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Come abbiamo visto nei capitoli precedenti, i postulati principali della meccanica quan-
tistica su

(i) come descrivere stati quantistici e come specificare un particolare stato;

(ii) come uno stato evolve nel tempo;

(iii) come descrivere le variabili dinamiche; trovare tutti i possibili valori per ogni variabile
dinamica e ottenere le probabilità che la misura di una quantità fisica in uno stato dia
un determinato risultato,

sono formulati in modo esatto e esauriente nell’approccio di Schrödinger. Prima di pro-
cedere ai problemi fisici più realistici in tre dimensioni,ed elaborare le conseguenze delle
regole della nuova meccanica in tutta la sua ampiezza, tuttavia, è opportuno fermarci qui
a riflettere sulla struttura logica e matematica della teoria e esaminare con più attenzione i
concetti principali trattati.

In meccanica quantistica esiste una grande libertà di linguaggio nel modo di descrivere
sia gli stati che le variabili; i risultati fisici sono indipendenti dal linguaggio (dettorappre-
sentazione) usato. Tale libertà del linguaggio trova una certa analogia anche in meccanica
classica (trasformazioni canoniche); tuttavia l’importanza e la portata delle sue conseguen-
ze in meccanica quantistica a nostro parere vanno molto al dilà di quanto non accade in
meccanica classica .

Questa libertà della scelta delle rappresentazioni significa che i concetti come stati,
operatori e evoluzioni temporali, vanno definiti in modo pi`u generale e più astratto. Le
descrizioni in diverse rappresentazioni sono collegate fra loro da cosı̀dettetrasformazioni
unitarie. La teoria delle trasformazioni unitarie fornisce, oltre il chiarimento concettuale,
un metodo talvolta molto efficace di soluzioni.

3.1 Rappresentazione delle coordinate e degli impulsi

La funzione d’ondaψ(x,t) rappresenta uno stato quantistico. Più precisamente, essa va
considerata come una particolare rappresentazione di uno stato quantistico “ψ” come di-
stribuzione inx. Possiamo scrivere, infatti,

ψ(x,t) =
Z

dx′ δ(x′−x)ψ(x′,t) =
Z

dx′ ψ∗
x(x

′)ψ(x′,t)

= 〈x|ψ〉, (3.1)

dove abbiamo usato la notazione di Dirac,
Z

dx′ φ∗(x′)χ(x′) ≡ 〈φ|χ〉. (3.2)

Inoltre ψx(x′) = δ(x− x′) è l’autostato della posizione con autovalorex. In (3.1) la fun-
zione d’onda è espressa come proiezione dello stato “ψ” sugli autostati della posizione.
Analogamente deve essere possibile proiettare lo stesso stato sugli autostati degli impulsi
(per esempio), e considerare la funzione d’onda nellarappresentazione degli impulsi. Ciò
è fatto ricordando che gli autostati degli impulsi sono dati da:

ψp(x
′) =

1√
2πh̄

e−ipx′/h̄, (3.3)

i.e.,

ψ(p,t) = 〈p|ψ〉 =

Z

dx′ ψp(x
′)∗ψ(x′,t). (3.4)

In altre parole la traduzione dalla rappresentazione dellecoordinate alla rappresentazione
degli impulsi equivale ad una trasformazione di Fourier.
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Per esempio, l’autostato della posizione con autovalorex0 è, nella rappresentazione
degli impulsi,

〈p|x0〉 =
1√
2πh̄

e−ipx0/h̄, (3.5)

mentre l’autostato dell’impulso con autovalorep0

〈x|p0〉 =
1√
2πh̄

eip0x/h̄ (3.6)

viene tradotto a
〈p|p0〉 = δ(p− p0). (3.7)

Infine, l’n-simo stato stazionario dell’oscillatore armonico “ψn”

〈x|n〉 = ψn(x) = CnHn(αx)e−α2x2/2 (3.8)

(vedi Cap. 2.1) è descritto, nella rappresentazione degliimpulsi, dalla funzione d’onda

ψ(p) = 〈p|n〉 =

Z

dx〈p|x〉〈x|n〉 =
Cn

αh̄1/2
(−i)nHn(p/αh̄)e−p2/2α2h̄2

: (3.9)

la trasformata di Fourier della funzione d’onda (3.8).
Nella rappresentazione degli impulsi l’impulso è rappresentato da un operatore triviale

(numero) ˆp = p, mentre l’operatore della posizione diventa

x̂ = +ih̄
∂

∂p
. (3.10)

Si noti la differenza del segno rispetto all’espressione dell’operatore dell’impulso nella
rappresentazione usuale. Tale segno è necessario perchévalga la relazione fondamentale

[x̂, p̂] = ih̄. (3.11)

Questa relazione è infatti valida in qualsiasi rappresentazione.

3.2 Bra e Ket, Spazio di Hilbert dei vettori

La discussione precedente mette in chiara luce il fatto importante dal punto di vista concet-
tuale: lo stato quantistico è descritto dal raggio di vettori (chiamatoket),

|ψ〉. (3.12)

(Inoltre è conveniente introdurre una sorta di vettore coniugato,〈ψ| chiamatobra. Questi
terminologie sono stati inventate da Dirac, dalla parola “bracket” in inglese.) La descrizio-
ne dello stato “ψ” in termini di una funzione complessa (per esempio) non è che una delle
possibili rappresentazioni. Gli operatori, equazione del moto, ecc., vanno definiti nello
spazio dei tali vettori astratti. In seguito studieremo prima le proprietà generali di que-
sto spazio, lasciando lo studio delle relazioni tra le varierappresentazioni ai sottocapitoli
successivi.

Le proprietà richieste allo spazioH (dei vettori che rappresentano i possibili stati
quantistici di un determinato sistema) sono:

A. H è uno spazio vettoriale;

B. In H è definito il prodotto interno (scalare)〈χ|φ〉 tra due vettori, che è un numero
complesso.
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C. H è uno spazio completo (chiuso);

D. H è uno spazio separabile.

Uno spazio che soddisfano queste proprietà è chiamatospazio di Hilbert. (Il concetto
di spazio di Hilbert è stato introdotto da D. Hilbert (∼1910) come una generalizzazione
dello spazio Euclideon dimensionaleRn (con elementi(x1,x2, . . .xn)) nel limite n → ∞.
Molte delle proprietà degli spazi di Hilbert sono di conseguenza generalizzazioni naturali
di quelle in spazi Euclidei.)

A. H è uno spazio vettoriale (in seguito scriveremo spesso semplicementeψ, φ, ecc. al
posto di|ψ〉, |φ〉, ecc. :)

ψ,φ ∈ H → cψ+dφ ∈ H , (3.13)

dovec,d sono numeri complessi (principio di sovrapposizione). In altre parole, inH la
somma dei vettori e la moltiplicazione con numeri complessisono definiti, con le seguenti
proprietà:

ψ+ φ = φ+ ψ;

(ψ+ φ)+ χ = ψ+(φ+ χ)

c(ψ+ φ) = cψ+cφ,

(cd)ψ = c(dψ)

0 ·ψ = 0

1 ·ψ = ψ. (3.14)

Si noti in particolare che esiste un vettore nullo,ψ−ψ = 0. I vettori ψ1,ψ2, . . .ψk sono
linearmente indipendentise

c1ψ1 +c2ψ2 + . . .+ckψk = 0 (3.15)

implica
c1 = c2 = . . . = ck = 0. (3.16)

B. Per ogni coppia di vettori inH , ψ e φ, è definito il loro prodotto scalare〈φ|ψ〉 ∈ C (un
numero complesso) tale che

〈φ|c1ψ1 +c2ψ2〉 = c1〈φ|ψ1〉+c2〈φ|ψ2〉;
〈φ|ψ〉∗ = 〈ψ|φ〉
〈ψ|ψ〉 ≥ 0, (= 0, se e solo se |ψ〉 = 0). (3.17)

Si noti che la prima e la seconda relazioni implicano che

〈cφ|ψ〉 = c∗〈φ|ψ〉. (3.18)

In letteratura si trovano a volte notazioni diverse da quella usata qui: per esempio(ψ,φ) al
posto di〈φ|ψ〉.

Nella rappresentazione delle coordinate il prodotto scalare tra due vettoriψ e φ prende
la forma esplicita:

〈φ|ψ〉 =

Z

dqφ∗(q)ψ(q). (3.19)

L’ultima delle proprietà sopra ci permette di introdurre la normadi un vettore,

‖ψ‖ ≡
√

〈ψ|ψ〉. (3.20)

L’introduzione della norma - la grandezza di ogni vettore - in H , implica che si può
definire ladistanza tra due vettoriψ e φ in modo naturale:

‖ψ−φ‖ =
√

〈ψ−φ|ψ−φ〉. (3.21)
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H è dunque uno spaziometrico. In tale spazio, si può definire il concetto dilimite di una
successione,{ψn} = ψ1,ψ2, . . . col criterio di Cauchy: se ogniε > 0 esiste un numero
interoN(ε) tale che pern,m> N(ε) vale

‖ψn−ψm‖ < ε, (3.22)

allora la successione converge.
Disuguaglianza triangolareOgni definizione di distanza deve essere tale che per tre punti
qualsiasi dello spazio (che posono essere scelti0, ψ eφ) valga

‖ψ−φ‖ ≤ ‖ψ‖+‖φ‖, (3.23)

(dove l’eguaglianza è valida se e solo sec1ψ = c2φ, c1,c2 ∈ C. )
La dimostrazione che l’(3.23) è infatti soddisfatta, non `e difficile. Si osservi prima

〈ψ−φ|ψ−φ〉= ‖ψ‖2 +‖φ‖2−2Re〈φ|ψ〉. (3.24)

Ma per un numero complesso qualsiasi vale

−Re〈φ|ψ〉 ≤ |〈φ|ψ〉|, (3.25)

perciò si avrà la dimostrazione se si può provare la seguente disuguaglianza (disuguaglianza
di Schwarz):

|〈φ|ψ〉| ≤ ‖φ‖‖ψ‖. (3.26)

Per provare la (3.26), basta considerare un vettore,

φ̃ ≡ φ−ψ · 〈ψ|φ〉‖ψ‖2 . (3.27)

La (3.26) segue dal fatto che la norma diφ̃ è positivo semidefinito.

C. H è completo nel senso che ogni successioneψ1,ψ2, . . . che soddisfa il criterio di Cau-
chy converge inH : cioè limn→∞ ψn ≡ ψ ∈ H . (Nota: l’insieme(0,1) non è completo. Per
esempio limn→∞(1/n) = 0 6∈ (0,1). )
D. H è separabile. Cioè esiste un sottoinsieme (base) numerabile S⊂ H , denso dap-
perttutto inH . In altre parole ogni vettoreψ ∈ H è il limite di una successione{φn} in
S. (L’insieme di numeri razionali forma una base numerabile edensa dapperttutto nello
spazio dei numeri reali, perciòR è separabile.)

La conseguenza più importante diA.−D. è l’esistenza di un sistema completo e or-
tonormale dei vettori inH , {ψn}. In altre parole, ogni vettore inH può essere scritto
come

ψ = lim
N→∞

N

∑
n=0

cnψn ≡ ∑cnψn (3.28)

dove i coefficienti di sviluppocn sono dati da

cn = 〈ψn|ψ〉, (3.29)

cioè per ogni vettore è valida la relazione

|ψ〉 = ∑
n
|ψn〉〈ψn|ψ〉. (3.30)

Questa equivale a

∑
n
|ψn〉〈ψn| = 1, (3.31)

la relazione di completezza, già vista nel Cap.2.1.
Si noti che in uno spazio di Hilbert, il numero massimo di vettori linearmente indipen-

denti (dettodimensionedello spazio) o è finito o è infinito. Nel primo caso, le proprietàC.
e D. sono automaticamente soddisfatte e quindi triviali. Viceversa per gli spazi di Hilbert
di dimensione infinita, le richiesteC. e D. sono fondamentali.
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3.2.1 Operatori autoaggiunti, variabili dinamiche e lo spettro

Gli operatori sono ora definiti anche essi nello spazio di Hilbert astratto,

A : H → H . (3.32)

Se esiste un numero realeC tale che

||Aψ|| < C||ψ||, ∀ψ ∈ H ,

allora||A|| è definito come il più piccollo di tale costanteC. (||A||= Sup||Aψ||/||ψ||; ∀ψ.)
Un operatore con norma finito è limitato. Se non esiste tale costante finito, l’operatore è
illimitato. In meccanica quantistica abbiamo spesso a che fare con operatori illimitati.

(i) L’operatore energia dell’oscillatore armonico,

H =
p2

2m
+

1
2

mω2x2,

è illimitato perché esistono statiψn tali cheH ψ(n) = En ψ(n), ||ψn|| = 1, con valori
di En arbitrariamente grandi.

(ii) L’operatorex è illimitato. Per esempio, gli statiψ(n) = 1
π1/4n1/2 e−x2/2n2

, sono norma-
lizzati, ma

||xψ(n)||2 =
n2

2
,

e può essere arbitrariamente grande.

(iii) In una dimensione,ψ(x) =
√ a

π
1√

x2+a2
∈ H maxψ 6∈ H .

La necessità di trattare operatori illimitati rende indispensabile porre una condizione
più precisa su possibili operatori da associare a variabili dinamiche nella teoria. Infatti un
teorema rilevante in questo contesto (Hellinger-Toeplitz) afferma che un operatore definito
dappertutto inH , con la proprietà

〈Aφ|ψ〉 = 〈φ|Aψ〉, (3.33)

è neccessariamente limitato. Segue che per un operatore illimitato, la definizione di “realtà”
(che abbiamo chiamato senza molta attenzione “Hermitiano”in una sezione precedente)
richiede l’esame del dominio di ogni operatore. Ildominiodi un operatoreA, D(A), è
definito da

ψ ∈ D(A) ⊂ H , se Aψ ∈ H . (3.34)

Se per un vettoreψ ∈ H , esiste un vettoreη ∈ H tale che

〈Aφ|ψ〉 = 〈φ|η〉, ∀φ ∈ D(A), (3.35)

allora per definizione
A†|ψ〉 ≡ |η〉. (3.36)

La relazione
〈Aφ|ψ〉 = 〈φ|A†|ψ〉. (3.37)

è valida per definizione. L’esistenza del vettoreη definisceD(A†). L’operatoreA† è
chiamato aggiunto (o coniugato Hermitiano) dell’operatore A. Dalla definizione segue la
relazione,

〈φ|A†|ψ〉 = (〈ψ|A|φ〉)∗. (3.38)
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Un operatore con la proprietà,

A† ψ = Aψ, ∀ψ ∈ D(A), D(A) ⊂ D(A†) (3.39)

è dettooperatore Hermitiano, o simmetrico. Se vale anche

D(A†) = D(A) (3.40)

tale operatore èautoaggiunto. Per un operatore autoaggiunto, vale

〈ψ|A|ψ〉 = 〈ψ|A|ψ〉∗, ∀ψ ∈ D(A), (3.41)

il suo valor medio in uno stato qualsiasi, e perciò ogni suo autovalore, è reale.
Per postulato, ad ogni variabile dinamicaè associato ad un operatore autoaggiunto.

Riportiamo qui due teoremi, senza dimostrazione, che valgono per ogni operatore au-
toaggiunto:

Teorema
SiaA un operatore autoaggiunto e

U(t) ≡ ei t A (3.42)

con unparametro coninuot. Segue allora che

(a) Set, ssono reali,U†(t)U(t) = 1, U(t +s) = U(t)U(s);

(b) Perφ ∈ H qualsiasi e pert → t0 valeU(t)φ →U(t0)φ;

(c) Perψ ∈ D(A) qualsiasi valeU(t)ψ−ψ
t

t→0−→ iAψ.

(d) Se limt→0
U(t)ψ−ψ

t esiste, alloraψ ∈ D(A)

Teorema (Stone)
SeU(t) è un operatore unitario in H e fortemente continuo int (i.e., soddisfano le

proprietà (a) e (b) sopra), allora esiste un operatore autoaggiuntoA in H tale che

U(t) = ei t A. (3.43)

In altre parole, gli operatori autoaggiunti sono operatoriper i quali valgono molte pro-
prietà note per una matrice Hermitiana. Il valor d’aspettazione di una classe di operatore
autoaggiunti del tipo,A = B†B, è semipositivo definito:

〈ψ|B†B|ψ〉 ≥ 0, (3.44)

con l’uguaglianza valida se e solo seB|ψ〉 = 0.

Lo spettrodi un operatore autoaggiuntoA è l’insieme di suoi autovalori propri (autova-
lori discreti) e autovalori impropri (autovalori continui): I primi corrispondono ai valoriλ
tale che

(A−λm)|ψm〉 = 0; ‖ψm‖ = 1, m= 0,1,2, . . . ; (3.45)

per lo spettro continuo la condizione è sostituita dal seguente criterio più generale:

Criterio di Weyl :

il valore λ fa parte dello spettro di un operatore A se e solo se esiste unasuccessione
ψn, tale che

lim
n→∞

‖Aψn−λψn‖ = 0, ‖ψn‖ = 1 (3.46)
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Per esempio, nel caso di operatore dell’impulso, l’esistenza della successione

ψn =
1

π1/4n1/2
eipx/h̄e−x2/2n2

, n = 1,2, . . . (3.47)

dimostra che tutti i valori reali fanno parte dello spettro dell’operatorep = −ih̄(d/dx).
Analogamente, per l’operatore della posizione, si ha

lim
n→∞

‖(x−x0)ψn‖ = 0, (3.48)

per la successione

ψn = (
2n
π

)1/4e−n(x−x0)
2
. (3.49)

Esercizio: Si dimostri che la (3.46) è infatti soddisfatta dall’operatorep = −ih̄(d/dx) con
la successione (3.47) e conλ = p. Si verifichi la (3.48). ♠

L’insieme di spettro discreto e spettro continuo forma un insieme chiuso. L’insieme
risolvente di un operatoreA è per definizione l’insieme dix∈ ρ(A) tale cheA− x1 ha un
operatore inverso limitato,

(A−x1)−1, (3.50)

(chiamato operatore risolvente diA). L’insieme risolvente è ovviamente un aperto. Il
complemento diρ(A), σ(A), (i.e., l’insieme dix, x 6∈ ρ(A)), forma lo spettro dell’operatore
A.

Infine il cosı̀detto teorema spettorale, riportato qui anche esso senza dimostrazione,
asserisce che per ogni operatore autoaggiuntoO esiste un insieme di autovalori (propri e
impropri) {λn,λ} e relativi operatori di proiezione, (dove abbiamo assunto che lo spettro
continuo è[λ0,∞) )

P (λ) =

Z λ

−λ0

dλ |λ〉〈λ|, Pn = |n〉〈n|, (3.51)

tale che

1 =

Z

dP (λ)+∑
n

Pn,

O =

Z

λdP (λ)+∑
n

λn Pn,

|ψ〉 =
Z

dP (λ) |ψ〉+∑
n

Pn |ψ〉, ∀ψ ∈ H (3.52)

(vedi la (2.138)).
Queste proprietà garantiscono la consistenza del postulato della meccanica quantistica,

(??), (2.112). Infatti, dalle formule delle probabilità (chela misura della quantitàO dà o
dei valori traλ e λ +dλ, oppure uno degli autovalori discreti,λn):

P(λ)dλ = |〈λ|ψ〉|2dλ; Pn = |〈n|ψ〉|2, (3.53)

si ha per la probabilità totale,
Z

P(λ)dλ +∑
n

Pn = 〈ψ|{
Z

dλ |λ〉〈λ|+∑
n
|n〉〈n|}ψ〉= 〈ψ|ψ〉 = 1. (3.54)

3.3 Trasformazioni unitarie

Le quantità fisiche in meccanica quantistica sono in generale associate a elementi di matrice
di vari operatori,

〈φ|O|ψ〉. (3.55)
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SiaU un operatore dotato di un inversoU−1, tale che

U†U = UU† = 1; (3.56)

cioè
U† = U−1. (3.57)

Tale operatore è chiamatooperatore unitario. Riscriviamo ora (4.382) inserendo due volte
l’operatore di identità1 = U†U :

〈φ|O|ψ〉 = 〈φ|U†UOU†U |ψ〉 = 〈φ̃|Õ|ψ̃〉, (3.58)

dove

|ψ̃〉 ≡ U |ψ〉; |φ̃〉 ≡U |φ〉;
Õ ≡ UOU†. (3.59)

Si noti che la norma dello stato rimane invariante:

〈ψ̃|ψ̃〉 = 〈ψ|U†U |ψ〉 = 〈ψ|ψ〉. (3.60)

La trasformazione degli stati e degli operatori definita da (3.58), (3.59) è chiamatatrasfor-
mazione unitaria.

Poiché tutte le quantità fisiche trattate in meccanica quantistica si riducono a qualche
combinazione di elementi di matrice del tipo (4.382), la teoria è invariante per trasforma-
zioni unitarie arbitrarie.

In altre parole, gli stati e gli operatori in meccanica quantistica sono definiti a meno di
trasformazioni unitarie.

3.3.1 Schema di Schr̈odinger e schema di Heisenberg

Un risultato significativo della meccanica classica (Cap.1.2), è che l’evoluzione tempora-
le q(t), p(t) → q(t +dt), p(t +dt) è una successione ditrasformazioni canonicheinfini-
tesime. Esiste un risultato analogo in meccanica quantistica: l’evoluzione temporale del
sistema in meccanica quantistica è una trasformazione unitaria,

|ψ(t)〉 = e−iHt/h̄|ψ(0)〉. (3.61)

Si noti che la (3.61) è infatti la soluzione formale dell’equazione di Schrödinger

ih̄
∂
∂t
|ψ(t)〉 = H|ψ(t)〉, |ψ(t)〉|t=0 = |ψ(0)〉 : (3.62)

Questa osservazione ci permette di studiare l’evoluzione temporale del sistema in mec-
canica quantistica da un punto di vista nuovo. Infatti, consideriamo una particolare trasfor-
mazione unitaria dipendente dal tempo,

U(t) = eiHt/h̄ : (3.63)

lo stato e l’operatore genericoO si trasformano come:

ψH = U(t)|ψ(t)〉 = eiHt/h̄|ψ(t)〉 = |ψ(0)〉; (3.64)

OH(t) = U(t)OU(t)† = eiHt/h̄Oe−iHt/h̄. (3.65)

L’elemento di matrice è naturalmente invariante per tale trasformazione:

〈ψ(t)|O|ψ(t)〉 = 〈ψH |OH(t)|ψH〉, (3.66)
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ma ora l’evoluzione temporale non è più descritto dall’equazione di Schrödinger; essa ri-
siede invece nella dipendenza temporale non banale di operatori. L’equazione del moto per
un operatore genericoO si ottiene dalla (3.65) ed è:

ih̄
d OH

d t
= ih̄

∂OH

∂ t
+[OH ,H], (3.67)

dove il primo termine è presente se l’operatore dipende esplicitamente dal tempo. La (3.67)
è nota comeequazione di Heisenberg. (cfr. l’eq.(1.36) di Sec.1.2.)

La descrizione dell’evoluzione temporale del sistema in meccanica quantistica basata su
(3.64), (3.65), (3.67) è chiamataschema di Heisenberg(o rappresentazione di Heisenberg).
Nello schema di Heisenberg, lo stato non evolve col tempo, l’operatore varia col tempo.

Viceversa, nella descrizione usuale basata sull’equazione di Schrödinger, chiamatasche-
ma di Schr̈odinger(o rappresentazione di Schrödinger), è la funzione d’onda (lo stato) che
evolve con il tempo. Ad un istante (t = 0) i due schemi coincidono:

OH(0) = O; |ψH〉 = |ψ(0)〉. (3.68)

Un fatto importante è che il commutatore fondamentalea tempi ugualiha la stessa
forma a qualsiasi istante e indipendente dall’Hamiltoniana:

[xiH (t), p jH (t)] = ih̄δi j . (3.69)

La (3.69) segue da[xi , p j ] = ih̄δi j : infatti,

[xiH (t), p jH (t)] = [eiHt/h̄xie
−iHt/h̄,eiHt/h̄p je

−iHt/h̄] = eiHt/h̄[xi , p j ]e
−iHt/h̄ = ih̄δi j . (3.70)

Si noti che il commutatore usuale nello schema di Schrödinger può essere visto un caso
particolare (pert = 0) di (3.70). Il fatto che il commutatore fondamentale prende la stessa
forma a qualsiasi istante del tempo, è essenziale per la consistenza dell’intera costruzione
della meccanica quantistica: un istante particolare (per es. t = 0) non può avere nessun
significato speciale, vista l’uniformità del tempo.

Vice versa, i commutatori a tempi non uguagli,

[xiH (t), p jH (t ′)], [xiH (t),x jH (t ′)], [piH (t), p jH (t ′)], (3.71)

contengono informazione dinamica,i.e., dipendono dal sistema.

Esercizio: Risolvere le equazioni di Heisenberg per una particella libera in una dimensione.
Calcolare il commutatore a tempi non uguagli[xH(t),xH(0)]. (Risposta:[xH(t),xH(0)] =
−ih̄t/m. )

Esercizio (Teorema):
Supponiamo che il sistema descritto dalla funzione d’ondaψS(t) all’istantet = 0 sia

autostato di un operatorêf con autovaloref0. La funzione d’onda all’istantet è allora
autostato dell’operatore di Heisenbergf̂H(−t), con lo stesso autovaloref0.

3.3.2 Oscillatore armonico

Consideriamo un oscillatore armonico lineare,H = p2

2m + mω2

2 x2. L’Hamiltoniana nella
rappresentazione di Heisenberg è

HH = U H(x, p)U† = H(U xU†,U pU†) =
p2

H

2m
+

mω2

2
x2

H . (3.72)

L’equazione di Heisenberg è

mẋH = pH ; ṗH = −mω2xH , (3.73)
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di cui soluzione è

xH(t) = xH(0) cosω t +
1

mω
pH(0) sinω t = x cosω t +

1
mω

p sinω t; (3.74)

pH(t) = pH(0) cosω t −mωxH(0) sinω t = p cosω t −mωx sinω t; (3.75)

Per esempio, supponiamo che all’istantet = 0 il sistema sia descritto da un pacchetto
d’ondaψ0 e che siano noti〈ψ0|p2|ψ0〉≡ p2

0 e 〈ψ0|x2|ψ0〉≡ x2
0. Per calcolare〈ψ(t)|p2|ψ(t)〉

nello schema di Schrödinger, è necessario risolvere l’equazione di Schrödinger, e poi cal-
colare il valor medio dip2 in ψ(t). Questo problema si risolve facilmente nello schema di
Heisenberg:

〈ψ(t)|p2|ψ(t)〉 = 〈ψ0|U(t) p2U−1(t) |ψ0〉 = 〈ψ0|pH(t)2|ψ0〉. (3.76)

Ma

pH(t)2 = p2 cos2 ω t +m2ω2x2 sin2 ω t −mω(x p+ px) cosω t sinω t, (3.77)

dove abbiamo utilizzato il risultato (3.75); inoltre si noti che

〈ψ0|x p+ px|ψ0〉 = 0, (3.78)

(il primo membro deve reale essendo il valor medio di un operatore Hermitiano, ma è
puramente immaginario). Segue perciò

〈ψ(t)|p2|ψ(t)〉 = p2
0 cos2 ω t +m2ω2x2

0 sin2 ω t. (3.79)

Analogamente, si trova che

〈ψ(t)|x2|ψ(t)〉 = x2
0 cos2 ω t +

1
m2 ω2 p2

0 sin2 ω t. (3.80)

3.4 Stati misti e matrice densit̀a

La descrizione in termini di una funzione d’onda è una descrizione completa del sistema
in meccanica quantistica. Ci sono delle situazioni, d’altra parte, nelle quali tale descrizio-
ne completa o non è possibile o non è richiesta. Tale situazione sorge, per esempio, nella
descrizione di un sottosistema di un sistema più grande: avendo accesso solo ad una parte
delle variabili dinamiche, non è possibile descrivere il sottosistema con una funzione d’on-
da. Un’altro importante esempio dei casi in cui dovremmo abbandonare la descrizione in
termini di funzioni d’onda, riguarda i sistemi di molti gradi di libertà (sistemi macroscopi-
ci, solidi, gas, ecc.). In questi casi è ovviamente impossibile avere la completa conoscenza
della funzione d’onda di (tipicamente) 1023 molecole: si dovrà lavorare con quantità me-
diate in vari modi. Un analoga situazione statistica è presente nei fasci di particelle (per
es., fotoni) parzialmente polarizzati, o non polarizzati.In tutti i casi elencati sopra, quello
che caratterizza questi sistemi ’‘e la mancanza dell’informazione completa.

Consideriamo per concretezza il caso di primo tipo: un sistema chiusoΣ e un suo
sottosistema,S. Sianox le variabili in S cui abbiamo accesso; q il resto delle variabili in
Σ/S che non osserviamo. Anche se il sistema totale è descritto da una funzione d’onda
ψ(q,x), non è vero in generale la fattorizzazione

ψ(q,x) 6= ψS(x)ψΣ/S(q) : (3.81)

il sottosistemaSnon ha funzione d’onda in generale. Come calcolare allora ilvalore d’a-
spettazione di un operatorêfx che dipende solo dalle variabili del sottosistema? Secondo
la regola standard,

〈 f 〉 =

Z

dqdxψ∗(q,x) f̂xψ(q,x), (3.82)
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dove l’operatore agisce solo sulla dipendenza dax della funzione d’onda. Definiamo ora

ρ(x;x′) ≡
Z

dqψ(q,x)ψ∗(q,x′), (3.83)

chiamatamatrice densit̀a. Il valor medio è dato allora da:

〈 f 〉 =

Z

dx{ f̂xρ(x;x′)}x′=x. (3.84)

La necessità di tenerex e x′ distinte nella definizione diρ(x;x′) è evidente: nella (3.84)̂fx
deve agire prima sulla dipendenza dax della matrice densità; va messax = x′ solo dopo
tale operazione.

La matrice densità è Hermitiana (considerandox e x′ come indici di una matrice):

ρ(x;x′)∗ = ρ(x′;x). (3.85)

Inoltre essa obbedisce ad una proprietà importante

Trρ =

Z

dxρ(x;x) = 1. (3.86)

Quest’ultimi segue dalla condizione di normalizzazione della funzione d’ondaψ(q,x).
Gli stati descritti da una matrice densità sono chiamatistati misti; quelli descritti da una

funzione d’onda sono chiamatistati puri.
Il concetto di stato misto è più generale di quello di statopuro, descritto da funzioni

d’onda. Infatti, è vero che ogni stato puro può essere considerato uno stato misto di parti-
colare tipo, ma non vice versa. Per uno stato puro, la matricedensità è data semplicemente
da (considerandoS= Σ),

ρ(x;x′) = ψ(x)ψ∗(x′). (3.87)

La matrice densità nel caso puro ha una proprietà speciale:

ρ2(x,x′) ≡
Z

dx′′ ρ(x;x′′)ρ(x′′;x′) = ρ(x;x′). (3.88)

Per varie applicazioni è più conveniente usare una base generica|n〉 anziché la base|x〉
adoperata finora. Riscriviamo (3.82) come

〈 f 〉 = 〈ψ| f̂ |ψ〉

=

Z

dqdq′∑
n

∑
m
〈ψ|q,n〉〈q,n| f̂ |q′,m〉〈q′,m|ψ〉

=

Z

dq∑
n

∑
m
〈ψ|q,n〉〈n| f̂ |m〉〈q,m|ψ〉, (3.89)

dove abbiamo usato la relazione di completezza, nonché il fatto che l’operatorêf non
agisce suq per cui〈q,n| f̂ |q′,m〉 = 〈n| f̂ |m〉δ(q−q′). Definendo ora la matrice densità

ρmn≡
Z

dq〈q,m|ψ〉〈ψ|q,n〉, (3.90)

e l’elemento di matrice
fnm = 〈n| f̂ |m〉, (3.91)

il valore d’aspettazione si esprime semplicemente:

〈 f 〉 = Tr(ρ f ). (3.92)
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La quantità〈q,n|ψ〉 che appare nell’eq.(3.89) ha un significato semplice: da

ψ(q,x) = ∑
n

cn(q)ψn(x)

→ cn(q) =

Z

dxψ∗
n(x)ψ(q,x) =

Z

dx〈n|x〉〈q,x|ψ〉 = 〈q,n|ψ〉 : (3.93)

cioè 〈q,n|ψ〉 è il coefficiente di sviluppo della funzione d’onda del sistema totaleΣ in
termini di stati{ψn(x)} del sottosistemaS. La (3.90) si riscrive allora come

ρmn =
Z

dqcm(q)c∗n(q) (3.94)

Segue anche la relazione
ρ(x;x′) = ∑

n,m
ψn(x)ρnmψ∗

m(x
′
). (3.95)

La matrice densità è caratterizzata dalle seguenti proprietà generali:

Trρ = 1; (3.96)

ρ† = ρ; (Hermiticità) (3.97)

0 ≤ ρmm≤ 1; (3.98)

|ρmn|2 ≤ ρmmρnn. (3.99)

Le proprietà (3.96)-(3.98) sono ovvie. L’ultima proprietà si dimostra direttamente:

ρmmρnn−ρmnρnm

=

ZZ

dqdq′ [cm(q)c∗m(q)cn(q
′)c∗n(q

′)− cm(q)c∗n(q)cn(q
′)c∗m(q′) ]

=
1
2

ZZ

dqdq′ [cm(q)cn(q
′)−cn(q)cm(q′) ] [cm(q)cn(q

′)−cn(q)cm(q′) ]∗

≥ 0. (3.100)

Nel caso di uno stato puro, con la funzione d’onda

ψ(x) = ∑
n

cnψn(x), (3.101)

la matrice densità è semplicemente con elementi

ρnm = cnc∗m. (3.102)

Più generalmente, uno stato è puro se e solo se la relazione

ρ2 = ρ (3.103)

è soddisfatta dalla matrice densità.
Esercizio: Dimostrate (3.103) partendo dalla (3.95), e facendo uso della (3.88) e della

relazione di completezza. Si verifichi che la (3.102) soddisfa (3.103).

Come abbiamo accennato all’inizio, un’importante classe di applicazione della matrice
densità riguarda la fisica statistica. In fisica statistica, il grande numero di gradi di libertà ci
costringe ad un trattamento statistico (Boltzman). La matrice densitàρmn = wmn in questi
casi è chiamatamatrice statistica. SiaWi la probabilità (nel senso statistico) che uno dei
sistemi microscopici (per es. un atomo) si trovi nell’i-simo stato quantistico,

|ψ(i)(t)〉 = ∑
n

ai
n(t)|ψn〉, (3.104)
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dove{ψn} è una base ortonormale generica (e indipendente dal tempo), scelta una volta
per tutte. Sopponiamo inoltre che le probabilità statistiche peri-simo stato siano note.
Per esempio, se si tratta di un insieme canonico a temperatura T, e se gli stati|ψ(i)〉 sono
autostati dell’energia, allora

Wi = e−Ei/kT/N , ∑
i

Wi = 1, (3.105)

doveN è la funzione di partizione,N = ∑i e
−Ei/kT. Tuttavia, la discussione qui è generale

e valida per qualsiasi tipo di distribuzione statistica.
Il valor medio di un operatoref è dunque dato da:

〈 f 〉 = ∑
i

Wi 〈ψ(i)| f |ψ(i)〉

= ∑
i

∑
m,n

Wi a
(i)∗
m a(i)

n fmn

= ∑
m,n

ρnm fmn = Tr(ρ f), (3.106)

dove abbiamo introdotto la matrice densità (statistica)

ρnm = ∑
i

Wi a
(i)∗
m a(i)

n . (3.107)

Si osservi che, grazie alla positivitàWi ≥ 0 della probabilità classica, la matrice densità
definita qui soddisfa le stesse proprietà (3.96)-(3.99) considerate prima. In ambedue i casi,
l’apparizione della matrice densità riflette l’ignoranzada parte nostra, che è rappresentata
dalle variabiliq nei primi casi; e dalle probabilità statisticheWi nei secondi.

L’evoluzione temporale della matrice densità segue dal fatto che|ψ(i)(t)〉 obbedisce
all’equazione di Schrödinger

ih̄
∂
∂t
|ψ(i)(t)〉 = H|ψ(i)(t)〉. (3.108)

Poiché

a(i)
n (t) = 〈ψn|ψ(i)(t)〉, (3.109)

abbiamo

ih̄ȧ(i)
n (t) = 〈ψn|H|ψ(i)(t)〉 = ∑

k

a(i)
k Hnk. (3.110)

Analogamente

−ih̄ȧ(i)∗
m (t) = 〈ψ(i)(t)|H|ψm〉 = ∑

k

a(i)∗
k Hkm. (3.111)

Si ha dunque per la matrice densità (3.107):

ih̄
∂
∂t

ρnm = ∑
i

Wi ∑
k

(a(i)∗
m Hnka

(i)
k −a(i)∗

k Hkma(i)
n )

= ∑
k

(Hnkρkm−ρnkHkm) = [H,ρ]nm. (3.112)

Questa equazione sostituisce, per gli stati misti, l’equazione di Schrödinger o l’equazione
di Heisenberg (nello schema di Heisenberg). Formalmente l’eq.(3.112) assomiglia all’equ-
azione di Heisenberg; si noti tuttavia una curiosa (e ben nota) differenza di segno nelle due
equazioni.
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3.4.1 Polarizzazioni del fotone

Illustriamo ora l’uso della matrice densità, consideriamo lo stato di un fotone, tralasciando
tutte le altre proprietà (l’impulso, l’energia, ecc. ). Ilfatto empirico che ci sono due com-
ponenti di luce con determinati valori di lunghezza d’onda,può essere interpretato come
presenza didue stati quantistici|1〉 e |2〉 del fotone.|1〉 e |2〉 possono essere presi come
due stati di polarizzazioni lineari (e ortogonali); due stati di polarizzazione circolari, ecc.
Uno statopurogenerico sarà descritto dalla funzione d’onda,

|ψ〉 = c1|1〉+c2|2〉 ≡
(

c1

c2

)

, (3.113)

dove abbiamo introdotto una notazione vettoriale

|1〉 ≡
(

1
0

)

; |2〉 ≡
(

0
1

)

;

〈1| = (10); 〈2| = (01), (3.114)

e c2, c2 sono numeri comlessi sottoposti alla condizione di normalizzazione

|c1|2 + |c2|2 = 1. (3.115)

I due stati di base sono ortonarmali:

〈1|1〉 = 〈2|2〉 = 1; 〈1|2〉 = 〈2|1〉 = 0. (3.116)

Nella notazione (3.114) tale proprietà sono esplicite.
Il sistema di un fotone (dove la polarizzazione è l’unica variabile dinamica) è un esem-

pio di sistema a due livelli o a due stati, di cui la Natura è abbondantemente dotata. Altri
esempi sono il sistema di spin (il momento angolare intrinseco) di una particella nel caso di
spin 1/2 (e.g. elettrone; vedi il capitolo successivo); i due statifondamentali della moleco-
la di ammoniaca (NH3); gli stati fondamentali dello ione della molecola di idrogeno,H+

2 ,
ecc. Nonostante la loro semplicità, i sistemi a due stati illustrano molti aspetti caratteristici
della meccanica quantistica.

Per esempio, la misura della polarizzazione nello stato (3.113) risulterà il fotone po-
larizzato nella direzione 1 con probabilità|c1|2 e nella direzione 2 con probabilità|c2|2.
(Vedi il Cap. 2.1.) Tutti gli operatori del sistema (in particolare, l’Hamiltoniana) sono
semplicemente matrici hermitiane 2×2.

L’operatore che “misura la polarizzazione nella direzione1 e quella nella direzione 2,
agiscono secondo la regola:

P1|1〉 = |1〉; P1|2〉 = 0; P2|2〉 = |2〉; P2|1〉 = 0; (3.117)

in altre parole

P1 = |1〉〈1| =
(

1 0
0 0

)

; P2 = |2〉〈2| =
(

0 0
0 1

)

(3.118)

sonooperatori di proiezionesugli stati|1〉 e |2〉, rispettivamente. La matrice densità nel
caso di uno stato puro (3.113) è data da

ρ =

(

|c1|2 c1c∗2
c∗1c2 |c2|2

)

. (3.119)

Si ha uno stato misto se il fascio di fotone è parzialmente polarizzato, o non polarizzato.
Un fascio non polarizzato (totale ignoranza sullo stato di polarizzazione) è descritto dalla
matrice densità,

ρ =
1
2

(

1 0
0 1

)

, (3.120)
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di modo che la media della polarizzazione 1 o 2 è, rispettivamente,

< P1 >= Tr(P1 ρ) =
1
2

; < P2 >= Tr(P2 ρ) =
1
2
. (3.121)

Lo stato di polarizzazione parziale è generalmente rappresentato da

ρ =
1
2

(

1+ ξ3 ξ1− iξ2

ξ1 + iξ2 1− ξ3

)

=
1
2
(1+ σi ξi ) (3.122)

con
ξ2

1 + ξ2
2+ ξ2

3 ≤ 1, (3.123)

e

σ1 =

(

0 1
1 0

)

, σ2 =

(

0 −i
i 0

)

, σ1 =

(

1 0
0 −1

)

, (3.124)

sono le matrici di Pauli.ξ1,ξ2,ξ3 (reali) sono chiamati parametri di Stokes.È facile vedere
che

ρ2 = ρ, (3.125)

se
ξ2

1 + ξ2
2+ ξ2

3 = 1 : (3.126)

in questo caso il sistema è puro. 1− ξ2
1+ ξ2

2 + ξ2
3 è una misura della nostra ignoranza sullo

stato di polarizzazione.ξ3 descrive il grado di polarizzazione nelle direzioni 1 e 2, per es.

< P1 >= TrP1ρ =
1+ ξ3

2
=

{

1 seξ3 = 1,

0 seξ3 = −1
. (3.127)

Analogamenteξ1 descrive il grado di polarizzazione lineare nelle direzioni che fanno
angolo± π

4 con quelle di 1 e 2, come si vede costruendo l’operatore di proiezione,

P′
1 = |1′〉〈1′|, P′

2 = |2′〉〈2′|, |1′〉 =
|1〉+ |2〉√

2
, |2′〉 =

|1〉− |2〉√
2

, (3.128)

e calcolando< P1 >, etc. Infineξ2 dà la misura di polarizzazioni circolari, corrispondenti
agli autostati

|+〉 =
1√
2
(|1〉+ i|2〉); |−〉 =

1√
2
(|1〉− i|2〉). (3.129)

3.5 Funzioni di Green

Un concetto importante in meccanica quantistica è quello di ampiezza di probabilit̀a per
due successivi eventi, i.e., che una particella che si trovava al puntox = x0 all’istantet = t0
si trovi al puntox in un istante successivot. Data la nota evoluzione temporale della
funzione d’onda, tale ampiezza, chiamatafunzione di Green, è data formalmente da:

G(x,x0; t,t0) = 〈x|e−iH(t−t0)/h̄|x0〉. (3.130)

Si noti che la funzione di Green è intimamente collegata al concetto di funzione d’onda:
G è la funzione d’onda del sistema, che all’istantet = t0 era un autostato della posizione,
ψ(x,t0) = δ(x−x0). Infatti,

ih̄
∂
∂t

G(x,x0; t,t0) = ih̄
∂
∂t
〈x|e−iH(t−t0)/h̄|x0〉

= 〈x|He−iH(t−t0)/h̄ |x0〉 = HSch〈x|e−iH(t−t0)/h̄|x0〉
= HSchG(x,x0; t,t0) (3.131)
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(vedi l’Appendice sulla Meccanica Matriciale), eG(x,x0; t0,t0) = 〈x|x0〉.
La probabilità che la particella si trovi nell’intervallo(x,x+dx) all’istantet qualsiasi è

data da|G(x,x0; t,t0)|2dx.
Per semplicità di notazione, qui e in seguito ci limiteremoa scrivere le formule per

sistemi uni-dimensionali; la generalizzazione a sistemi di dimensione più grande o a sistemi
con più di una particella, è ovvia.

L’importanza della funzione di Green sta nel fatto che se la funzione di Green di un
sistema è nota una volta per tutte, la soluzione dell’equazione di Schrödinger con una
condizione al contorno arbitraria,

ψ(x,t)|t=t0 = ψ0(x,t0), (3.132)

è espressa con aiuto diG(x,x0; t,t0):

ψ(x,t) =

Z

dx′G(x,x′; t,t0)ψ0(x
′,t0). (3.133)

Cioè la conoscenza della funzione di Green equivale alla soluzione dell’equazione di Schrödin-
ger generale.
Esecizio:Si dimostri cheψ(x,t) soddisfa sia l’equazione di Schrödinger che la condizione
al contorno at = t0.

In questo proposito, vale la pena di menzionare che esiste unformalismo della meccani-
ca quantistica equivalente a quello standard basato sull’equazione di Schrödinger, chiamato
integrale sui cammini(Feynman), in cui la funzione di Green occupa il luogo centrale.

La (3.130) può essere riscritta in un’altra forma utile, inserendo due volte la relazione
di completezza

1 = ∑
n
|ψn〉〈ψn|, (3.134)

dove|ψn〉 è l’n-simo autostato dell’energia. Si ha allora,

G(x,x0; t,t0) = ∑
n

e−iEn(t−t0)/h̄ ψn(x)ψ∗
n(x0), (3.135)

dove è stata usata l’ortonormalità degli stati|ψn〉.
In casi semplici la funzione di Green può essere calcolata esplicitamente. Prendiamo

per esempio il caso di una particella unidimensionale libera. Dopo le sostituzioni:

En →
p2

2m
; ψn(x) →

1√
2πh̄

eipx/h̄; ∑
n
→

Z ∞

−∞
dp (3.136)

nella formula (3.135), si ha

G(x,x0; t,t0) =

Z ∞

−∞

dp
2πh̄

e−ip2(t−t0)/2mh̄eip(x−x0)/h̄

= eim(x−x0)
2/2h̄(t−t0)

Z ∞

−∞

dp
2πh̄

exp− i(t− t0)
2mh̄

[p− m(x−x0)

t − t0
]2

=
1

2πh̄

√

2mh̄
i(t − t0)

eim(x−x0)2/2h̄(t−t0)
(

Z

C
dξe−ξ2

)

, (3.137)

dove il contourC dell’integrazione suξ è lungo la linea retta(1+ i)α; α = −∞ → ∞.
L’integrale dà

√
π perciò si ottiene

G(x,x0; t,t0) =

√

m
2ih̄π(t − t0)

eim(x−x0)2/2h̄(t−t0) (3.138)

per una particella libera.
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Esercizio: Si calcoli, all’istantet > t0, la funzione d’onda di una particella libera, descritta
da un pacchetto d’onda

ψ0(x,t0) =
1√

2πa2
e−x2/4a2

, (3.139)

all’istante inizialet = t0.


