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Come abbiamo visto nei capitoli precedenti, i postulatipipali della meccanica quan-
tistica su

(i) come descrivere stati quantistici e come specificareartiqolare stato;
(i) come uno stato evolve nel tempo;

(iii) come descrivere le variabili dinamiche; trovare tugtossibili valori per ogni variabile
dinamica e ottenere le probabilita che la misura di una tj@g&isica in uno stato dia
un determinato risultato,

sono formulati in modo esatto e esauriente nell’approcciBathirodinger. Prima di pro-
cedere ai problemi fisici piu realistici in tre dimensioed elaborare le conseguenze delle
regole della nuova meccanica in tutta la sua ampiezzayiatta opportuno fermarci qui

a riflettere sulla struttura logica e matematica della teeresaminare con piu attenzione i
concetti principali trattati.

In meccanica quantistica esiste una grande liberta difiggio nel modo di descrivere
sia gli stati che le variabili; i risultati fisici sono indipdenti dal linguaggio (dettappre-
sentaziongusato. Tale liberta del linguaggio trova una certa analagche in meccanica
classica (trasformazioni canoniche); tuttavia I'impora e la portata delle sue conseguen-
ze in meccanica quantistica a nostro parere vanno moltolaldliquanto non accade in
meccanica classica .

Questa liberta della scelta delle rappresentazioni fsignche i concetti come stati,
operatori e evoluzioni temporali, vanno definiti in moda pjénerale e piu astratto. Le
descrizioni in diverse rappresentazioni sono collegatédiro da cosidetteasformazioni
unitarie. La teoria delle trasformazioni unitarie fornisce, oltrehiarimento concettuale,
un metodo talvolta molto efficace di soluzioni.

3.1 Rappresentazione delle coordinate e degli impulsi

La funzione d’ondap(x,t) rappresenta uno stato quantistico. Piu precisamenta,v@ss
considerata come una particolare rappresentazione ditatmcuantistico ¢)” come di-
stribuzione inx. Possiamo scrivere, infatti,

Wxt) = [ dX 30X K1) = [dXuOOwKY
= (X, (3.1)
dove abbiamo usato la notazione di Dirac,
[ g 6x(x) = (9x). (32)

Inoltre Yx(X') = 8(x — X) & l'autostato della posizione con autovalareln (3.1) la fun-
zione d’'onda & espressa come proiezione dello statostigli autostati della posizione.
Analogamente deve essere possibile proiettare lo stestsnsstgli autostati degli impulsi
(per esempio), e considerare la funzione d’'onda rrajtgresentazione degli impulsCio

e fatto ricordando che gli autostati degli impulsi sona dat

1

_ & ipX/R
Wp(X) = N e/, (3.3)
ie.,
W(p.0) = (W) = [ X Wpl)" W(X.) (3.4

In altre parole la traduzione dalla rappresentazione deledinate alla rappresentazione
degli impulsi equivale ad una trasformazione di Fourier.
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Per esempio, I'autostato della posizione con autovatgre, nella rappresentazione
degli impulsi,

(plxo) = \/ﬁe"px"/ g (3.5)
mentre I'autostato dell'impulso con autovalqig
1 .
(X po) = —\/ﬁépox/ n (3.6)
viene tradotto a
{plpo) = 3(p— po). (3.7

Infine, I'n-simo stato stazionario dell’'oscillatore armonia,”
(X|N) = Yn(X) = CuHn(ax)e 0¢/2 (3.8)

(vedi Cap. 2.1) e descritto, nella rappresentazione draglilsi, dalla funzione d’onda

W(p) = {pim) = [ ax(phoxim) = = (-1 Ho(p/ae P/ (3.9)

la trasformata di Fourier della funzione d’onda (3.8).
Nella rappresentazione degli impulsi 'impulso é rappreato da un operatore triviale
(numero)p’= p, mentre I'operatore della posizione diventa

R = +if—. (3.10)

Si noti la differenza del segno rispetto all’espressionéageeratore dell'impulso nella
rappresentazione usuale. Tale segno e necessario paitghéa relazione fondamentale

% P = if. (3.11)

Questa relazione & infatti valida in qualsiasi rappressone.

3.2 Brae Ket, Spazio di Hilbert dei vettori

La discussione precedente mette in chiara luce il fatto mtapée dal punto di vista concet-
tuale: lo stato quantistico e descritto dal raggio di véfichiamatoket),

|W). (3.12)

(Inoltre & conveniente introdurre una sorta di vettoreiwgato, (Y| chiamatobra. Questi
terminologie sono stati inventate da Dirac, dalla parotatket” in inglese.) La descrizio-
ne dello stato ¢” in termini di una funzione complessa (per esempio) nonexuha delle
possibili rappresentazioni Gli operatori, equazione del moto, ecc., vanno definiticnel
spazio dei tali vettori astratti. In seguito studieremarile proprieta generali di que-
sto spazio, lasciando lo studio delle relazioni tra le veajgpresentazioni ai sottocapitoli
successivi.

Le proprieta richieste allo spazi®& (dei vettori che rappresentano i possibili stati
guantistici di un determinato sistema) sono:

A. H & uno spazio vettoriale;

B. In A e definito il prodotto interno (scalaré)|@) tra due vettori, che € un numero
complesso.
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C. A & uno spazio completo (chiuso);

D. A € uno spazio separabile.

Uno spazio che soddisfano queste proprieta € chiasgoio di Hilbert (Il concetto
di spazio di Hilbert & stato introdotto da D. Hilbert1910) come una generalizzazione
dello spazio Euclidem dimensionaleR" (con elementixi, Xz, ...%n)) nel limite n — oo.
Molte delle proprieta degli spazi di Hilbert sono di consegza generalizzazioni naturali
di quelle in spazi Euclidei.)
A. # & uno spazio vettoriale (in seguito scriveremo spesso lsgenpentey, ¢, ecc. al
posto di|y), |@), ecc. :)

Y, pe H —cp+doe H, (3.13)
dovec,d sono numeri complessi (principio di sovrapposizione). ltregoarole, in# la
somma dei vettori e la moltiplicazione con numeri complessio definiti, con le seguenti
proprieta;

b+o = o+,
W+@+Xx = W+(9+X)
cP+9 = cP+co,
(cdy = c(dy)
oy = 0
1.9 = . (3.14)

Si noti in particolare che esiste un vettore nullo- ¢ = 0. | vettori Y1, Y2, ... Pk SONO
linearmente indipendensie

aPr+colr+...+ =0 (3.15)
implica
ci=C=...=¢c=0. (3.16)
B. Per ogni coppia di vettori it¥/, Y e @, & definito il loro prodotto scalar@|y) € C (un
numero complesso) tale che

(PeaPr+colz) = ca(@Wa) +c2(@d2);

(@) = Wl9
(Wgy > 0, (=0, seesolose |P)=0). (3.17)

Si noti che la prima e la seconda relazioni implicano che

(colw) = c*(@w). (3.18)

In letteratura si trovano a volte notazioni diverse da guefiata qui: per esemp{w, @) al

posto di{@|W).
Nella rappresentazione delle coordinate il prodotto sedla due vettonp e @ prende

la forma esplicita:
(o) = [ daw @w(a). (3.19)

L'ultima delle proprieta sopra ci permette di introduraeabrmadi un vettore,

W= V(W) (3.20)

Lintroduzione della norma - la grandezza di ogni vettora #i, implica che si puo
definire ladistanzatra due vettorip e ¢ in modo naturale:

[W—al=v{¥—-u—q). (3.21)
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H & dunque uno spazimetrica In tale spazio, si puo definire il concettolufite di una
successione{Wn} = Wi, Wz,... col criterio di Cauchy: se ogrd > 0 esiste un numero
interoN(¢) tale che pen,m> N(g) vale

[[Wn — || <, (3.22)

allora la successione converge.
Disuguaglianza triangolareOgni definizione di distanza deve essere tale che per tré punt
gualsiasi dello spazio (che posono essere sgaliie @) valga

W —al < [[Wll+ o, (3.23)

(dove I'eguaglianza e valida se e solocgg = co@, c1,c2 € C.)
La dimostrazione che I'(3.23) ¢ infatti soddisfatta, reodifficile. Si osservi prima

(W—aw—¢) = [ WI*+|¢]* — 2Re@). (3.24)
Ma per un numero complesso qualsiasi vale
—Re{@ly) <[(alw)], (3.25)

percio si avra la dimostrazione se si puo provare la seigudsuguaglianza (disuguaglianza
di Schwarz):

(oW < [lall[W]]- (3.26)
Per provare la (3.26), basta considerare un vettore,
P=0—1- ﬁﬂﬁ"i : (3.27)

La (3.26) segue dal fatto che la normagd positivo semidefinito.

C. # & completo nel senso che ogni successipng), ... che soddisfa il criterio di Cau-
chy converge in#: cioé limy_.. Y, = W € H. (Nota: I'insieme(0,1) non & completo. Per
esempio lim_«(1/n) =0¢ (0,1).)

D. A & separabile. Cioé esiste un sottoinsieme (base) nuiteealx %, denso dap-
perttutto in#. In altre parole ogni vettorsy € A & il limite di una successionfp} in
S (Linsieme di numeri razionali forma una base numerabitieasa dapperttutto nello
spazio dei numeri reali, percR & separabile.)

La conseguenza piu importante Ali— D. & I'esistenza di un sistema completo e or-
tonormale dei vettori in/{, {Un}. In altre parole, ogni vettore it pud essere scritto
come

N
Y= '\|||Ln°o rl;Cnll-’n = Z Cnln (3.28)
dove i coefficienti di sviluppa, sono dati da
Cn = (Un|W), (3.29)
cioe per ogni vettore & valida la relazione
W) =3 [Wn) (WnlW). (3.30)
n
Questa equivale a
> [Wn)(Wn| =1, (3.31)
n

la relazione di completezza, gia vista nel Cap.2.1.

Si noti che in uno spazio di Hilbert, il numero massimo diegtinearmente indipen-
denti (dettadimensionealello spazio) o & finito o & infinito. Nel primo caso, le priepaC.
e D. sono automaticamente soddisfatte e quindi triviali. Versa per gli spazi di Hilbert
di dimensione infinita, le richiesté. e D. sono fondamentali.
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3.2.1 Operatori autoaggiunti, variabili dinamiche e lo spéro

Gli operatori sono ora definiti anche essi nello spazio dbéfil astratto,
A:H — H. (3.32)
Se esiste un numero redldale che
IAW[| <Cll[l, Ve,

alloral|A|| & definito come il pit piccollo di tale costar@e (||A]| = Sug|AY||/||@];  Yy.)
Un operatore con norma finito & limitato. Se non esiste tagante finito, I'operatore &
illimitato. In meccanica quantistica abbiamo spesso a aledon operatori illimitati.

(i) Loperatore energia dell’oscillatore armonico,

2
PPl 50
H=_—4+_-mwx
2m 2 !
& illimitato perché esistono stafi, tali cheH @™ = E @™, ||wn|| = 1, con valori

di E, arbitrariamente grandi.

(i) Loperatorex & illimitato. Per esempio, gli stagp(") = W e /2" sono norma-
lizzati, ma

2
2N
X g
X ==,
e puo essere arbitrariamente grande.

(iii) In una dimensionap(x € H maxy & H.

—./ga_1
)= \/E Vxe+a?
La necessita di trattare operatori illimitati rende indiesabile porre una condizione
piu precisa su possibili operatori da associare a varidiniamiche nella teoria. Infatti un
teorema rilevante in questo contesto (Hellinger-Toepdifterma che un operatore definito
dappertutto i, con la proprieta

(Agly) = (gAY), (3.33)

€ neccessariamente limitato. Segue che per un operditmitailo, la definizione di “realta”
(che abbiamo chiamato senza molta attenzione “Hermitiamoiha sezione precedente)
richiede 'esame del dominio di ogni operatore.ddminiodi un operatoréd, D(A),
definito da

YeDA) CH, se Aye AH. (3.34)

Se per un vettordy € #, esiste un vettorg € # tale che

(Agp) = (¢@in), Vo D(A), (3.35)
allora per definizione
ATly) = |n). (3.36)
La relazione
(Aglw) = (@lAT|w). (3.37)

& valida per definizione. Lesistenza del vettoyedefinisce D(AT). LoperatoreA’ &
chiamato aggiunto (o coniugato Hermitiano) dell’'operatar Dalla definizione segue la
relazione,

(@ATIW) = (WIA@)" (3.38)
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Un operatore con la proprieta,
Alu=Ayp, YoeDA), DA c DA (3.39)
e dettooperatore Hermitiano, o simmetric&e vale anche
D(AT) = D(A) (3.40)
tale operatore autoaggiunto Per un operatore autoaggiunto, vale
(WIAIY) = (WAW)*, VY € DA), (3.41)

il suo valor medio in uno stato qualsiasi, e percid ogni suioealore, € reale.

Per postulato, ad ogni variabile dinamicae associato ad un operatore autoaggiunto.
Riportiamo qui due teoremi, senza dimostrazione, che valgeer ogni operatore au-

toaggiunto:

Teorema
SiaA un operatore autoaggiunto e

U(t) =€'A (3.42)
con unparametro conindoSegue allora che
(a) Set,ssonorealiJT(t)U(t)=1, U(t+s)=U(t)U(s);
(b) Perge #H qualsiasi e per— to valeU (t) @ — U (to) @;
u()

c) Pergpe DA ualsiasivaleﬁﬂiA .
U] q T Y

(d) Selim_po Umt‘“"“ esiste, allorap € D(A)

Teorema (Stone)
SeU(t) & un operatore unitario in H e fortemente continud ifi.e., soddisfano le
proprieta (a) e (b) sopra), allora esiste un operatoreaggfiontoA in H tale che

u(t) =€ (3.43)

In altre parole, gli operatori autoaggiunti sono opergperii quali valgono molte pro-
prieta note per una matrice Hermitiana. Il valor d’aspsttae di una classe di operatore
autoaggiunti del tipoA = B'B, & semipositivo definito:

(y|B"B|Y) >0, (3.44)

con l'uguaglianza valida se e soloBéap) = 0.

Lo spettrodi un operatore autoaggiuntoe I'insieme di suoi autovalori propri (autova-
lori discreti) e autovalori impropri (autovalori continjui primi corrispondono ai valorA
tale che

(A=Am)|Um) =0; |Um|l=1, m=0,1,2,...; (3.45)

per lo spettro continuo la condizione & sostituita dal sed¢gicriterio piu generale:
Criterio di Weyl :

il valore A fa parte dello spettro di un operatore A se e solo se esistesuneessione
n, tale che
im [|An — Al =0, [ =1 (3.46)
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Per esempio, nel caso di operatore dell'impulso, I'esiidatella successione

dP/figé/a® g _q9 (3.47)

Pn = Td/4nt/2

dimostra che tutti i valori reali fanno parte dello spettel'dperatorep = —ih(d/dx).
Analogamente, per I'operatore della posizione, si ha

1im [|(x — Xo) ]| =0, (3.48)
per la successione

b = (20t (3.49)
Esercizio: Si dimostri che la (3.46) & infatti soddisfatta dall'oper@ p = —ih(d/dx) con
la successione (3.47) e can= p. Si verifichi la (3.48). [

L'insieme di spettro discreto e spettro continuo forma usidme chiuso. Linsieme
risolvente di un operator& e per definizione 'insieme di € p(A) tale cheA—x1 ha un
operatore inverso limitato,

(A—x1)71, (3.50)

(chiamato operatore risolvente 4). Linsieme risolvente & ovviamente un aperto. |l
complemento dp(A), a(A), (i.e, I'insieme dix, x ¢ p(A)), forma lo spettro dell'operatore
A.

Infine il cosidetto teorema spettorale, riportato qui @anebso senza dimostrazione,
asserisce che per ogni operatore autoagginésiste un insieme di autovalori (propri e
impropri) {An,A} e relativi operatori di proiezione, (dove abbiamo assuh®lo spettro
continuo &Ag, ) )

A
2= [ AWM, B= . (351)

tale che
1 - /dfP()\)JrZLPn,
o - /Ad?(?\)+2)\ni’n,
W = [P+ Y mlw), VwenH (352)

(vedila (2.138)).

Queste proprieta garantiscono la consistenza del posilddla meccanica quantistica,
(?7?), (2.112). Infatti, dalle formule delle probabilith (ckemisura della quantit® da o
dei valori traA e A + dA, oppure uno degli autovalori discrekiy):

P(A)dA = [(AJW)[2dX; - Po = [{n|y)[?, (3.53)

si ha per la probabilita totale,

[P0+ Y o= WI{ [ AN+ T ) = W) =1 (35

3.3 Trasformazioni unitarie

Le quantita fisiche in meccanica quantistica sono in gé@associate a elementi di matrice
di vari operatori,

(QO[W). (3.55)
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SiaU un operatore dotato di un inverso 2, tale che
ulu=uu'=1; (3.56)

cioe
ut=u-t (3.57)

Tale operatore € chiamatperatore unitario Riscriviamo ora (4.382) inserendo due volte
I'operatore di identitd = UTU:

{@loly) = (puTUoU™U |y) = (@lOIP), (3.58)

dove

) = Ui @=Ule;

60 = uou™ (3.59)
Si noti che la norma dello stato rimane invariante:

(QID) = (WUTU ) = (Wlw). (3.60)

La trasformazione degli stati e degli operatori definita3l&g), (3.59) & chiamataasfor-
mazione unitaria

Poiché tutte le quantita fisiche trattate in meccanicatjstéca si riducono a qualche
combinazione di elementi di matrice del tipo (4.382), lari@e invariante per trasforma-
zioni unitarie arbitrarie.

In altre parole, gli stati e gli operatori in meccanica quéstica sono definitia meno di
trasformazioni unitarie.

3.3.1 Schema di Schisdinger e schema di Heisenberg

Un risultato significativo della meccanica classica (C&),% che I'evoluzione tempora-
le q(t), p(t) — q(t+dt), p(t+dt) & una successione tiasformazioni canonich@fini-
tesime. Esiste un risultato analogo in meccanica quasdistievoluzione temporale del
sistema in meccanica quantistica & una trasformazionariai

W(t) =e "M |y(0)). (3.61)
Si noti che la (3.61) & infatti la soluzione formale dellegione di Schrodinger
.0
ih= W) =H[W(t),  [Wt)—o=[(0)): (3.62)

Questa osservazione ci permette di studiare I'evoluziemgbrale del sistema in mec-
canica quantistica da un punto di vista nuovo. Infatti, cdesamo una particolare trasfor-
mazione unitaria dipendente dal tempo,

U(t) =éeHt/n: (3.63)
lo stato e I'operatore generi€dsi trasformano come:
Wn = UO)p() = "/ My(t) = [w(0); (3.64)
On(t) =U(t)ou(t)t = eHt/Nog HU/M, (3.65)
L'elemento di matrice & naturalmente invariante per tasformazione:

(WOIOW(L)) = (WHIOH () [WH), (3.66)
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ma ora I'evoluzione temporale non & piu descritto dalf@zjone di Schrodinger; essa ri-
siede invece nella dipendenza temporale non banale ditopietdaequazione del moto per
un operatore generido si ottiene dalla (3.65) ed é:

..dOy . 00y

ih- at =ih m + [On, H], (3.67)
dove il primo termine & presente se I'operatore dipendkoitspnente dal tempo. La (3.67)
€ nota comequazione di Heisenberg(cfr. I'eq.(1.36) di Sec.1.2.)

La descrizione dell’evoluzione temporale del sistema incaaica quantistica basata su
(3.64), (3.65), (3.67) & chiamasahema di Heisenbe(g rappresentazione di Heisenberg).
Nello schema di Heisenberg, lo stato non evolve col temppglatore varia col tempo.

Viceversa, nella descrizione usuale basata sull’equadoBchrodinger, chiamasghe-
ma di Schoédinger(o rappresentazione di Schrodinger), € la funzione didtalstato) che
evolve con il tempo. Ad un istanté#£ 0) i due schemi coincidono:

On(0)=0; |Wn)=|Y(0)). (3.68)

Un fatto importante & che il commutatore fondamentakempi ugualiha la stessa
forma a qualsiasi istante e indipendente dall’Hamiltoaian

[XiH (1), Pjn (1)] = iRG;;. (3.69)
La (3.69) segue dix;, pj] = ihd;;: infatti,
[k (1), i (1)] = [/ HUR gHt /A gribt/f) — gHRTy o 1eHUR R (3.70)

Si noti che il commutatore usuale nello schema di Schraatipyd essere visto un caso
particolare (pet = 0) di (3.70). Il fatto che il commutatore fondamentale prefalstessa
forma a qualsiasi istante del tempo, € essenziale per kistenza dell'intera costruzione
della meccanica quantistica: un istante particolare (pet e- 0) non pud avere nessun
significato speciale, vista I'uniformita del tempo.

Vice versa, i commutatori a tempi non uguagli,

[XiH (t)7 PjH (t/)]v [XiH (t)vxjH (t/)]a [piH (t)7 PjH (t/)]a (3-71)

contengono informazione dinamida., dipendono dal sistema.

Esercizio: Risolvere le equazioni di Heisenberg per una particelkréibn una dimensione.
Calcolare il commutatore a tempi non ugudgh (t),x+ (0)]. (Risposta:[x4 (t),x+(0)] =
—iht/m.)
Esercizio (Teorema):

Supponiamo che il sistema descritto dalla funzione d’apga) allistantet = 0 sia
autostato di un operatorfa con autovalorefp. La funzione d’onda all’'istanté € allora
autostato dell'operatore di Heisenbdg—t), con lo stesso autovaloffg.

3.3.2 Oscillatore armonico

. . . . . 2
Consideriamo un oscillatore armonico lineake= ZF’—m + #xz.

rappresentazione di Heisenberg &

L'Hamiltoniana nella

Hy =UH(x, p)UT=H(UxU",U pUT)zﬁJrTxa. (3.72)

L'equazione di Heisenberg &

MXq = PH;  PH = —MWP Xy, (3.73)
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di cui soluzione &
XH (t) = xn (0) coswt + ! (0) sinwt = x coswt + = sinwt; (3.74)
H(t) =XH mo PH = mmp ; .

PH (1) = pr (0) coswt — mwxy (0) sinwt = p coswt — mwx sinwt; (3.75)

Per esempio, supponiamo che all'istahte O il sistema sia descritto da un pacchetto
d’onday e che siano notiyo| p?|Wo) = p3 e (Wo|x?|Wo) = X3. Per calcolaréy(t)|p?|w(t))
nello schema di Schrodinger, € necessario risolveraiiempne di Schrodinger, e poi cal-
colare il valor medio dp? in g(t). Questo problema si risolve faciimente nello schema di
Heisenberg:

(WO IPPW(t)) = (Wol U (t) pP>U~H(t) [Wo) = (Wolpw (t)?|Wo). (3.76)
Ma
pr (1)2 = p? cog wt + mP w? X2 sirf wt — mw (X p+ pX) coswt sinwt, (3.77)
dove abbiamo utilizzato il risultato (3.75); inoltre si hothe

(Wo| X p+ pX|Wo) =0, (3.78)

(il primo membro deve reale essendo il valor medio di un dpeeaHermitiano, ma é
puramente immaginario). Segue percio

(W) p?|W(t)) = p3 cog wt + mP w?x3 sir? wt. (3.79)

Analogamente, si trova che

(W) |Y(L)) :x%co§u)t+mz—lm2 p3 sir? wt. (3.80)

3.4 Stati misti e matrice densia

La descrizione in termini di una funzione d’onda € una desmre completa del sistema
in meccanica quantistica. Ci sono delle situazioni, digftarte, nelle quali tale descrizio-
ne completa o non e possibile o non & richiesta. Tale sidnazorge, per esempio, nella
descrizione di un sottosistema di un sistema piu grandmdw accesso solo ad una parte
delle variabili dinamiche, non & possibile descriverottgsistema con una funzione d’on-
da. Un’altro importante esempio dei casi in cui dovremmoaaldlonare la descrizione in
termini di funzioni d’'onda, riguarda i sistemi di molti griadl liberta (sistemi macroscopi-
ci, solidi, gas, ecc.). In questi casi &€ ovviamente imgnksavere la completa conoscenza
della funzione d’onda di (tipicamente) ¥0molecole: si dovra lavorare con quantita me-
diate in vari modi. Un analoga situazione statistica & gméss nei fasci di particelle (per
es., fotoni) parzialmente polarizzati, o non polarizzhtitutti i casi elencati sopra, quello
che caratterizza questi sistemi e la mancanza dell'im@zione completa.

Consideriamo per concretezza il caso di primo tipo: un giatehiusoX e un suo
sottosistema$S. Sianox le variabili in S cui abbiamo accesso; q il resto delle variabili in
>/Sche non osserviamo. Anche se il sistema totale & descattond funzione d’'onda
W(q,x), non & vero in generale la fattorizzazione

W(g,x) # Ws(X)Ws/s(q) : (3.81)

il sottosistemés non ha funzione d’onda in generale. Come calcolare alloraldre d'a-
spettazione di un operatofg che dipende solo dalle variabili del sottosistema? Secondo
la regola standard,

<f> Z/dquqJ*(an)fxllJ(an)v (382)
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dove 'operatore agisce solo sulla dipendenza dalla funzione d’onda. Definiamo ora
p(xxX) = [ daw(a. 0w’ (6X), (3:83)

chiamatamatrice densd. Il valor medio & dato allora da:
(1) = [ dx{Bp(xX) b (3.84)

La necessita di tenepee X' distinte nella definizione dd(x;x') € evidente: nella (3.84f)
deve agire prima sulla dipendenzaxidella matrice densita; va messa= X' solo dopo
tale operazione.

La matrice densita & Hermitiana (considerar@o’' come indici di una matrice):

p(xX)" = p(X;X). (3.85)

Inoltre essa obbedisce ad una proprieta importante
Trp= /dxp(x;x) =1 (3.86)

Quest'ultimi segue dalla condizione di normalizzazionkedieinzione d’onday(q, x).

Gli stati descritti da una matrice densita sono chiastati mistj quelli descritti da una
funzione d’onda sono chiamatiati puri.

Il concetto di stato misto € piu generale di quello di stfaiwo, descritto da funzioni
d’'onda. Infatti, & vero che ogni stato puro pud essereidersto uno stato misto di parti-
colare tipo, ma non vice versa. Per uno stato puro, la mateasita & data semplicemente
da (considerand8 = %),

POSX) = W)U (X). (3.87)

La matrice densita nel caso puro ha una proprieta speciale
pP(x,X) = /d%’p(x; X")p(X";X) = p(x;X). (3.88)

Per varie applicazioni & piu conveniente usare una baseriga|n) anziché la bask)
adoperata finora. Riscriviamo (3.82) come

(H = Wlflw)
= [dadd sy wia.n anlfldm) (o, my)

[ day s wla.mnl fim (o, miv), (3.89)

m

dove abbiamo usato la relazione di completezza, noncleitd the I'operatore non
agisce sug per cui(g, n|f|g’,m) = (n|f|m)d(q— o). Definendo ora la matrice densita

prn= [ data.m)(wla,m), (3.90)

e I'elemento di matrice
fnm = <n| f |m>7 (3-91)

il valore d’aspettazione si esprime semplicemente:

(fy =Tr(pf). (3.92)
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La quantita(g, n|y) che appare nell'eq.(3.89) ha un significato semplice: da

w(gx) = Z Cn(A)Pn(X)

—onl@) = [ x0wax = [ dxin(axw) = @ny): (3.9

cioé (g,n|w) e il coefficiente di sviluppo della funzione d’onda del sis@ totaleX in
termini di stati{ Yn(x)} del sottosistem&. La (3.90) si riscrive allora come

prn= [ dan(a)c3(a) (3.94)

Segue anche la relazione
Z Wn(X) PnmWm (X ) (3.95)

La matrice densita € caratterizzata dalle seguenti @Epgenerali:

Trp = 1 (3.96)
pl = p; (Hermiticita) (3.97)
0 < pmm<1; (3.98)
|pmn|2 < PmmPnn. (3.99)

Le proprieta (3.96)-(3.98) sono ovvie. L'ultima propéieti dimostra direttamente:

PmmPnn — PmnPnm

::/de% @) () S5(d) ~ Gl (@) en(d ()]
= 3 / dqdd [cm(a) &a(d) — (@) cm(df) ] [Cm() Cn(d) — Cn(a) () ]*
> 0. (3.100)

Nel caso di uno stato puro, con la funzione d’onda

= 3 Caln(¥). (3.101)

la matrice densita & semplicemente con elementi
Pnm = CnCpy. (3.102)
Piu generalmente, uno stato € puro se e solo se la relazione
p?=p (3.103)

e soddisfatta dalla matrice densita.
Esercizio: Dimostrate (3.103) partendo dalla (3.95), e facendo uda (&I88) e della
relazione di completezza. Si verifichi che la (3.102) sddd(i3.103).

Come abbiamo accennato all'inizio, un’importante clagseglicazione della matrice
densita riguarda la fisica statistica. In fisica statisticggrande numero di gradi di liberta ci
costringe ad un trattamento statistico (Boltzman). La im@ensitépmn = Wmnn in questi
casi e chiamatanatrice statistica SiaW la probabilita (nel senso statistico) che uno dei
sistemi microscopici (per es. un atomo) si trovi rieffimo stato quantistico,

() =Y an(t)|wn), (3.104)
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dove{Wn} € una base ortonormale generica (e indipendente dal tersgelja una volta
per tutte. Sopponiamo inoltre che le probabilita statisi peri-simo stato siano note.
Per esempio, se si tratta di un insieme canonico a temparBie se gli statig()) sono
autostati dell’energia, allora

W=e S T/a Sw=1, (3.105)

dove\ & la funzione di partizione\| = 3 e E/KT Tuttavia, la discussione qui & generale
e valida per qualsiasi tipo di distribuzione statistica.
Il valor medio di un operatoré & dunque dato da:

(1) = TWwO )

= 3 Y Wal"a fmn

T mn

= Y Pamfon=Tr(pf), (3.106)
mn

dove abbiamo introdotto la matrice densita (statistica)

pom= Y Wamal. (3.107)
I

Si osservi che, grazie alla positivitei > 0 della probabilita classica, la matrice densita
definita qui soddisfa le stesse proprieta (3.96)-(3.98sxterate prima. In ambedue i casi,
I'apparizione della matrice densita riflette I'ignorardaparte nostra, che & rappresentata
dalle variabilig nei primi casi; e dalle probabilita statisticii¢ nei secondi.

L'evoluzione temporale della matrice densita segue dab fehe | (t)) obbedisce
all'equazione di Schrodinger

2 10 (1) = HIwO 1) (3.108)
Poiché .
al (t) = (Walw¥ (1)), (3.109)
abbiamo . .
iRah (t) = (nHIWO (1)) = Za&”an. (3.110)
Analogamente
—iRal)" (t) = (WO ) |H ) = Za&”*Hkm. (3.111)

Si ha dunque per la matrice densita (3.107):

g = W (o il o Horl)

Z(anpkm_ PnkHkm) = [H, Plnm. (3.112)

Questa equazione sostituisce, per gli stati misti, I'egqureezdi Schrodinger o I'equazione
di Heisenberg (nello schema di Heisenberg). Formalmeatg(B.112) assomiglia all'equ-
azione di Heisenberg; si noti tuttavia una curiosa (e bea)rbfferenza di segno nelle due
equazioni.
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3.4.1 Polarizzazioni del fotone

lllustriamo ora I'uso della matrice densita, considerdimstato di un fotone, tralasciando
tutte le altre proprieta (I'impulso, I'energia, ecc. ).fdltto empirico che ci sono due com-
ponenti di luce con determinati valori di lunghezza d'ongla) essere interpretato come
presenza ddue stati quantisticjl) e |2) del fotone.|1) e |2) possono essere presi come
due stati di polarizzazioni lineari (e ortogonali); duetistth polarizzazione circolari, ecc.
Uno statgpuro generico sara descritto dalla funzione d’onda,

W) =c1|1) +c2)2) = <g) (3.113)

dove abbiamo introdotto una notazione vettoriale

w=(o) 2= ()

(1 = (10); (2/=(01), (3.114)

e C2, C2 Sono numeri comlessi sottoposti alla condizione di normaaliione
1+l = 1. (3.115)
| due stati di base sono ortonarmali:
(1) =(2[2) =1; (1)2) =(2]1) =0. (3.116)

Nella notazione (3.114) tale proprieta sono esplicite.

Il sistema di un fotone (dove la polarizzazione & I'unicaafaile dinamica) & un esem-
pio di sistema a due livelli o a due statli cui la Natura & abbondantemente dotata. Altri
esempi sono il sistema di spin (il momento angolare intdopdi una particella nel caso di
spin 1/2 (e.g. elettrone; vedi il capitolo successivo); i due dtaidamentali della moleco-
la di ammoniacaNH?); gli stati fondamentali dello ione della molecola di ideop,H,
ecc. Nonostante la loro semplicitd, i sistemi a due stastitano molti aspetti caratteristici
della meccanica quantistica.

Per esempio, la misura della polarizzazione nello statbl@.risultera il fotone po-
larizzato nella direzione 1 con probabilité |? e nella direzione 2 con probabilité|?.
(Vedi il Cap. 2.1.) Tutti gli operatori del sistema (in padiare, I'Hamiltoniana) sono
semplicemente matrici hermitiane<22.

L'operatore che “misura la polarizzazione nella direzidre quella nella direzione 2,
agiscono secondo la regola:

PL =[1); Pif2)=0;  Pif2)=[2); P[1)=0; (3.117)
in altre parole
PL=1) (1= <é g) D R=12)(2|= <8 2) (3.118)

sonooperatori di proiezionesugli stati|1) e |2), rispettivamente. La matrice densita nel
caso di uno stato puro (3.113) & data da

_(leaf? e
p(c,ic2 o) (3.119)

Si ha uno stato misto se il fascio di fotone & parzialmentarizzato, o non polarizzato.
Un fascio non polarizzato (totale ignoranza sullo statoalapzzazione) € descritto dalla

matrice densita,
1/1 0
p= > <O 1> , (3.120)
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di modo che la media della polarizzazione 1 o 2 €, rispettamte,

<PL>=Tr(Pip) = <Py>=Tr(Pp) = % (3.121)

1.
>
Lo stato di polarizzazione parziale & generalmente ragmtato da

}(1+Es §1—18&2

1
Si4if 1- 53) 5(1+0i&) (3.122)

con
Eg+8+88<1, (3.123)

01<2 é) 0'2(? Bi), 01<é _01), (3.124)

sono le matrici di Pauli€ 1, €5, &3 (reali) sono chiamati parametri di Stokésfacile vedere
che
p?=p, (3.125)

se
2482485 =1: (3.126)

in questo caso il sistema & puro.—£§+ E% + E% € una misura della nostra ignoranza sullo
stato di polarizzazion€,s descrive il grado di polarizzazione nelle direzioni 1 e 2, ¢®

<P >=TrPip= (3.127)

1+& |1 se&=1,
2 |0 sefz=-—

Analogamente; descrive il grado di polarizzazione lineare nelle direziome fanno
angolo+ 7 con quelle di 1 e 2, come si vede costruendo I'operatore dépiane,

1) +12) 2) = 112

v2 V2
e calcolanda< Py >, etc. Infine€, da la misura di polarizzazioni circolari, corrispondenti
agli autostati

P =101, P=[2)(2], [1)= (3.128)

Ly o) =

+) = 7 (|1>—'|2> (3.129)

%\

3.5 Funzioni di Green

Un concetto importante in meccanica quantistica & quellantpiezza di probabili per
due successivi eventi, i.e., che una particella che siw@ahpuntax = Xg all’'istantet =t

si trovi al puntox in un istante successivio Data la nota evoluzione temporale della
funzione d’onda, tale ampiezza, chiamftazione di Greeré data formalmente da:

G(x, Xo;t, to) = (x|e H{E=10)/Njyqp). (3.130)

Si noti che la funzione di Green & intimamente collegataoalketto di funzione d’'onda:
G e la funzione d'onda del sistema, che all'istahte ty era un autostato della posizione,
W(X,tg) = 8(X— Xp). Infatti,

6

a <x|e iH (t—to) /ﬁ|xo>

— <X|He iH(t—tp) /H|X0> HSCh<X|e iH (t—tp) /H|XO>

= HschG(X,Xo;t,t0) (3.131)

0
ih=G(x xoit,to) =
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(vedi I'Appendice sulla Meccanica Matriciale) X, xo; to,to) = (X|Xo)-

La probabilita che la particella si trovi nell'interval{®, x + dx) all'istantet qualsiasi &
data ddG(x, Xo;t,to) [2dx.

Per semplicita di notazione, qui e in seguito ci limiteremscrivere le formule per
sistemi uni-dimensionali; la generalizzazione a sisteardirdensione piu grande o a sistemi
con piu di una particella, € ovvia.

Limportanza della funzione di Green sta nel fatto che seutezione di Green di un
sistema €& nota una volta per tutte, la soluzione dell'eipumazdi Schrodinger con una
condizione al contorno arbitraria,

WX, 1) =, = Wo (X to), (3.132)

€ espressa con aiuto @(x, Xo; t,to):
P(x,t) = /d)(G(x,x’;t,to) Wo(X,to). (3.133)

Cioé la conoscenza della funzione di Green equivale allzgme dell'equazione di Schrodin-
ger generale.
Esecizio: Si dimostri chay(x,t) soddisfa sia I'equazione di Schrodinger che la condizione
al contorno a = to.

In questo proposito, vale la pena di menzionare che esidtanmalismo della meccani-
ca quantistica equivalente a quello standard basatoguddone di Schrodinger, chiamato
integrale sui cammin{Feynman), in cui la funzione di Green occupa il luogo cdatra

La (3.130) puo essere riscritta in un’altra forma utilesérendo due volte la relazione
di completezza

1= ZI%M%I, (3.134)
n
dove|Wn) € I'n-simo autostato dell’energia. Si ha allora,

G(x,Xo;t,to) = 3 & =0t My (x) Yy (x0), (3.135)

dove & stata usata I'ortonormalita degli steui).
In casi semplici la funzione di Green pud essere calcolgpéictamente. Prendiamo
per esempio il caso di una particella unidimensionale &ibBropo le sostituzioni:

p? x/h.
B LlJn(X)—>\/2_e'p /dp (3.136)

nella formula (3.135), si ha

G0t to) = ;Tf’ﬁ 1D (tto) /2D (x-0)

— %lﬁ (tzmljo) gm(x—x0)2/2M(t—to) (/ dse 22) (3.137)
dove il contourC dell'integrazione sig e lungo la linea rettd1+i)a; a = —co — oco.
Lintegrale da,/Ttpercio si ottiene

G(x,Xo;L,Tp) = | | ot M0)%/ 2t o) (3.138)

2iAT(t — to)

per una particella libera.
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Esercizio: Si calcoli, all'istante > tg, la funzione d’onda di una particella libera, descritta
da un pacchetto d’'onda

1
LIJO(X, to) == \/ﬁeixz/‘laz, (3139)

all'istante inizialet = to.



