbeψ non nor-
malizzabile e pertanto non è accettabile. L’unica possibilità è porrea1 = 0, che comporta
a3 = a5 = . . . = 0 via la relazione di ricorrenza.

La funzione d’ondaψ è normalizzabile dunque se e solo se la condizione (2.236) `e
soddisfatta pers= 0 o pers= 1. Mettendo insieme i due casi, la condizione è

λ = 2n+1, n = 0,1,2, . . . (2.237)

Da (2.228) e (2.237) troviamo

En =
ωh̄
2

(2n+1) = ωh̄(n+
1
2
), n = 0,1,2, . . . , (2.238)

il famoso risultato per i livelli dell’energia di un oscillatore lineare in meccanica quantistica.
Per trovare la funzione d’onda dell’n-simo livello dobbiamo risolvere l’equazione (so-

stituendo (2.237 ) in (2.231) e scrivendoχ = Hn(ξ) ):

H
′′
n −2ξH

′
n+2nHn = 0, (2.239)

nota comeequazione di Hermite. La sua soluzione polinomiare è nota comepolinomio di
Hermite.
Digressione su polinomi di Hermite

I polinomi di HermiteHn(ξ) possono essere definiti tramite la funzionegeneratrice

S(ξ,s) = e−s2+2sξ = eξ2−(s−ξ)2

=
∞

∑
n=0

sn

n!
Hn(ξ), (2.240)

doves è un parametro. Dalla considerazione di∂S/∂ξ:

∞

∑
n=0

sn

n!
H

′
n(ξ) =

∂S
∂ξ

= 2se−s2+2sξ =
∞

∑
n=0

2sn+1

n!
Hn(ξ), (2.241)

si ottiene una relazione ricorsiva
H

′
n = 2nHn−1; (2.242)

mentre dalle due espressioni per∂S/∂s:

∞

∑
n=1

sn−1

(n−1)!
Hn(ξ) =

∂S
∂s

= (−2s+2ξ)e−s2+2sξ =
∞

∑
n=0

(−2s+2ξ)sn

n!
Hn(ξ), (2.243)

risulta un’altra relazione ricorsiva

Hn+1 = 2ξHn−2nHn−1. (2.244)

Prendendo una derivata (rispetto aξ) dell’eq.(2.244) e facendo ripetuto uso di (2.242)
troviamo

H
′′
n −2ξH

′
n+2nHn = 0, (2.245)

che è precisamente l’equazione di Hermite. Le espressioniesplicite diHn(ξ) si possono
trovare facilmente dalla formula

Hn(ξ) = (−)neξ2 dn

dξn e−ξ2
(2.246)
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che segue dalla seconda equazione in (2.240). Calcolando lederivate troviamo:

H0(ξ) = 1,

H1(ξ) = 2ξ,

H2(ξ) = 4ξ2−2,

H3(ξ) = 8ξ3−12ξ,

H4(ξ) = 16ξ4−48ξ2+12,

. . . . . . (2.247)

I polinomi di Hermite soddisfano alla seguente relazione diortonormalizzazione
Z ∞

−∞
dξe−ξ2

Hn(ξ)Hm(ξ) = δn,m
√

π2nn!. (2.248)

Per dimostrarla basta considerare l’integrale
Z ∞

−∞
dξe−ξ2

S(ξ,s)S(ξ,t) =
∞

∑
n,m=0

sntm

n!m!

Z ∞

−∞
dξe−ξ2

Hn(ξ)Hm(ξ), (2.249)

che è uguale a
Z ∞

−∞
dξe−{ξ−(s+t)}2+2st =

√
πe2st =

√
π

∞

∑
ℓ=0

2ℓ(st)ℓ

ℓ!
. (2.250)

Il paragone tra queste due espressioni comporta la relazione di ortonormalizazzione.
♠

La funzione d’onda dell’n-simo livello dell’oscillatore armonico (normalizzata) `e allora
data da

ψn(x) = CnHn(αx)e−
1
2α2x2

= CnHn(

√

mω
h̄

x)e−
mω
2h̄ x2

; (2.251)

dove

Cn =

(

α
π1/22nn!

)1/2

=
(mω

h̄π

)1/4
(

1
2nn!

)1/2

; α ≡
√

mω
h̄

(2.252)

Lo stato findamentale è descritto dalla funzione d’onda Gaussiana

ψ0(x) =
(mω

πh̄

)1/4
e−

mω
2h̄ x2

, (2.253)

e ha l’energia

E0 =
1
2

ωh̄, (2.254)

nota come energia di punto zero.

È molto istruttivo osservare che l’estensione della funzione d’onda,∆x∼
√

h̄
mω nonché

la presenza dell’energia di punto zero, possono essere dedotti a partire dalle relazioni di
Heisenberg e dalla forma dell’Hamiltoniana, ma senza usarela soluzione esplicita. Infatti,
supponiamo che lo stato fondamentale sia lo stato in cui il prodotto delle indeterminazioni
sia minimo:

∆x∆p≃ h̄
2
. (2.255)

Senza perdita di generalità possiamo inoltre supporre chei valor medii di x e di p siano
nulli: 〈x〉 = 〈p〉 = 0. Le indeterminazioni dix e di p sono allora uguali a

√

〈(x−〈x〉)2〉 =
√

〈x2〉;
√

〈(p−〈p〉)2 =
√

〈p2〉.
Prendendo il valor di aspettazione dell’Hamiltoniana,H = p2/2m+ mω2x2/2, si avrà

quindi

〈H〉 =
(∆p)2

2m
+

mω2h̄2

8(∆p)2 . (2.256)
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Minimizziamo ora〈H〉 rispetto a(∆p)2, visto che si tratta dello stato fondamentale:

1
2m

− mω2h̄2

8(∆p)4 = 0 → (∆p)2 ≃ 1
2

mωh̄. (2.257)

Inserzione di questo risultato in (2.256) dà la stima dell’energia dello stato fondamentale,

Est. f ond ≃
1
2

ωh̄, (2.258)

che è in accordo con il risultato esatto. L’estensione della funzione d’onda è stimata come
∆x∼ h̄/∆p≃

√

h̄/mω che è pure in accordo con (2.253).
L’energia di punto zero (chiamata alternativamente come energia del “vuoto”) è cosı̀

interpretata come effetto difluttuazione quantistica minimacompatibile con il principio di
Heisenberg: una particella confinata in uno spazio finito ha un’indeterminazione dell’im-
pulso non nulla, che equivale a una certa quantità di energia cinetica. Nei sistemi di infiniti
gradi di libertà (dei solidi, sistemi quantistici relativistici, ecc.) la presenza dell’energia del
vuoto causa fenomeni interessanti (e.g.,effetto Casimir).
Esercizi: Si calcolino i valor di aspettazione (esatti) degli operatori x2 e p2 sullo stato fon-
damentale dell’osillatore armonico, (2.253). (Risposta:h̄/2mω e mωh̄/2, rispettivamente.
)

Per le applicazioni in suguito troveremo molto utili avere gli elementi di matricedegli
operatori,x, x2, i.e.,

xnm = 〈n|x|m〉 ≡
Z

dxψ∗
n(x)xψm(x), (x2)nm = 〈n|x2|m〉 ≡

Z

dxψ∗
n(x)x

2ψm(x), (2.259)

calcolati. Tali quantità possono essere calcolate con l’aiuto della funzione generatrice dei
polinomi di Hermite: i risultati sono:

xnm =















1
α

√

n+1
2 , sem= n+1,

1
α
√ n

2, sem= n−1,

0 altrimenti.

(2.260)

(x2)nm =















1
α2

√

(n+1)(n+2)
4 , sem= n+2,

1
α2

√

n(n−1)
4 , sem= n−2,

0 altrimenti,

(2.261)

dove

α ≡
√

mω
h̄

. (2.262)

Analogamente gli elementi di matrice dell’operatore dell’impulsop sono:

pmn = 〈m|p|n〉 = −i

√

mωh̄
2

(δm,n−1
√

n− δm,n+1
√

n+1). (2.263)

Osservazione
Lo spettro di energia dell’oscillatore armonico,ωh̄(n+1/2), è discreto e equispaziato,

e a parte l’energia di punto zero,ωh̄/2, assomiglia alla formula per l’energia din parti-
celle (ciascuno con massaωh̄) non interagenti a riposo. Questa analogia è di importanza
fondamentale: esiste infatti un formalismo che discuteremo in seguito, che mette questo
aspetto in risalto - formalismo di operatori di creazione e di annichilazione. L’intera teo-
ria quantistica dei sistemi di infiniti gradi di libertà (fisica dei solidi, fisica delle particelle
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elementari, teoria quantistica dei campi) è basata su taleformalismo, dettoseconda quan-
tizzazione. In meccanica quantistica non ci sono differenze essenziali tra la massa di una
particella “elementare, e l’energia di stati composti.

EsercizioPlottare la funzione d’onda dell’n-simo livello, con laMathematica. Risposta:
il commando

ψ[n−,x−] :=
1√

π1/22nn!
HermiteH[n,x]e−x2/2, (2.264)

che definisce la funzione d’onda; il commando

Plot[ψ[10,x],{x,−11,11} ] (2.265)

plotta la funzione d’onda del livellon = 10, nella regione−11≤ x≤ 11.

2.2.5 Operatori di creazione e di distruzione

L’oscillatore armonico ammette soluzione con un’altro formalismo molto elegante, che è
la base del metodo di seconda quantizzazione. Introduciamo

a =

√

mω
2h̄

x+ i

√

1
2mωh̄

p; (2.266)

e il suo coniugato hermitiano

a† =

√

mω
2h̄

x− i

√

1
2mωh̄

p, (2.267)

detti rispettivamenteoperatore di distruzionee operatore di creazione. L’inverso della
trasformazione è

x =

√

h̄
2mω

(a+a†); p = −i

√

mωh̄
2

(a−a†). (2.268)

Segue dal commutatore trax e p chea, a† soddisfano alla relazione

[a,a†] = 1. (2.269)

L’Hamiltoniana dell’oscillatore armonico è uguale a

H =
ωh̄
2

(aa†+a†a) = ωh̄(a†a+
1
2
), (2.270)

dove è stato usato il commutatore (2.269). Usando i noti elementi di matrice degli operatori
x e p si trova che gli unici elementi di matrice non nulli dia e a† sono (n = 0,1,2, . . .):

〈n−1|a|n〉=
√

n; 〈n+1|a†|n〉 =
√

n+1. (2.271)

O equivalentemente,

a|n〉=
√

n|n−1〉, a†|n〉 =
√

n+1|n+1〉. (2.272)

Segue allora che
a†a|n〉 = n|n〉 : (2.273)

l’operatoreN ≡ a†a è chiamatooperatore del numero di occupazioneo semplicemente
come operatore del numero. Infine, l’Hamiltoniana e il suo autovalore sono ovviamente

H|n〉 = ωh̄(N +
1
2
)|n〉 = ωh̄(n+

1
2
)|n〉, (2.274)
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risultato già trovato risolvendo l’equazione di Schrödinger.
L’ n-simo autostato di energia di oscillatore armonico|n〉 è interpretato - questo è il

linguaggio del formalismo di seconda quantizzazione - comestato din “fononi. Lo stato
fondamentale è il “vuoto” senza fononi (ma con l’energiaωh̄/2 di “punto zero); l’operatore
a† crea un fonone, l’operatorea ne distrugge uno. L’operatoreN ≡ a†a “conta il numero
dei fononi nello stato sul quale agisce. In questo sistema esiste un solo tipo di fonone
con l’energiaωh̄. Qualsiasi elemento di matrice di tipo〈n|F(x, p)|m〉 doveF(x, p) è un
polinomio dix e di p, può essere trovato con facilità dagli elementi di matrice dia e a†.

Infatti gli autovalori e gli autostati diH possono essere trovati caso direttamente da
(2.270)) e (2.269), senza mai parlare dei polimoni di Hermite, ecc., in modo assiomati-
co. Prima di tutto si deve assumere l’esistenza di uno stato di minima energia (lo stato
fondamentale),|0〉. Per definizione tale stato (normalizzato) è annichilato da a:

a|0〉= 0, 〈0|0〉 = 1. (2.275)

Agendo l’operatorea† iterativamente su questo stato, possiamo definire lo stato con n
fononi, definito come

|n〉 ≡ (a†)n
√

n!
|0〉, n = 1,2, . . . (2.276)

dove la costante davanti è introdotta di modo che

〈n|n〉 = 1. (2.277)

Facendo uso del commutatore

[a,(a†)n] = n(a†)n−1 (2.278)

e della (2.275) ripetutamente, si può verificare la prima della (2.272), (la seconda della
(2.272) è ovvia), la (2.273), e infine la (2.274), il che equivale alla soluzione del problema.
Esercizio:

Si verfichi la (2.277). Si verifichi che la funzione d’ondaψ(x) ≡ 〈x|0〉 coincide con la
(2.253).
Stati coerenti

Un importante applicazione dell’uso del formalismo con operatori a e a† riguarda i
cosı̀dettistati coerenti. Gli stati coerenti sono gli stati in cui il prodotto di indeterminazione
di x e di p nella relazione di Heisenberg (vedi Sez. 2.1.6) prende il minimo valore possibile,
h̄/2: essi descrivono i “pacchetti d’onda i più compatti possibili, e in un senso i più classici.

Gli stati coerenti possono essere convenientemente definiti come autostati dell’opera-
tore di distruzione,a,

a|β〉 = β|β〉, (2.279)

dove β è un numero complesso. Per costruire lo stato|β〉, introduciamo un operatore
unitario,

U(β) = eβa†−β∗a, (2.280)

conβ un numero complesso arbitrario. Allora

|β〉 = U(β)|0〉, (2.281)

dove |0〉 è lo stato fondamentale (2.275) nella base di numero di occupazione. Infatti,
poiché

aU(β) = U(β)(a+ β) (2.282)

(Esercizio: verificatelo), la dimostrazione della (2.279) è immediata.
Un’identità molto utile per studiare gli stati coerenti èla formula di Baker-Campbell-

Hausdorff-Weyl,

eX eY = eX+Y+ 1
2 [X,Y], (2.283)
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valida se[X,Y] è un c-numero (i.e., se esso commuta con tutti gli operatori). Per esempio,

U(β) = e−|β|2/2eβa†
e−β∗a. (2.284)

Si ha dunque

|β〉 = e−|β|2/2eβa†|0〉. (2.285)

Sviluppando l’esponenziale, si ha

|β〉 = ∑
n

An|n〉, An = e−|β|2/2 βn
√

n!
, (2.286)

dove|n〉 è lo stato din fononi. La probabilità di osservaren quanti nello stato coerente|β〉
allora è

Pn = e−|β|2 |β|2n

n!
: (2.287)

è una distribuzione Poissoniana, con il valor medio di numero di occupazione

〈β|a†a|β〉 = |β|2. (2.288)

Infine, non è difficile dimostrare che nello stato coerente

i) il prodotto di indeterminazione〈(∆x)2〉 · 〈(∆p)2〉 prende il valore minimo possibile,
h̄2/4;

ii) la funzione d’onda nella basex prende forma,

ψ(x) = 〈x|β〉 = N exp[− (x−x0)
2

4〈(∆x)2〉 + i
p0x
h̄

], (2.289)

dove
x0 = (h̄/2mω)1/2(β + β∗); p0 = i(mh̄ω/2)1/2(β∗−β); (2.290)

〈(∆x)2〉 = h̄/2mω. (2.291)

(vedi, per es., Davydov, “Quantum Mechanics). Gli stati coerenti hanno generalizza-
zioni interessanti chiamati stati “schiacciati (squeezed states), recentemente studiati
in connessione con ottica quantistica, in cui le indeterminazioni〈(∆x)2〉 e 〈(∆p)2〉
sono variati, tenendo fisso (e il minimo possibile) il loro prodotto.

2.2.6 Barriera di potenziale e Effetto tunnel

Consideriamo ora la barriera di potenziale,

V =

{

0 se x < 0, (I), x > a (III ),

V0 > 0 se 0≤ x≤ a, (II ).
(2.292)

Una particella è incidente dax=−∞. Si vuole calcolare la probabilità di trasmissione attra-
verso/riflessione da tale potenziale. L’interpretazione con la densità di corrente di un onda
piana (vedi Sec.2.2.2 ) ci permette di trattare il problema con l’equazione di Schrödinger
indipendente dal tempo.
(i) Dapprima consideriamo il casoE >V0. Una particella classica che entra da sinistra, non
sentirebbe nemmeno la presenza del potenziale, e continuerebbe il suo viaggio verso destra
indisturbata. In Meccanica Quantistica il moto della particella è descritto dall’equazione di
Schrödinger, che è una equazione libera nelle regioni I e III. Nella regione II l’equazione è
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pure quella libera, a parte lo spostamentoE → E−V0 dell’energia. La soluzione ha quindi
la forma

ψI = eikx +Ae−ikx; k =

√
2mE
h̄

;

ψII = Beik
′
x +B′e−ik

′
x; k

′
=

√

2m(E−V0)

h̄
;

ψIII = Ceikx. (2.293)

Nello scrivere (2.293 ) abbiamo arbitrariamente scelto la normalizzazione della funzione
d’onda di modo che l’onda piana incidente (inψI ) abbia il coefficiente 1. Inoltre abbiamo
imposto la condizione al contorno adatta per il problema d’urto in considerazione: nella
regione III abbiamo solo l’onda trasmessa (∝ exp(−iEt/h̄+ ikx)).

La condizione di continuità tra le due regioni I e II è:

1+A= B+B′, ik(1−A) = ik′ (B−B′), (2.294)

mentre quella tra II e III è

Beik′a +B′e−ik′a = Ceika ≡C′; ik′(Beik′a−B′e−ik′a) = ikCeika = ikC′. (2.295)

Questi sistemi di equazioni si risolvono facilmente, eliminandoB,B′ da

(

B
B′

)

= M

(

1
A

)

;

(

Beik′a

B′e−ik′a

)

= M

(

Ceika

0

)

. (2.296)

Un calcolo elementare dà il risultato

A = − i(k2−k′2)sink′a
2kk′ cosk′a− i(k2+k′2)sink′a

;

C′ =
2kk′

2kk′ cosk′a− i(k2+k′2)sink′a
(2.297)

Si vuole calcolare soprattutto ilcoefficiente di trasmissione,

D ≡ | jtras|
| j inc|

(2.298)

e il coefficiente di riflessione

R≡ | jri f l |
| j inc|

, (2.299)

dove j inc, jtras e jri f l rappresentano rispettivamente la densità di corrente dell’onda inci-
dente (il primo termine diψI ), dell’onda trasmessa (ψIII ), e dell’onda riflessa (il secondo
termine diψI ). Le tre correnti sonokh̄/m, kh̄|C|2/me kh̄|A|2/m, perciò

D = |C|2 = |C′|2; R= |A|2, (2.300)

cioè

D =
4k2k′2

4k2k′2 +(k2−k′2)2 sin2 k′a

R =
(k2−k′2)2sin2k′a

4k2k′2 +(k2−k′2)2 sin2 k′a
. (2.301)

Si osservi che:
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• D+R= 1. Questo è quanto ci si aspetta per la probabilità totale.

• La probabilità di riflessione non è zero in generale, nonostante il fatto che l’energia
della particella incidente sia al di sopra della barriera dipotenziale. Questa è una
conseguenza dell’aspetto ondulatorio delle particelle inMeccanica Quantistica: in
Meccanica Classica avremmo semplicementeD = 1, R= 0.

• Per certi valori discreti dell’energia incidente, (
√

2m(E−V0)a/h̄= nπ, n= 1,2, . . .),
c’è trasmissione completa (D = 1). Anche questo è un fenomeno tipicamente quan-
tistico: è analogo dell’effetto Ramsauer-Taunsendin tre dimensioni.

Consideriamo ora invece il casoE < V0. Classicamente la particella, non avendo un’e-
nergia sufficiente per superare la barriera, sarà riflessa ax = 0: avremmoD = 0; R= 1. Il
comportamento di una particella quantistica è ben diverso.

Le soluzioni dell’equazione di Schrödinger in questo casosono:

ψI = eikx +Ae−ikx; k =

√
2mE
h̄

;

ψII = Be−κx +B′eκx; κ =

√

2m(V0−E)

h̄
;

ψIII = Ceikx; (2.302)

Si osservi che l’andamento della funzione d’onda nella regione intermedia è del tipo espo-
nenziale reale. Per il resto si procederà come prima: bisognerà imporre la condizione di
continuità ax = 0 e ax = a, per trovareC e A. Per fortuna, una semplice osservazione ci
permette di arrivare al risultato senza fare nessun calcolo: le equazioni da risolvere sono
identiche a (2.295) a parte la sostituzione

k′ → iκ. (2.303)

Di conseguenza i coefficientiA e C′ nel casoE < V0 sono dati da (2.297) con la suddetta
sostituzione (si noti la sostituzioni, sink′a→ i sinhκa; cosk′a→ coshκa):

A =
(k2 + κ2)sinhκa

2kκi coshκa+(k2−κ2)sinhκa
;

C′ =
2kκi

2kκi coshκa+(k2−κ2)sinhκa
. (2.304)

Le probabilità di trasmissione e di riflessione sono quindidate da

D =
4k2κ2

4k2κ2 +(k2 + κ2)2sinh2 κa
;

R =
(k2 + κ2)2sinh2 κa

4k2κ2 +(k2 + κ2)2sinh2 κa
. (2.305)

Osservazioni

• In generale si haD 6= 0, D > 0. La particella ha una probabilità non nulla di attra-
versare la barriera, nonostante che la sua energia non è sufficiente per superare la
barriera dal punto di vista classico. Questo è un esempio del celebreeffetto tunnel
che distingue la Meccanica Quantistica in modo cosı̀ netto dalla Meccanica Classica.

• Nel limite di barriera molto grande,V0→∞ e/oa→∞, il coefficiente di trasmisssione
si comporta come

D ∼ e−2
√

2m(V0−E)a/h̄; (2.306)

ed è esponenzialmente piccolo, (con due volte l’azione classica nell’esponente),
caratteristica questa dell’effetto tunnel in generale.
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Esercizio: Calcolare il coefficiente di trasmissione della barriera unidimensionale,V(x) =
f δ(x) ( f > 0), prendendo il limiteV0 → ∞, a→ 0, con f = V0a fisso.

Esercizio: Lo stesso problema conV(x) = − f δ(x) ( f > 0).

2.2.7 Sistemi in uno spazio topologicamente non banale

Una particella che si muove su un anello (discussa in (2.187)), è l’esempio di un sistema
meccanico-quantistico, che possiede un parametro nascosto che non ha analoghi classici.
Dovuto alla nota arbitrarietà della fase della funzione d’onda, la periodicità dello spazio,

x = x+L, (2.307)

in generale richiede che la funzione d’onda obbedisca alla condizione più generale,

ψ(x+L) = eiθψ(x), (2.308)

doveθ è una costante che caratterizza il sistema quantistico. Lasoluzione dell’equazione
di Schrödinger è sempreψ = eikx, ma la condizione al contorno è ora

kL = 2πn+ θ, n = 0,±1,±2, . . . , (2.309)

perciò

En =
h̄2

2mL2 (2πn+ θ)2. (2.310)

Per un genericoθ la doppia degenerazione del livello (2.187) del casoθ = 0 viene eliminata,
En 6= E−n. È interessante che per un particolare valore diθ, θ = π, i livelli di energia sono

En =
h̄2(2π)2

2mL2 (n+
1
2
)2. (2.311)

In questo caso,tutti i livelli sono doppiamente degeneri (le coppie di stati sono(0,−1),
(1,−2), ecc.). Un’altro caso particolare,θ = 2π, è interessante. In questo caso, lo spettro
del sistema è identico al casoθ = 0, come si vede facilmente. In generale, lo spettro
è periodico inθ con periodo 2π, risultato che ci si aspetta dalla definizione stessa del
parametro, (2.308). Si noti che nella discussione la caratteristica topologica non banale
dello spazio in questione (S1) è fondamentale. Esistono molti sistemi di interesse fisico,
analoghi a questo sistema. Un esempio è l’effetto Aharanov-Bohm (in questo caso, il ruolo
del parametroθ è giocato dal flusso magnetico, attraverso una superficie circondata da due
classi di cammini dell’elettrone.)

θ può essere considerata in generale come un parametro esterno. Supponiamo ora che
θ varia adiabaticamente da 0 a 2π. Lo spettro del sistema varia lentamente e alla fine del
ciclo, ritorna a quello orignale. Se la particella è inizialmente in uno stato stazionario, e.g.,
n-simo stato, la variazione adiabatica diθ aumenterà l’energia del sistema. Alla fine, lo
spettro ritorna allo spettro originale, il parametro esterno ritorna al valore originale (visto
cheθ è una variabile angolare, 2π ∼ 0), ma il sistema si trova nello staton+ 1! In altre
parole, l’intero spettro si è spostato di un’unità (n → n± 1 seθ = 0 → ±2π). Questo
fenomeno è noto come “spectral flow.” Ci sono importanti applicazioni di questo fenomeno
in teorie di gauge non abeliane.

2.2.8 buca/barriera di potenziale con funzioniδ
Considerazione generale: condizioni di continuazione

Consideriamo ora il moto di una particella in un potenziale delta unidimensionale

H =
p2

2m
−gδ(x), (2.312)
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A causa della singolarità del potenziale ax = 0, le condizioni di continuità sulla funzio-
ne d’onda richiedono una considerazione particolare. Per quanto riguarda il valore della
funzione d’onda dobbiamo richiedere semplicemente

ψ(x)|x→0+ = ψ(x)|x→0−, ψ−(0) = ψ+(0) (2.313)

per la continuità della densitàρ, dove conψ± abbiamo indicato le funzioni d’onda definite
nelle regionix > 0 ex < 0.

La condizione di continuità sulla derivata deve tenere conto della singolarità del po-
tenziale. Infatti, integrando l’equazione di Schrödinger

− h̄2

2m
ψ′′−gδ(x)ψ = Eψ, (2.314)

nella regione[−ε,ε], si ha

− h̄2

2m
(ψ′(ε)−ψ′(−ε))−gψ(0) = O(ε). (2.315)

Considerando poi il limiteε → 0, si trova la condizione di continuità per la derivata prima
della funzione d’onda,

ψ′
+(0)−ψ′

−(0) = −2mg

h̄2 ψ(0). (2.316)

La stessa condizione si trova, sostituendo la funzione d’onda

ψ(x) = ψ−(x)θ(−x)+ ψ+(x)θ(x) (2.317)

direttamente nell’equazione di Scrödinger, utilizzandoθ′(x) = δ(x), i.e., richiedendo che
(2.317) effettivamente soddisfi quest’ultimo dappertutto, inclusox = 0.
Esercizio: Dimostrare che la condizione (2.316) sia compatibile con lacontinuità della
densità di corrente,j = i h̄

2m [ (ψ∗)′ ψ−ψ∗ψ′ ].

i) Spettro discreto

La funziona d’onda di uno stato legato, con energiaE0 < 0 è:

ψ(x) = θ(−x)eκx + θ(x)e−κx, κ =

√

−2mE0

h̄2 . (2.318)

dove abbiamo già tenuto conto della normalizzabilità (per cui la scelta della soluzione
eκx per x < 0 e e−κx per x > 0) e la continuità della funzione d’onda ax = 0; la
normalizzazione globale è lasciata arbitraria.

Dalla (2.316) segue immediatamente la condizione di quantizzazione,

κ =
mg

h̄2 ; E0 = −mg2

2h̄2 . (2.319)

La funzione d’onda normalizzata è

ψ(x) =
√

κ [θ(−x)eκx + θ(x)e−κx ]. (2.320)

ii) Spettro continuo

Si può porre, per gli stati diE ≥ 0,

ψ(x) = θ(−x)[Aeikx +Be−ikx ]+ θ(x)[Ceikx +De−ikx ], k =

√

2mE

h̄2 . (2.321)
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La condizione di continuità tra le due regioni I e II è:

A+B= C+D. (2.322)

La condizione di continuità per la derivata prima dà (dalla (2.316):

C−D = A−B+
2img

kh̄2 (A+B) = (1+2iα)A− (1−2iα)B, (2.323)

dove
α =

mg

kh̄2 > 0. (2.324)

Risolvendo (2.395) e (2.396) perC,D, si ha

C = (1+ iα)A+ iαB, (2.325)

D = −iαA+(1− iα)B. (2.326)

O
(

C
D

)

=

(

1+ iα iα
−iα 1− iα

)(

A
B

)

≡ S·
(

A
B

)

. (2.327)

La matriceS

S=

(

1+ iα iα
−iα 1− iα

)

; S−1 =

(

1− iα −iα
iα 1+ iα

)

(2.328)

è nota comematrice di transizione;
(

A
B

)

= S−1
(

C
D

)

=

(

1− iα −iα
iα 1+ iα

)(

C
D

)

(2.329)

Per qualsiasi valore dik reale la (2.321) con tali coefficienti rappresenta gli autostati
dell’Hamiltoniana.

iii) Barriera di potenziale

Perg < 0, il potenziale rappresenta una barriera, non una buca. In questo caso non ci
sono stati legati. La funzione d’onda (2.321) con la (4.379)correttamente rappresenta
lo stato di diffusione generale.

Se la particella entra dax = −∞, allora la condizione al contorno è

D = 0 : (2.330)

la soluzione è
A = (1− i α)C; B = i αC, (2.331)

per cui le probablità di trasmissione e di riflessione sono:

D =
1

1+ α2 , R=
α2

1+ α2 . (2.332)

Osserviamo che nel caso di portenziale delta, il risultato `e indifferente del segno di
g, i.e., sia il potenziale ripulsivo che il potenziale attrattivo dà lo stesso effetto.

iv) Doppia barriera di potenziale delta

Il risultato sopra può essere immediatamente generalizzato al caso di multi barriere di
potenziale. Consideriamo per esempio il problema col il potenziale con due barriere
di forma delta, spaziati dia,

V = g[δ(x)+ δ(x−a) ]. (2.333)
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La funzione d’onda è ora

ψ(x)= θ(−x)[Aeikx+Be−ikx ]+θ(x)θ(a−x)[Ceikx+De−ikx ]+θ(x−a)[Feikx+Ge−ikx ].
(2.334)

Definendo

F
′
= Feika; G

′
= Ge−ika; C

′
= Ceika; D

′
= De−ika, (2.335)

C,D sono dati in termini diA,B come nella (2.400), mentre

(

F
′

G
′

)

=

(

1− iβ −iβ
iβ 1+ iβ

)

·
(

C
′

D
′

)

≡ S·
(

eika 0
0 e−ika

)

·S·
(

A
B

)

. (2.336)

Oppure
(

F
G

)

=

(

e−ika 0
0 eika

)

·S·
(

eika 0
0 e−ika

)

·S·
(

A
B

)

. (2.337)

dove

S=

(

1− iβ −iβ
iβ 1+ iβ

)

; β =
mg

kh̄2 , (2.338)

dove la forma della matriceS qui (2.338) (cfr. (2.401)) riflette il segno opposto di
delta nella (2.333) rispetto alla (2.312).

Rispetto al caso di una singola barriera delta, (2.332), la fisica qui è decisamente
più interessante. Dalla matrice di transizione nella (2.336), si trova i coefficienti di
trasmissioneD e di riflessioneR,

D =
1

1+4β2(coska+ β sinka)2 ; R=
4β2(coska+ β sinka)2

1+4β2(coska+ β sinka)2 . (2.339)

Per una prima verifica, si noti che pera→ 0, si ritrova il rusultato precedente cong→
2g. Per generici valori di energiak, la situazione è analoga al caso di singola barriera
delta. In particolare, nel limite diβ → ∞ (g → ∞), il coefficiente di trasmissione
tende a zero.

Per certi valori di energia incidente,

tanka= −1
β
, (2.340)

tuttavia, si ha una trasmissione totale (R = 0, D = 1) ! Notiamo che nel limite di
g→ ∞, i valori di risonanza (R= 0, D = 1) sono a

ka≃ πn, n = 1,2, . . . : (2.341)

essi corrispondono a stati stazionari nella buca di larghezzaa, infinitamente alta (Eq.
(2.202)). Per generico valore dik, si ha invece la riflessione totale (R→ 1, D → 0)
nel limite g→ ∞. La situazione è illustrata nellla figura (Fig.??), dove i coefficienti
di trasmissione e di riflessione è plottata come funzione dik, per tre valori in ordine
crescente diβ. È interessante che il sistema della doppia barriera delta (nel limite
di grandeg) pu‘o essere considerato come un filtro per la misura dell’impulso: se la
particella incidente ha l’energiaka≃ πn passa, altrimente non passa.

La generalizzazione della formula (2.337) nel caso diN potenziali delta equispaziati
e con lo stesso accoppiamentog, è

(

AN

BN

)

=

(

e−iN ka 0
0 eiN ka

)

· [
(

eika 0
0 e−ika

)

·S]N ·
(

A1

B1

)

. (2.342)
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2.2.9 Applicazioni della buca infinitamente alta

Consideriamo ora alcune applicazioni del problema della buca di altezza infinita discusso
in Sec.2.2.3. La pressione che una particella confinata nella buca (scatola) esercita sul
muro può essere calcolata nel modo seguente. Supponiamo che la particella sia nell’n-simo
livello energetico. L’energia del sistema è

En =
(πn

a

)2 h̄2

2m
. (2.343)

Supponiamo di comprimere la scatola adiabaticamente,a → a− δa: il lavoro richiesto è
uguale a

En(a− δa)−En(a) =
π2n2 h̄2

2m

(

1
(a− δa)2 −

1
a2

)

=
π2n2 h̄2

ma3 δa ≡ p ·δa, (2.344)

La pressione è perciò

p =
π2n2 h̄2

ma3 =
2
a

En. (2.345)

Consideriamo ora un gas diN particelle in equilibrio con il servatoio termico di tempe-
raturaT.12 Per tale insieme canonico la distribuzione di energia è quella di Boltzman,

Pn = N e−En/kT, (2.346)

con N costante di normalizzazione. Per la particella inn-simo livello, En =
(πn

a

)2 h̄2

2m ≡
A ·n2, A =

(π
a

)2 h̄2

2m. Il valor medio dell’energia è

〈E〉 = ∑
n

EnPn. (2.347)

Ora per uno stato diN particelle con le interazioni trascurabili tra loro,

E(n1,n2,...nN) ≃ En1 +En2 + . . .EnN , (2.348)

il suo valor medio è

〈E〉(N) =
∑(n1,n2,...nN) E(n1,n2,...nN) e−E(n1,n2,...nN)/kT

∑(n1,n2,...nN) e−E(n1,n2,...nN)/kT

= N
∑n1

En1 e−En1/kT

∑n1
e−En1/kT

= N〈E〉. (2.349)

Per temperature alte,AkT ≪ 1, la somma sun può essere approssimata con un integrale,
i.e. con

√
An≡ x,

〈E〉 ∼
R

dxx2 e−x2/kT

R

dxe−x2/kT
=

1
2

kT. (2.350)

L’energia del sistema è data dall’espressione classica

U = 〈E〉(N) =
1
2

NkT (2.351)

12Questa discussione trascura la correlazione tra le particelle identiche, dovuta alla statistica di Bose-Einstein
o di Fermi-Dirac, che sarà discussa più in là, e in questo senso non va considerata come approssimazione valida a
sistemi fisici quantistici.
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dalla quale segue il risultato noto per il calore specifico (per un gas monoatomico 1D)
C = ∂U

∂T = 1
2Nk.

A temperature basse, la somma in〈E〉 è dominato dallo stato fondamentale,

〈E〉 ≃ E1, (2.352)

per cui il calore specifico tende a zero aT → 0.
Per quanto riguarda la pressione, si ha dalla (2.345)

P =
2
a

N〈E〉 =
2
a

N〈E〉 ≃ 2
a

N
kT
2

=
1
a

N kT, (2.353)

a temperatura ambiente. Questa non è altro che l’equazionedi gas unidimensoinale,PV =
NkT.
♠ Infine, il numero di stati quantistici conE ≤ Emax perEmax grande può essere stimato
facendo uso della condizione di quantizzazione di Bohr e Sommerfeld:

I

dx p= nh. (2.354)

SiccomeEmaxcorrisponde apmax=
√

2mEmax, il livello massimonmax è determinato dalla
richiesta

nmaxh =

(

I

dx p

)

max
=
√

2mEmax·2a, (2.355)

per cui

nmax≃
2a

√
2mEmax

h
. (2.356)

Questo coincide con il risultato quantistico esatto

En =
(πn

a

)2 h̄2

2m
≤ Emax, (2.357)

nmax≃
√

2ma2Emax

πh̄
. (2.358)

2.2.10 Dalla fisica di una particella alla fisica dei sistemi di molti gradi
di libert à: Cristallo Unidimensionale

Come prototipo del modello dei cristalli (dei solidi) prendiamo in esame una catena di
atomi in una dimensione, interagenti tra loro con una forza armonica. Il sistema è descritto
dalla Lagrangiana classica

L = ∑
n

[
m
2

ẋ2
n−

κ
2
(xn+1−xn)

2], (2.359)

dovexn indica lo spostamento della posizione dell’n-simo atomo dalla sua posizione di
equilibrio, e per semplificare le cose poniamo la condizioneperiodica

xN ≡ x0; xi+N = xi , (2.360)

e supponiamo chen in (2.359) prende valorin = 1,2, . . . ,N.
La (2.359) descriveN particelle accoppiate tra loro, e il fatto che il sistema possa essere

risolto con esattezza potrebbe sembrare mirocoloso. Come `e ben noto, la chiave della
soluzione è la trasformata di Fourier (discreta) ,

xn =
1√
N

∑
k

Ake
ikna, Ak = A∗

−k, (2.361)
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dove la condizione sulle ampiezze complesseAk riflette la realtà delle variabilixn, l’impulso
k prende valori

k =
2πℓ

Na
; , ℓ = ±1,±2, . . .± N−1

2
,
N
2

. (2.362)

AN/2 = A−N/2 è reale. Inoltre, il termineℓ = 0 (che corrisponderebbe alla traslazione
dell’intero sistema) è assente. Perciò il numero dei gradi di libertà associati a variAk è

2 · N−1
2

+1 = N, (2.363)

uguale al numero deixn indipendenti.
Come è facile verificare, ci sono delle identità,

1
N

N

∑
n=1

eina(k−k
′
) =

1
N

N

∑
n=1

ei2π(ℓ−ℓ
′
)/N = δℓ,ℓ

′ ; (2.364)

1
N ∑

k

eik(n−n
′
)a = δn,n′ , (2.365)

che risulteranno molto utili. Usando queste indentità, infatti, si trovano

∑
n

(xn+1−xn)
2 = ∑

n

1
N ∑

k
∑
k′

AkAk′ e
ikna(eika−1)eik

′
na(eik

′
a−1)

= ∑
k

AkA−k(e
ika−1)(e−ika−1) = 4∑

k

AkA−k sin2 ka
2

; (2.366)

∑
n

mẋ2
n

2
=

m
2 ∑

n

1
N ∑

k

ȦkȦk′ e
iknaeik

′
na =

m
2 ∑

k

ȦkȦ−k. (2.367)

Ma usando la condizione di realtà dixn (2.361) si può scrivere (definendoAk = ak + ibk,
ak,bk reali perℓ = 1,2, . . .(N−1)/2 )

AkA−k = AkA
∗
k = a2

k +b2
k; ȦkȦ

∗
k = ȧ2

k + ḃ2
k; k = 1,2, . . .(N−1)/2; (2.368)

e
AN/2A−N/2 = A2

N/2. (2.369)

Raccogliendo tutti i termini, troviamo che la Lagrangiana `e uguale a

L =
(N−1)/2

∑
ℓ=1

[
m
2

ȧ2
k −

mω2
k

2
a2

k +
m
2

ḃ2
k −

mω2
k

2
b2

k]

+
m
2

Ȧ2
N/2−

mω2
(N/2)

2
A2

N/2, ω2
k ≡

4κ
m

sin2 ka
2

. (2.370)

In altre parole, il sistema (2.359) è equivalente ad un insieme diN oscillatori armonici
indipendenti! In termini di coordinate generalizzate{qi} = {ak,bk,AN/2}, e gli impulsi
canonici corrispondenti,{pi}, l’Hamiltoniana del sistema è semplicemente,

H = ∑
i
[

p2
i

2m
+

mω2
i

2
q2

i ]. (2.371)

La quantitizzazione del sistema procede esattamente come nel caso di un singolo oscil-
latore armonico: la descrizione degli autostati di energiaè particolarmente semplice nel
formalismo di seconda quantizzazione (con operatori di creazione e di distruzione, per cia-
scun modo), seguendo l’esempio di Sec. 2.2.5 Un generico stato di stato di eccitazione è
dato dal ket

| . . . ,ni , . . .〉 = ∏
i

(a†
i )

ni

√
ni!

|0,0, . . .〉 (2.372)
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con energia,

E = ∑
i

ωi h̄(ni +
1
2
). (2.373)

A differenza col caso del singolo oscillatore, qui ci sonoN tipi di fononi di energiaωi h̄, i =
1,2, . . .N. Si osservi che, corrispondente al passo reticolare (a) del sistema originale, c’è
un limite superiore della frequenza (limite inferiore della lunghezza d’onda,a). Nel limite
continuo, (N → ∞, a → 0, Na = L conL fisso), il sistema si riduce al caso di una corda
finita (con la condizione periodica,cfr Appendice 2): in tal caso non c’è nessun limite
inferiore alla lunghezza d’onda.

Un’analogo trattamento è possibile per i cristalli tri-dimensionali. I fononi sono quanti
di eccitazioni collettive (con energiaωi h̄ ciascuno). La radiazione elettromagnetica libe-
ra (senza particelle cariche) è descritta in modo analogo,come un insieme di oscillatori
armonici (Appendice 2 e Capitolo 1.3), il fonone è chiamatofotonein questo caso.

Il fatto che molti sistemi di molti o infiniti gradi di libert`a sono descritti nella pri-
ma approssimazione come un insieme di oscillatori indipendenti, è basale nel permetterci
di analizzare questi sistemi complessi con la teoria delle perturbazioni, nell’ambito del
formalismo di seconda quantizzazione (teoria dei campi quantistici).

2.3 Potenziale periodico e struttura di bande d’energia

Il comportamento in Meccanica Quantistica di una particella che si muove in un potenziale
periodico

V(x) = V(x+a) (2.374)

(vedi Fig. 1.3) differisce in modo essenziale da quello che ci si aspetta dalla meccanica
classica. Come è stato anticipato già nell’introduzione, tale sistema può essere considerato
come prototipo dei sistemi più interessanti (per es., elettroni nei solidi).

Supponiamo che l’energia della particellaE sia tale che

0 < E ≪V0, (2.375)

dove 0 eV0 s̀ono rispettivamente il valore minimo e il valore massimo del potenziale. Sup-
poniamo inoltre che nell’approssimazione in qui il potenziale è considerato infinitamente
alto (V0 ≃ ∞) i livelli di energia e le funzione d’onda di una singola (n-sima) buca siano
dati da

E(0)
1 ,E(0)

2 , . . . ,E(0)
i , . . . ; ψ1(x;n),ψ2(x;n), . . .ψi(x;n), . . . . (2.376)

I livelli di energia in altre buche sono identici a questi, mentre le funzioni d’onda dell’m-
sima buca sarà data daψi(x− (m− n)a;n). In altre parole, nell’approssimazione in qui
l’effetto tunnel è trascurato ogni livello è infinitamente degenere (con funzioni d’onda
{ψi(x;n)}, n = . . . ,−2,−1,0,1,2, . . . che rappresentano la particella varie buche). In se-
guito concentreremo la nostra attenzione ad un determinatolivello (per es.,i-simo), e
lasceremo implicito l’indicei. Un’identica considerazione è valida per tutti i livelli.

Dovuto all’effetto tunnel, sappiamo che i stati{ψ(x;n)} non rappresentano gli autostati
esatti dell’Hamiltoniana

H =
p2

2m
+V. (2.377)

Tuttavia, considerando gli effetti dovuti alla penetrazione di barriera come perturbazione,
possiamo scrivere

Hψ(x;n) ≃ E(0)ψ(x;n)− ε [ψ(x;n+1)+ ψ(x;n−1)], (2.378)

n = . . . ,−2,−1,0,1,2, . . . (2.379)

doveε corrisponde all’ampiezza di probabilità di tunnelling tra l’n-sima buca e le due buche
adiacenti.



2.3. POTENZIALE PERIODICO E STRUTTURA DI BANDE D’ENERGIA 87

La diagonalizzazione dell’Hamiltoniana, date il numero infinito di equazioni accoppia-
te, (2.379), appare un problema formidabile. In verità, essa si compie senza difficoltà con
la trasformata di Fourier rispetto an,

ψ̃k(x) ≡
∞

∑
n=−∞

eikanψ(x;n), (2.380)

dovek è un parametro reale (kh̄ = p è una sorta di impulso coniugato an). Essendo il co-
niugato di Fourier di una variabile discretan, ka è un parametro angolare:k∈ [−π/a,π/a].

Infatti, moltiplicando coneikan e sommando sun in ambedue i membri di (2.379), e
usandoψ(x;n± 1) = ψ(x∓ a;n), troviamo che le combinazioni lineari in (2.380)sono
infatti autostati dell’energia:

Hψ̃k(x) = [E(0)−2εcos(ka)] ψ̃k(x). (2.381)

In altre parole, invece di un singolo livelloE(0) infinitamente degenere, abbiamo trovato
una spettro continuo compreso in[E(0)−2ε,E(0) +2ε] (banda di energia), parametrizzato
dall’impulso p= kh̄. Ad ogni valore di energia nella banda sono associati solo due stati
distinti, conk = ±|k|. Gli autostati di energia (2.380) non sono localizzati a unadelle
buche; sono estesi a tutto lo spazio−∞ < x < ∞.

(Osserviamo a questo proposito il seguente fatto. Le autofunzioni vere differiscono in
modo essenziale da quelle “non perturbate, (2.376), anche quando i termini di “perturba-
zioni ∝ ε sono infinitesimi. La ragione di tale fenomeno sta nelladegenerazionedegli stati
nonperturbati. Vedi Capitolo??)

Le autofunzioni (2.380) non sono autostati dell’operatored’impulso−ih̄(d/dx), tan-
to è vero che l’invarianza per traslazionix → x+ ∆x è violata dal potenziale. D’altra
parte, l’invarianza per traslazioni discrete generate dax → x± a (che è una simmetria
dell’Hamiltoniana) fà sı̀ che le autofunzioni soddisfano

ψ̃k(x±a) = e±ikaψ̃k(x), (2.382)

(dove abbiamo usato la relazioneψ(x+ a;n) = ψ(x;n− 1), ecc.), proprietà condivisa da
un’onda piana usuale. Questo aspetto si illustra meglio ancora se si considerasse i casi di
piccoli impulsi,ka≪ 1. La relazione energia-impulso in questi casi si riduce a

E = E(0)−2εcos(ka)) ≃ E(0)−2ε+ εk2a2. (2.383)

A parte una costante, questa è la relazione standard tra l’energia e l’impulso di una parti-
cella libera con la massa,

me f f =
h̄2

2εa2 . (2.384)

Naturalmente si tratta di una massa efficace, dipendente da dettagli del potenziale e dalla
banda considerata; essa non ha niente a che fare con la massa vera della particellam.
Nonostante ciò, resta il fatto che la particella “propaga liberamente attraverso le barriere di
potenziale.

Ricapiltolando, gli autovalori dell’energia sono le bandedi energia, attorno a ciascuno

di E(0)
1 ,E(0)

2 , . . . ,E(0)
i , . . .. Le autofunzioni descrivono una sorta di onda piana, con l’im-

pulso limitato ap∈ [−h̄π/a, h̄π/a], e collegato al valore di energia tramite una relazione
del tipo (2.381). Questo, dunque, è il meccanismo con cui l’elettrone nei cristalli si muove
liberamente (conduzione elettrica dei metalli), sebbene subisse diffusione da tutti gli atomi
che formano il reticolo cristallino.

In tutto ciò, è fondamentale il fatto che l’effetto tunneldescrive una penetrazione di
particella a livello diampiezzao di funzione d’onda (vedi (2.379)), e non a livello di proba-
blilità. In questo senso, la conduttività elettrica dei metalli è uno dei fenomeni che meglio
illustrano le caratteristiche della meccanica quantistica.
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2.3.1 Esempio di simmetria: parit̀a della funzione d’onda; doppia
buca

Il concetto disimmetrieè di importanza sia in meccanica classica che in meccanica quan-
tistica. Anticipando la discussione più generale sulle simmetrie, discutiamo qui le conse-
guenze della simmetria della parità (simmetria perx→−x) del sistema.

Molti sistemi come buca di potenziale, il sistema con il potenziale delta, etc, possiedono
la proprietà che l’Hamiltoniana è invariante per l’operazione di riflessione spaziale,

P H(x, p)P ≡ H(−x,−p) = H(x, p).

Se definiamo la parità sulla funzione d’onda

P ψ(x) = ψ(−x),

segue dall’equazione di Schrödinger che seψ(n)(x) è l’autofunzione dell’n-simo livello
energetico, conEn, P ψ(n)(x) = ψ(n)(−x) lo è anche. Visto che in una dimensione non ci
sono degenerazione dei livelli discreti, segue che

ψ(n)(−x) = ±ψ(n)(x) : (2.385)

ogni autofunzione di energia deve essere o pari o dispari rispetto ax → −x. Secondo il
teorema do oscillazione, lo stato fondamentale non ha nodi,perciò è pari. Il primo stato di
eccitazione ha un nodo ed è dispari, e cosı̀via. Tali caratteristiche sono effettivamente pos-
sedute dalle autofunzioni in tutti gli esempi considerati,le buche di potenziale, il sistema
con il potenziale delta, etc.

È interessante considerare il sistema di doppia buca di potenziale come quella in Fig.
2.14. Se la barriera centrale è molto alta, si avranno approssimativamente due buche di
potenziali (simmetriche), con i primi livelli di energiaE = E0,E1, . . . , e le funzioni d’onda

sarannoψ(n)
L (x) e ψ(n)

R (x) = ψ(n)
L (−x). In altre parole avremo una doppia degenerazione

dei livelli, cosa che è tuttavia proibita dal teorema di nondegenerazione. Fisicamente, la
particella che si muove in una delle buche non dovrebbe accorgersi dell’altra buca se la
barriera centrale è sufficientemente alta, ma la conclusione naı̈va - doppia degenerazione
dei livelli - non può essere corretta. Come si evita la contraddizione?

Il punto è che, dovuto all’effetto tunnel, l’ampiezza per andare da una buca all’altra non
è nulla (anche se è molto piccola) comunque alta sia la barriera centrale. D’altra parte, dalla
discussione sulla parità qui sopra, è chiaro che ogni autofunzione di energia deve avere la
parità definita. Segue che lo stato fondamentale del sistema ‘e la combinazione simmetrica

ψ( f ond)(x) ≃ 1√
2

(ψ(n)
L (x)+ ψ(n)

R (x)); (2.386)

mentre il primo stato eccitato è

ψ(primo)(x) ≃ 1√
2

(ψ(n)
L (x)−ψ(n)

R (x)). (2.387)

Se consideriamo una situazione fisica dove l’energia rilevante è piccola rispetto aE1−E0,
un tale sistema può essere approssimato con un sistema “a due stati”, descritta da

H =

(

E0 −ε
−ε E0

)

, (2.388)

nella base diψ(0)
L (x) e ψ(0)

R (x), doveε descrive l’ampiezza di penetrazione da una buca
all’altra. La diagonalizzazione diH dà i livelli di energiaE∓ε, conψ( f ond)(x) eψ(primo)(x)
come autofunzioni corrispendenti.
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Figura 2.14: Una doppia buca di potenziale

2.3.2 Problemi

1. Al tempot = 0 lo stato di una particella libera è espresso dalla funzione d’onda

Ψ(x,0) = Aexp{−x2

a2 + ik0x}

a) Si calcoli il fattoreA e la regione dove la particella è localizzata.

b) Si determini la densità di corrente di probabilitàj .

c) Si determininoΨ(x,t), ρ(x,t) e j(x,t).

d) Si trovino i valori di aspettazione della posizione e dell’impulso al tempot = 0.

e) Si calcolino< ∆x2 > e< ∆p2 > al tempot = 0 e si verifichi la relazione di indetermi-
nazione per queste due quantità.

2. Una particella si trova in una buca di potenziale unidimensionale 0≤ x ≤ a, per la
qualeV = 0 dentro la buca eV = ∞ al di fuori. Si risolva l’equazione di Schrödinger
dipendente dal tempo per questo sistema.

3. Si trovino le funzioni d’onda e i livelli energetici per una particella in un potenziale
V(x) della forma

V(x) =











0 perx < −a,

−V0 per−a≤ x≤ a,

0 perx > a.

4. Si trovino i livelli energetici e le funzioni d’onda di un oscillatore armonico unidimen-
sionale che è posto in un campo elettrico costante E. La carica elettrica dell’oscilla-
tore èe.

5. Si consideri un oscillatore armonico unidimensionale nel suon-mo livello energetico.
Si trovino< x2 > e il valore di aspettazione dell’energia potenziale per questo caso.

6. Si calcoli l’energia cinetica media di un oscillatore armonico unidemensionale la cui
energia è7

2h̄ω.

7. Si trovino i livelli energetici e le funzioni d’onda per labuca di potenziale unidimen-
sionale Coulombiano

V(x) = − e2

|x| .

8. Si studi l’evoluzione temporale del pacchetto d’onda cheall’istantet = 0 ha la forma

ψ(x,0) = π−1/4α1/2e−α2(x−a)2/2, (2.389)

(α ≡
√

mω/h̄.) L’Hamiltoniana è quella dell’oscillatore armonico.
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9. Disegnare la variazione dello spettro del sistema discusso nel sottocapitolo 2.2.7, come
funzione diθ nell’intervallo, 0≤ θ ≤ 2π.

2.4 Complemento sul sistema con il potenzialegδ(x)

In questo complemento, illusteremo la relazione di ortonormalità e la relazione di comple-
tezza in un sistema in cui lo spettro contiene sia la parte discreta che quella continua. Il
sistema è quella di una buca delta,

H =
p2

2m
−gδ(x), g > 0 (2.390)

già discusso in una sezione precendente.

2.4.1 Spettro discreto

In questo sistema esiste un solo stato legato,

ψ(0)(x) =

{√
κeκx x < 0√
κe−κx x > 0,

(2.391)

dove

κ =
mg

h̄2 ; E0 = −mg2

2h̄2 . (2.392)

2.4.2 Spettro continuo

Si può porre, per gli stati diE ≥ 0,

ψ(x) =

{

Aeikx +Be−ikx x < 0,

Ceikx +De−ikx x > 0,
(2.393)

dove

E =
k2 h̄2

2m
. (2.394)

La condizione di continuità tra le due regioni I e II è:

A+B= C+D. (2.395)

La condizione di continuità per la derivata prima dà (dalla (2.316):

C−D = A−B+
2img

kh̄2 (A+B) = (1+2iα)A− (1−2iα)B, (2.396)

dove
α =

mg

kh̄2 =
κ
k

> 0. (2.397)

Risolvendo (2.395) e (2.396) perC,D, si ha

C = (1+ iα)A+ iαB, (2.398)

D = −iαA+(1− iα)B. (2.399)

o
(

C
D

)

= S

(

A
B

)

, (2.400)
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dove

S=

(

1+ iα iα
−iα 1− iα

)

; S−1 =

(

1− iα −iα
iα 1+ iα

)

, α =
κ
k

(2.401)

è lamatrice di transizione. L’inverso è
(

A
B

)

= S−1
(

C
D

)

=

(

1− iα −iα
iα 1+ iα

)(

C
D

)

(2.402)

Per qualsiasi valore dik reale la (2.321) con tali coefficienti rappresenta autostati possibili
(continui) dell’Hamiltoniana.

Per le applicazioni fisiche e per la considerazione sotto, conviene introdurre gli stati R
(right mover) e L (left mover) corrispondenti alla particella incidente dax = −∞, e quelli
corrispondenti a particella incidente dax = +∞. Gli stati R e L sono analoghi degli stati
e±i kx nel caso libero. Essi sono (ponendoD = 0 o A = 0, rispettivamente)

ψ(R)
k (x) =

{

1√
2π

[eikx−F(k)e−ikx ], x < 0,
1√
2π (1−F(k))eikx, x > 0,

(2.403)

dove

F(k) =
1

1+ ik/κ
. (2.404)

e

ψ(L)
k (x) =

{

1√
2π(1−F(k))e−ikx, x < 0,
1√
2π [e−ikx−F(k)eikx ], x > 0,

(2.405)

con lo stessoF(k). k≥ 0 sopra, e la normalizzazione è stata fissata di modo che la relazioni
di ortonomalità prende la forma canonica.

2.4.3 Ortogonalità tra lo stato discreto e uno stato nel continuo

Facendo uso di
κ± ik =

mg

h̄2 ± ik = ±ik(1∓ iα) (2.406)

si ha infatti

〈ψcont|ψdis〉 =

Z 0

−∞
dx[A∗e−ikx +B∗eikx ]eκx +

Z ∞

0
dx[C∗e−ikx +D∗eikx ]e−κx

=
A∗

κ− ik
+

B∗

κ + ik
+

C∗

κ + ik
+

D∗

κ− ik

=
A∗ +D∗

κ− ik
+

B∗ +C∗

κ + ik
=

1
−ik

1+ iα
1+ iα

(C∗ +D∗)+
1
ik

1− iα
1− iα

(C∗ +D∗)

= 0. (2.407)

2.4.4 Ortogonalità tra gli stati del continuo

Prendiamo due stati di tipo R:

R〈k′|k〉R =
1
2π

Z 0

−∞
dx[e−ik′x−F∗(k)eik′x ] [eikx−F(k)e−ikx ]

+
1
2π

Z ∞

0
dx(1−F∗(k))(1−F(k))e−ik′x eikx. (2.408)

Utilizzando le formule
Z ∞

0
dx e−ikx =

Z 0

−∞
dxeikx = lim

ε→0+

Z 0

−∞
dxeikx−εx = lim

ε→0+

1
ε− ik

= πδ(k)+ i
P

k
, (2.409)
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doveP indica il valor principale di Cauchy, si ha

R〈k′|k〉R =
1
2π

[πδ(k−k′)+ i
P

k−k′
−F(k)(πδ(k+k′)− i

P

k+k′
)

− F(k′)∗ (πδ(k+k′)+ i
P

k+k′
)+F(k′)∗F(k)(πδ(k−k′)− i

P

k−k′
)

+ (1−F(k′)∗)(1−F(k))(πδ(k−k′)− i
P

k−k′
) ]. (2.410)

Notando

δ(k+k′) = 0; 1+F(k′)∗F(k) − (1−F(k′)∗)(1−F(k))|k=k′ = 2; (2.411)

1−F(k′)∗F(k) − (1−F(k′)∗)(1−F(k)) =
i
κ (k−k′)

(1+ ik/κ)(1− ik′/κ)
; (2.412)

F(k)−F(k′)∗ = −
i
κ (k+k′)

(1+ ik/κ)(1− ik′/κ)
, (2.413)

e infine

(k+k′)
P

k+k′
= (k−k′)

P

k−k′
= 1, (2.414)

troviamo
R〈k′|k〉R = δ(k−k′). (2.415)

Analoghi calcoli dimostrano che

L〈k′|k〉L = δ(k−k′), L〈k′|k〉R =R〈k′|k〉L = 0. (2.416)

2.4.5 Completezza

Illustriamo ora la relazione di completezza, Eq.(2.138),

∑
n

ψn(q)ψ∗
n(q

′)+
Z

d f ψ f (q)ψ∗
f (q

′) = δ(q−q′) (2.417)

che in questo sistema coinvolge sia un termine di stato discreto e l’integrale sugli stati del
continuo. Calcoliamo il contributo del continuo

Z ∞

0
dkψ(R)

k (x)ψ(R)∗
k (x′)+

Z ∞

0
dkψ(L)

k (x)ψ(L)∗
k (x′). (2.418)

dove le funzioni d’onda di una particella del tipo R (right-mover) e del tipo L(left mover)
sono definite nelle (2.403), (2.405). Ora perx > 0, x′ > 0, troviamo

Z ∞

0
dkψ(R)

k (x)ψ(R)∗
k (x′) =

1
2π

Z ∞

0
dk(1−F(k))(1−F∗(k))eik(x−x′)

=
1
2π

Z ∞

0
dk[1+

iκ
k− iκ

− iκ
k+ iκ

+
κ2

(k− iκ)(k+ iκ)
]eik(x−x′)

=
1
2π

Z ∞

0
dk[1− κ2

(k− iκ)(k+ iκ)
]eik(x−x′);

Z ∞

0
dkψ(L)

k (x) ψ(L)∗
k (x′) =

1
2π

Z ∞

0
dk[e−ikx−F(k)eikx ] [eikx′ −F(k)e−ikx′ ] =

1
2π

Z ∞

0
dk[e−ik(x−x′) +

i κ
k− i κ

eik(x+x′)− i κ
k+ i κ

e−ik(x+x′) +
κ2

(k− iκ)(k+ iκ)
eik(x−x′) ].
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Perciò (ricordando chex > 0, x′ > 0),
Z ∞

0
dk[ψ(R)

k (x)ψ(R)∗
k (x′)+ ψ(L)

k (x) ψ(L)∗
k (x′) ] =

1
2π

Z ∞

−∞
dk[eik(x−x′) +

i κ
k− i κ

eik(x+x′) ]

= δ(x−x′)−κe−κ (x+x′) = δ(x−x′)−ψ(0)(x)ψ(0)∗(x′), (2.419)

dove il secondo integrale è stato fatto col teorema di residuo. Abbiamo quindi dimostrato
esplicitamente (perx > 0, x′ > 0) la relazione di completezza,

ψ(0)(x)ψ(0)∗(x′)+

Z ∞

0
dk[ψ(R)

k (x)ψ(R)∗
k (x′)+ ψ(L)

k (x) ψ(L)∗
k (x′) ] = δ(x−x′). (2.420)

Perx < 0, x′ > 0, il contributo dello spettro continuo è
Z ∞

0
dk[ψ(R)

k (x)ψ(R)∗
k (x′)+ ψ(L)

k (x) ψ(L)∗
k (x′) ]

=
1
2π

Z ∞

0
dk
(

[eikx−F(k)e−ikx ] (1−F∗(k))e−ikx′ +(1−F(k))e−ikx [eikx′ −F∗(k)e−ikx′ ]
)

=
1
2π

Z ∞

−∞
dk[eik(x−x′)− i κ

k+ i κ
eik(x−x′) ]

= δ(x−x′)−κeκ (x−x′) = δ(x−x′)−ψ(0)(x)ψ(0)∗(x′) (2.421)

che è il risultato corretto.
È interessante considerare il caso di potenzialeδ(x) ripulsivo, che corrisponde a pren-

dere il segnog< 0 nella (2.390). In questo caso non esiste nessun stato legato. Il contributo
del continuo deve dare esattamenteδ(x−x′). La dimostrazione è semplice: l’unico cambia-
mento nel precedente è che oraκ < 0. I passaggi fino alla (2.419) non subiscono modifiche
sostanziali, poiché coinvolgono soltanto cancellazionialgebriche. Nel secondo termine
della (2.419), perx > 0, x′ > 0, il polo dell’integrando ora sta nel piano inferiore: essendo
x+x′ > 0, l’integrale suk dà zero grazie al teorema di Cauchy. Perciò

Z ∞

0
dk[ψ(R)

k (x)ψ(R)∗
k (x′)+ ψ(L)

k (x) ψ(L)∗
k (x′) ] = δ(x−x′) (2.422)

semplicemente, come deve essere. Lo stesso vale per (2.421), che dà nel secondo membro
semplicementeδ(x−x′).
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