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4.1 Momento Angolare

Nei problemi tridimensionali una variabile dinamica img@otte € il momento angolare.
In meccanica quantistica il momento angolare risulta ¢gaato in maniera universale
(i.e.,indipendente dal sistema considerato), in conseguenkaldgebra degli operatori di
momento angolare e della positivita della norma degli.stat

4.1.1 Introduzione

L'equazione di Schrddinger per una particella che si mupwn potenziale a simmetria

centrale e:
2

HY = (2 TPV ()W) = E(0). @)

In coordinate sferichel\= [0?)

10 ,0 10, . .0 1 02
M= 2 )t 2lshe s S * sivead| ¥
2m
= —E(E—V(r))w. (4.2)
Separando le variabili
Y =R(r)®(8,9), (4.3)
si ha
d 2dy, 2m.2 -
[ar(*gr) + @ (E-VIIRM) _ [20(6,9) _x “.4)
R(r) (8,9)
dove I'operatoré 2 & definito da
02 _ 19 el L 9
L (0,0 = [sine ae(smeae)JrSinzGa(pz]qb(e,(p). (4.5)

L2 risulta I'operatore del momento angolare quadrétos p)? (vedi Sottocapitolo 4.1.5),
A € il suo autovalore. L'equazione

1d,,d, 2m A
——(r“—)+—=(E-V(r))— =|R(r)=0 4.6
[rz dl’( dl’)+ ﬁz( ( )) rz] ( ) ( )
e chiamataquazione di Sckdinger radiale
In meccanica classica I'isotropia dello spazio implica ohean sistema chiuso il mo-

mento angolare totale

L= Z(ra X Pa) (4.7)

a

e conservato. Lo stesso vale per il momento angolare di anticella che si muove in
un potenziale a simmetria centrale. Troveremo in seguigoitimeccanica quantistica un
analogo risultato e valido.

4.1.2 Definizione e regole di commutazione

L'operatore di momento angolare in meccanica quantispies (ina singola particella)
data da

L=Ffxp=—ihrx0O. (4.8)
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In componenti,

L T
LX:Llfyplizg’iilﬁ(yaz Zay)'
0 0.
Ly:LZ:zgfpo:—lﬁ(Za—X*Xa—z),
L;=Ls=xpy — ——ih_(xi— i) (4.9)
z=L3=Xpy -y = dy yax' .

Dovuto al fatto che le componenti delle coordinate e degbiifai non coniugati commuta-
no (per esly, p;] = 0), non ci sono problemi di ambiguita nel definire il momeangolare
guantistico a partire da quello classico.

Se il sistema contiene piu di una particella il momento dsrgaotale e definito da

Lot = Z(ra X Pa) (4.10)

a

dove la somma si riferisce alle particelle presenti.
E conveniente introdurre il tensore antisimmetrico

1, se(ijk) = (123) o permutazioni pari
gk = ¢ —1, se(ijk) = (213 o permutazioni pari (4.12)
0 altrimenti

&jk € totalmente antisimmetrico per scambi di due degli indiooltre & invariante per
permutazioni cicliche
Eijk = Ejki = Ekij- (4.12)

La componentésima del momento angolare & allora
Li = &ijk Xj P, (4.13)

dove la somma sugli indici ripetuti & implicita.
Facendo uso dei commutatori

X, xj] = [pi,pj] =0;
x.pj] = ihgj, =123 (4.14)

e facile trovare i commutatori tra le componenti del moroeartgolare,

[[Lulo] =ifls; (Lo Lg]=iAly;  [Ls,Ls] =ifly,] (4.15)

o in forma pit compatta,
[Li,Lj] :iﬁsijk Lk. (4.16)

Le stesse regole di commutazione valgono per le componeltipleratore di momen-

to angolare totale
Liot = Z(ra X Pa) (4.17)
a

nei sistemi con piu di una particella.

Dall’'Hermiticita degli operatork;, pi, segue che le componenti del momento angolare
sono operatori Hermitiani.

Calcoliamo ora i commutatori trig e x; (e tral; e pj) usando sempre i commutatori
fondamentali, (4.14). Il risultato &

[Li,xj] = i gij X (4.18)
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[Li, pj] =i ﬁsijk Pk- (4.19)
Consideriamo ora il modulo quadrato del momento angolare,
L2=124+12+L32 (4.20)

E facile verificare che 'operatote? commuta con ciascun componehte

L2, L]=0, i=1,23 (4.21)
Per esempio,
L2l = [L3 L+ (5 L]
= | ﬁ(*L2L3 —Lslo+Lslo+ L2L3) =0. (4.22)

Di conseguenza, i due operatdr?, e (e.g.)Ls possono prendere valori definiti simulta-
neamentel, L», hnon commutando col, e di conseguenza non possono assumere valori
definiti in generale, nella base in duf e L3 sono diagonalt.

4.1.3 Momento angolare come genetratore di rotazioni

Il fatto che le formule (4.16), (4.18), e (4.19) hanno la stestruttura non & accidenta-
le: essa indica che il momento angolare, la posizione e lisgpsono tutti vettori e si
trasformano nello stesso modo per rotazioni degli assi diidinate.

Ricordiamo (vedi 2.1) che I'operatore dell'impulpe= —ihl & il generatore dirasla-
zione un operator®(r,p) si trasforma

e O(r,p)e T2 = O(f +1o,p). (4.23)

Sulla funzione d’'onda I'operatore di traslazione agisamen

iprg

e Y(r)=uy(r+ro), (4.24)

come si ottiene facilmente dalla formula di Taylor.
Analogamente le componenti del momento angolare genecdapioni. Si consideri
un’operazione

Uy=eu(r) (4.25)
perw infinitesime. Si ha infatti
iL-o L-w d
e-My(r) ~ (I+i==)u(r) = (1+m”kxja)w
~ Yr+wxr). (4.26)

ComeéPTo/f operatoreU = €L/M genera una trasformazione unitaria: un generico
operatoreO si trasforma come

o—uou’. (4.27)
In particolare, pe© =r, si ha
r—f = eiL.(.orefiL-u):r+%[Li7r]+___
= r+wWxr+... (4.28)

1C’e un’eccezione. In uno stato di momento angolare totall ntutte le componenti hanno il valore nullo.
Vedi dopo.
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dove abbiamo usato i commutatori (4.18). La (4.28) indica lehtrasformazione unitaria
conU = e'7" infatti rappresenta una rotazione tridimensionale desgi di coordinate,
nella direzione del vettore di angolo|w).

| commutatori tra le componenti del momento angolareono combinazioni lineari di
esse stessij sono dette di formaran’algebra Ogni algebra & caratterizzato da insieme
di costanti, detti costanti di struttura. Nel caso di algetiel momento angolare - algebra
del gruppo di rotazioni tridimensiongfiQ(3) - le costanti di struttura sorsp.
Unita del momento angolare: Il momento angolare ha la stessa dimensione di azione
[L]=[r x p] = [A], ed & misurato in unita di. Tn seguito, indicheremo cdn I'operatore
adimensionalé /h, liberandoci dell’onnipresentedalle relazioni di commutazione, etc.

Risulta conveniente introdurre i due operatarieL
Li=Li+ily, L_=Li—ily, (4.29)
e riscrivere I'algebra del momento angolare (4.16) come
[LyL-]=2L3 [LsLi]=Ly; [LsL-]=-L-; (4.30)
il qguadrato del momento angolare si esprime in termiridi
L2=L,L 4+L%—Ls=L L, +L3+Ls. (4.31)

(Esercizio: si verifichile (4.31).)
Nel caso di una particella in tre dimensione I'operatoreni@inento angolare quadrato
L2 coincide con I'operatorg? di (4.5), come esplicitamente verificato nel Capitolo (7.4)

4.1.4 Autovalori del momento angolare

E un fatto empirico che in Natura molte particelle elemérfeettrone, protone, neutrone,
ecc.) possiedono una sorta di momento angolare intrinsb@matcspin A questo grado
di liberta associamo un operatore appropri&a;he, per postulato, obbedisce alle stesse
regole di commutazione di quelle soddisfatte dal momengmkame orbitald =r x p. E
di comune uso indicare I'operatore di momento angolareg@meon letterel;, riservando
L; per i momenti angolari di tipo orbitali & per gli spin. | risultati fondamentali che
troveremo in questa sezione infatti sono validi sia per inmeato angolare orbitale, sia per
lo spin, sia per una somma generica di momenti angolari @rde/nature fra loro.

Come conseguenza delle regole di commutazione

[Ji,Jj] =gk, (4.32)

e della positivita della norma, gli autovalori del momeatmolare risultano quantizzati, in
maniera universale.

Consideriamo I'operatore del momento angolhdéun determinato sistema. La regola
di commutazione riscritta con gli operatdii = J; +1J> €,

[, 0-]=23s; [, d4] =345 [Jg,d-]=—J. (4.33)

Inoltre
[32,3]=0, i=1,23 (4.34)

percid possiamo prendere una base inJéue diJs; sono diagonali.
Siano|m) gli autostati normalizzati di; con I'autovalorem:

Jz|m) = mjm). (4.35)
Usando la (4.33) si ha
J3di|m) = (J4-Jz+ 34 ) [m) = (M+1)J,.[m) : (4.36)
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i.e., lo statal, |m), se non & un vettore nullo, & anche esso un autostdtpatin autovalore
m+ 1. Analogamente
Jed_|m) = (m—1)J_|m) : (4.37)

J_|m) € un autostato dlz con l'autovaloren— 1, tranne quandd_|m) = 0. Gli operatori
J; e J_ fungono, rispettivamente, da operatori di “innalzamenth ®bbassamento” del
valore dim. Possiamo scrivere

Ji|m) = costim=+ 1), (4.38)

J2 |m) = cost|m=+2), (4.39)

etc. Inoltre, poich&.. commutano con l'operator,
J2(32|m)) = 323%m) = T (I m)); (4.40)
dove abbiamo indicato con I'autovalore del momento angolare quadrato
2m) = T|m). (4.41)

In altre parole, gli statd?|m), n=10,1,2,... (se sono non nulli) formano una torre di
autostati diJ2, con lo stesso autovalore, ma con autovatarehe differiscono di un’unita
tra losro.

La relazione tral ( I'autovalore del momento angolare quadratpe i possibili auto-
valorimdi Js, viene determinata dalla seguente considerazione. Ce#iaione

(PP-3) >0, (4.42)
(esercizia dimostratela), segue la disuguaglianza
T>m>-T. (4.43)

Segue dunque che per un dato valord@ dleve esistere il valore massimordj che indi-
cheremo corj. Sia|j) l'autostato corrispondentee., un autostato di® con l'autovalore
ancora ignotd e con autovalore dlz, j = max{m}.

Classicamente tale valore coincide con il valore assoletartbmento angolare e in
gueso caso il vettore del momento angolare ¢ diretto luiagsdz.

Per definizione|j) & lo stato con il valore massimo &, percio la costante in (4.38)
deve essere tale che

Ji]j) =0. (4.44)

Altrimenti J; | j) sarebbe uno stato con un valoreJgdipiu grande,j + 1, contrariamente
all'ipotesi fatta. Segue che (vedi (4.31))

Pj) = (@3 + B+ J)|)) = i(i + 1)) (4.45)
Cioe
T= j(j +1) : (4.46)

I'autovalore dell'operator@?® & uguale g (j + 1).
A partire dallo statdj) possiamo costruire una torre di stati applicando ripetetam
I'operatorel_
pOdlj—ny; n=012,..., (4.47)

con l'autovalore
LI-1i-2,j-3,..., (4.48)

di Jz, tutti autostati diJ? con lo stesso autovalog¢j + 1).
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Ora, dalla (4.42) segue I'esistenza dd@himofra gli autovalori diJ; anche. Dunque
esiste un numero interotale che

J|j—n)=0. (4.49)
In questo stato, troviamo, in virtt della prima equazioakad(4.31),
Plj=n) =2 +E-J)li-m=((-n?-(-n)li-n. (450
Ma lo stato|j — n) appartiene allo stesso autovalgf¢+ 1) di stato|j) percio
(G=m?=(-m=j(j+1), — n=2j (4.51)

Troviamo cosi un risultato fondamentale: visto cheeun numero intero non negativo,
segue chg prende soltanto valori o interi e semiinteri

1 3
-1 =
727 ’27

Gli autovalori del momento angolare sono quantizzati, peddentemente dal dettaglio
dinamico.

Ricapitolando, concludiamo che per un dato autovajéjer 1) dell’'operatorel? ci
sono un 3 + 1 -pletto di stati

|jaj>7 |J7] _1>7 |JaJ _2>a |J7_J+1>a |ja_j>a (453)

j=0 2, ... (4.52)

autovalori diJs,
jvj_laj_27"'a_j7 (454)

rispettivamente. Anche se gli autovalori dell’operatdteprendono il valorej(j + 1) in
questo gruppo di stati, & di comune uso parlare di multipigtstatidi momento angolare
j-
| valori possibili per il numero quanticp
1 3
-1 =
) 27 3 27

corrispondono a autovalori del momento angolare quadrato,

j=0 2, ..., (4.55)

3 15

Z o ==
) 4) ? 4
Inoltre, risulta (vedi il prossimo sottocapitolo) che pendmenti angolari di tipo orbitale,
j, indicato corlL o con/ in questi casi, puo prendere soltanto valori interi. (\@ojpo).

j(j+1)=0 /B, ... (4.56)

In Natura queste predizioni della meccanica quantistioa serificate senza eccezioni.
Empiricamente le particelle elementari hanno lo spin o s#sni o interi (e.g., I'elettrone,
il protone, il neutrone, hanne= 1/2; il pione ha lo spin zero, il bosone W spén= 1,
ecc.). Nessun valore frazionario di spin & stato mai osgerv

Una delle prime esperienze che hanno mostrato questo adgare fenomeno e dovuta
a Stern e Gerlach (1922). Nella loro esperienza, un so#ideid di atomi d’argento & fatto
attraversare una zona con un forte campo magnetico norrom@fa@on

9B,
5, *0. (4.57)

dove l'assez & perpendicolare alla direzione del moto dell’atomo, engienciso su uno
scherma fotografico. Un atomo che ha lo spin non nullo ha un embonmagnetico non
nullo e percio riceve una forza verticale, proporziondlle @omponente dello spin. Clas-
sicamente si aspetta, per un fascio incidente non polaoizehe si osservi sullo scherma
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una banda di punti scuri uniformemente distribuiti in egsarispondenti a direzioni ar-
bitrarie dello spin; sperimentalmente furono osservagl gaso diAg) solo due strisce
strette (due linee) separate verticalmente, confermandaantizzazione dl, in maniera

drammatica (I'atomo dig nello stato fondamentale ha spifi2).

Nota sulla quantizzazione del momento angolare in meccaraauantistica
Supponiamo che esista un sistema con il momento angplaemipositivo definito
generico, né intero né semiintero. $jaj) lo stato in cuids prende il valore massimg;

Jli, i) =ili i) 150 =05 2i,0) =i+ Dli. i)- (4.58)
ApplicandoJ_ ripetutamente si ottiene una torre di stati
(J*)n|Jaj>D|17]7n>7 n:172737 (459)

Per un valore generico di ci saranno un numero infinito di tali stati. Non e difficile
dimostrare che:

(i) tutti gli stati (4.59) sono autostati df con l'autovalorej(j + 1);

(i) lo stato (4.59) ha la norma positiva per= j — ntale che

—j—1l<m<j; (4.60)
(i) per mtale che
—j—2<m<—j—-1 (2j+1<n<2j+2), (4.61)
si ha
(J013)"@-)", j) <0 (4.62)

lo stato(J-)"|], j) ha la norma negativa.
Il valore di j generico dunque implica la presenza di stati con la normativeg e
quindi non & accettabile.

4.1.5 Momento angolare orbitale; funzioni armoniche sferche

Tutte le precedenti discussioni formali, basate solamsuite regole di commutazioni, si
applicano anche ai momenti angolari di tipo orbitdle=f x p. Tuttavia, dovuto alla
richiesta che la funzione d’'onda sia ben definita come furezidi variabili angolari, il
numero quanticd (j ) prende in questo caso solo valori interi, € non semi-interi

Nelle coordinate sferiché, 6, @),

/2 2
r=vx+y2+2 eztanfleﬂ; ¢:tan*13—(/, (4.63)

le componenti dell’'operatole = x p diventano:

d 0 0
L= (xa/fyax) = 4%, (4.64)
0 d 0 0 d

Ly (x+|y)az ( +|®) = (ae +icotd (p) (4.65)
L =L (i——i)=¢e® (—i+|cotea) (4.66)

Allora 5

2_ 2 e (2 9 (gingdy, L 97
L =L,L_+Ll3—-L3= [si eae(smeae) nzeacpz]’ (4.67)
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come é stato anticipato in Sec. 4.1.1
Risolviamo ora I'equazioni agli autovalori (che & la paatggolare dell'equazione di
Schrddinger nel caso di un potenziale a simmetria centrale

L20(8,) = —[ﬁ%(sine%) + SA—% %]GJ(G,(p) —(({+1)D(6,9).  (4.68)
PoichélLz = —i gp commuta coriL2, conviene prima risolvere 'equazione
Lat(®) = i 50(®) = mb(o) (4.69)
La soluzione & owvia: o .
@) = Pm(@) = \/?[el ; (4.70)

che obbedisce alla condizione di normalizzazione

2n
/0 Pt (©)" Prn(P) = Sy (4.71)
Ma la funzione d’'onda deve essere ben definita per ogni vdiapgercio
m=0, +1, £2,.... (4.72)

Siccomem (chiamato ilnumero quantico azimutglguod prendere solorg+ 1 possibili
valori
—,—0+1...,+¢, (4.73)

vuol dire che anché puo prendere soltanto valori interi,

(=01,23,.... (4.74)
Sostituiamo ora
D(B,9) = Pm(9)Orm(0) (4.75)
in (4.68). Si ha
L9 0080, m(8) — 0 m(8) + £+ 1)Om(6) =0, (4.76)
sind do de &m silkg om emE) =5 '

o in termini della nuova variabile= cosd,

d 5 d v
—(1-X)=—0Om— ——=Om+L({+1)0yn=0. 4.77
dX( )dX ¢,m 1_x2 t,m~+ (£+1) ¢,m ( )
Questa equazione & ben nota. Le soluzioni che sono finitermdnome nell'intervallo
—1<x<1 per{ > |m| sono note com@olinomi associati di Legendres indicate con
P(x).
Per i polinomi di Legendre e per i polinomi associati di Ledjen vedi Appendice.
La soluzione di (4.77) normalizzata con

T 1
/ de sine|e[lm(e)|2:/ dx|@pml? = 1, (4.78)
0 ’ 1 ’
e data dax = cosb))
_ |
Opm— (it [ LPEEDE= Ml oy s g (4.79)

2(0+m)!



122CAPITOLO 4. TEORIA DEL MOMENTO ANGOLARE E SISTEMI TRIDIMENEDNALI

O —jm = (=) "¢ jm- (4.80)

La soluzione dell’equazione di Schrodinger angolare, commeri quantici/,m e
dunque (vedi (4.75))

RLE DMt oy gimo (4.81)

®(8,9) = Y m(6,¢) = (—)™HM/2jt ¢ e m)

Le funzioniY; m(8, @) sono chiamatéunzioni armoniche sferiche rappresentano le auto-
funzioni simultanee degli operatdr? (con I'autovalore/(¢ + 1)) e L3 (con l'autovalore
m). Y m(6, @) sono normalizzate come

T 21
/O d0'sind /0 APy 1t (6,0)" Yeun(8,®) = By S (4.82)

(2¢+ 1) funzioni d’'ondaY; m(8, @) per un datd corrispondono agli staj?, m) discussi nel
precedente sottocapitolo, o piu precisamente,

<ea(p|€7 m> :Y€,m(ea(p)' (483)
Infine, alcune funzioni armoniche sferiche pit sempligico

1
Var

Yio = i\/;?;T cosh, Yl,ﬂﬂ\/g sinoe™'®,
Yoo = \/E(l3co§6),
’ 16m
Yoir1 = i\/gcosesineeii‘p,
15 5
Y212 = —\/%Slnzeei @ (4.84)

ecc. Alcune proprieta importanti §i m(8, @) sono:

Yoo =

Ym(Tt— 8,0+ 10) = (—) Yo m(8, @), (4.85)

(=)™ = Yem. (4.86)

4.1.6 Elementi di matrice di J.

Abbiamo visto che i risultati come
Ji|m) = costim=+1), (4.87)

iy =ji+1)li), (4.88)

seguono dalla regola di commutazioneldiSi vuole ora determinare le costanti in queste
relazioni. Consideriamo il valore d’aspettazione di

=30 +3-%) (4.89)
nello stato| j,m). Si ha

(5, M3 j,m) = (5, m[ded[j,m) + (j,mI5j,m) — (j,m|Js|j,m), (4.90)
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dove abbiamo utilizzato la relazione di completezza

Z |j',r’d)<j',r’d|:l7 (4.92)
ifm

e il fatto che gli operatord. non cambiaj. Dall'ultima relazione, tenendo conto dei
risultati (4.87), segue che soltanto un termine contritriisella somma suon';
(Gomidyljm=1)(,m—1J_[j,m) = j(j+ 1) -+ m=(j+m)(j—m+1). (4.93)
Ora, poichél, = J" i due elementi di matrice nel primo membro sono collegati,
(. [j,m=1) = (j,m—1[3_[j,m)". (4.94)

Percio
[(j,m=1203_[j,m)]® = (j+m)(j —m+1). (4.95)

Con un’opportuna scelta della fase, si ha allora

(Gum=13_[j,m) = (j,mI[j,m—1) = /(j+ m)(j —m+1), (4.96)

e ovviamente tutti gli altri elementi di matrice di,J_ sono nulli.
Gli elementi di matrice di; e J; seguono dai risultati pek. tramite le relazioni:

h=04+3)/2, o= —d)/2. (4.97)

Si trovano cosi i seguenti elementi non nulli:

G- tulim = 2 VTEmG o meD)

e afulim = 2w DG m, (4.98)
e

(m-1glim = 5/ mD,

. . i - -
(dm+1%lm = —SV/(i+m+1)(j—m). (4.99)
Insieme a noti elementi di matrice non nulli &#i
(J,mJa]j,m) =m, (4.100)

guesti determinano tutti gli elementi di matirice di varievatori composti dj;.
Ritornando alle (4.87), abbiamo percio trovato che

J-[j,m)
J+|j7m>

Vi—m)(j+m+1)j,m+1). (4.101)

Sinoti chel; |j,j) =0eJ_|j,—j) = O infatti.

La scelta della fase fatta sopra (che gli elementi di matticd. siano reali e non
negativi), fa parte della cosidettanvenzione di Condon e Shortleylle fase di stati di
momento angolare. Vedi dopo.

Esempio 1.Rappresentazione matriciale per il caso di spi@ (j = %.)
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In questo caso, la componewdjeavra solo autovalori possibifii = i%. L'insieme degli

elementi di matrice di;, i = 1,2,3 pu0 essere rappresentato da tre matriciz2
1
<1/25rr{|‘]l|1/25 m> = E(O-l)n'(,m;
1
(1/2,m|[1/2,m) = E(Gz)m,m;
1
(1/2,m|35|1/2,m) = 5(03)m m, (4.102)

con

01= (2 é), Oy = ((I) Oi), 03 = (é 01). (4.103)

Queste matrici sono chiamatsatrici di Pauli. In tale notazione, le matrici di Pauli agisco-

no sullo spazio dspinori,
C1\ 1 0
(Cz) =C (O) +C (1) , (4.104)

<é) =11/2,1/2)=1), (2) =11/2,-1/2) =), (4.105)

dove gli spinori di base

rappresentano stati dpin upe dispin down
Si noti che i tre matrici di Pauli (piu precisamen%rexi ) obbediscono alla stessa algebra
del momento angolare, (4.16),
0j Oj Ok
[ 2’2 2°
In altre parole, le tre matricappresentandialgebra del grupp&Q(3). Le matrici di Pauli
hanno seguenti proprieta importanti,

] = iEijk (4.106)

of=1 (i=xY,2; 0i0j=—0j0i=i&§Kk0k (i#]). (4.107)

Esempio 2.Momento angolare orbitale cdn= 1.

Yi0=(6,¢/1,0) = i\/%cose. (4.108)
Yii1=(0,01,+1) = ;i\/g singe™®, (4.109)
D’altra parte
L= éq’(a% +i cotegp ) (4.110)
percio
L Yio= i\/gn sinoe. (4.111)

Per esempio, I'elemento di matriceldj tra gli stati|1,0) e|1,1) risulta

(L1L4|1,0) = / d0 sinBdgY;; L, Y10

,/3,/3 "desingsir?e [ do V2 4.112
= n 8_1'[/0 smsln/0 o=V2. (4.112)

Questo ¢ in accordo con il risultato generale (4.96). (Mliot che la convenzione di
fase delle funzioni armoniche sferiche adottata da noinpatibile con la convenzione di
Condon-Shortley.)



4.1. MOMENTO ANGOLARE 125

4.1.7 Composizione dei momenti angolari

Consideriamo ora sistemi con piu di un momento angolaresi ftrebbero essere due
momenti di tipo orbitale, due spin (due particelle con sgipjpure il momento angolare
orbitale e lo spin della stessa particella, etc. Sivuolesaquali sono i valori del momento
angolari totali, e quale la relazione tra gli stati del mento angolare totale e gli stati di
momenti angolari componenti.

La legge di addizione di due momenti angoldiige J, segue dall'algebra dei momenti
angolari.

I momento angolare totale & definito da

J=hR1+1xJ=J1+J2 (4.113)

dove
[Jli,sz] =0. (4.114)

Grazie a questa seconda relazione, il momento angolate smddisfa la regola di com-
mutazione standard,
(3, ;] = igijk k. (4.115)

Una domanda a cui si vuole rispondere €:
Dati due numeri quantidi; e j» dei momenti angolar; e J,, quali sono i possibili valori
del numero quanticp del momento angolare totale? (A)
Ci sono due basi naturali degli stati di momento angolare:
(i) una base in cui gli operato.ﬂﬁ, Jiz, J%, e Jp; sono diagonali, con autostati indicati con

[j1,Ma, j2,Mp) = [j1,Mn) @ |j2,Mp = |j1,ma)|j2,Mp), (4.116)

e con proprieta
3lj1, M, j2,Mp) = ja(j1+1)lj2, M, j2,ma); (4.117)
Joz| j1,M, j2,Mp) = Mp|j1,my, j2,Mp), ecc (4.118)

Alternativamente si puo prendere
(i) una base in cud?, J;, J2, e 33, sono diagonali, con autostati

i1, j2:3,M) (4.119)

con proprieta
i1, J2:9.M) = I3+ 1) ja. J2: 3. M), (4.120)
Jlj1, j2:3,M) = Mlj1, j2; 3, M), (4.121)

ecc.
Chiameremo queste come la prima e la seconda base rispadtit, in seguito.
Esercizio: Verificate che i due gruppi di operatori sopra formano amkeidtatti
osservabili massimali.
La seconda domanda, strettamente legata alla domanda ¢&pdue questa:
Qual'e la relazione tra gli statj1,my, j2,mp) e gli stati|ji, j2;J,M)?
Partiamo con lo stato in cuiy, mp prendono tutti i due i valori massimi possibili, cioe
lo stato “piu alto
i, J1sJ2, J2) = [J1, i) li2, J2), (4.122)

della prima base. Visto chd = m; + my, (J; ovviamente commuta sia cdf, che conly;)
lo stato (4.122) corrisponde allo stato ddmmassimo. Poiché& > M questo vorra dire che
lo stato (4.122) corrisponde anche all'autovaldraassimo possibile. Ora

Pl itz z) = (B+I3+231-32)|i1, 1, j2, J2)
= (J12+J22+\]1+\]27 +\]17J2+ + 2J12J22)|j17 jla j2) J2>
= (j1+i2)(j1+i2+Dlj1, i1, 2, J2)- (4.123)
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Lo stato (4.122) & quindi infatti un autostatodi e il numero quantico corrispondente &
ji+ j2, cioe
Jmax= J1+ J2. (4.124)

Allo stesso tempo abbiamo dimostrato I'equivalenza
lj1, )1, J2,J2) = |1, J2s ja + j2, Ja+ j2), (4.125)

i.e.,I'equivalenzatra lo stato “piu alto” della prima base e tate conJmax © Mmax= Jmax

della seconda base.

(Per essere preciso, la fase relativa tra i due membri d&li2%) € arbitrariamente stata

messa uguale a 1. Questa scelta fa parte della “convenzi@undon-Shortley”.)
Applichiamo ora l'operatord_ = J;— + Jo_ sullo stato (4.125). Da una parte troviamo

che

It joria+iz i1+ i2) =v21+ i2)liv j2; j1+ 2, ji+j2— 1), (4.126)

dove abbiamo usato (4.101); d’altra parte usando la stessaufa perJ;— e perJy_, si
ottiene

(J1- 4+ )it i, 2, 02) = vV 2i1li1, J1— L2, J2) + V2)2li1, j1. j2, j2— 1), (4.127)

Percio si & trovata la seconda relazione,

o T o [ e
) ! + ) + 71: . . ) 717 ) + . . ) ) ) 71
lit, j2 i1tz ji+j2—1) Jl+]2|ll j1 j2,2) Jl+]2|ll 12, j2—1)

(4.128)
Si noti che l'applicazione dd_ non puo cambiare il numero quantido= j1 + j2 (e
analogament&,_ non modifica I'autovalore di3.

Si osservi che due stati linearmente indipendenti delimatase coM = j;1+ jo— 1
appaiono nelle eq.(4.126), (4.127), e (4.128). Nella seadvase questi devono avere
J=j1+ j2uno, el = j1+ jo— 1 laltro. Il primo corrisponde alla combinazione lineare
trovata sopra, (4.128). L'altro stato, cdn= j1 + j» — 1 deve essere ortogonale a quello
stato, quindi a parte la fase (che va determinata con unitpp@convenzione) deve essere
uguale a

) J2; + _15 + -1 :ela f . ’ _15 ) - . f s 11y 12, -1
li1,j2;ji+J2—Lji+j2—1) (4 JleJZ|Jl j1=1j2,j2) = JlJrJZ|11 i1,J2,j2—1))

(4.129)

dovea ¢ la fase indeterminata per il momento.
Procedendo in maniera analoga, e applicafhde- J;— + Jo— su due stati (4.128) e
(4.129), si ottengono due stati

lin2s i+ i+ i2—2), it iz ii+i2—1,j1+j2—2), (4.130)

conM = j1+ jo—2, in termini di tre stati nella prima base. Il terzo stato &bg- j1 + j2 —
2, per esclusione, deve essere lo statnj2; j1+ j2— 2, j1+ j2 — 2): esso e determinato (a
parte la fase) dalla condizione di ortogonalita con gliigt130). E cosi di seguito.
Continuando in questo modo, aifsima volta che si applicd- = J;_ + Jo_ si ottera
n+ 1 stati, di cui uno corrisponde ad un nuovo multipletto doa j; + jo —n. Si noti
che ad ogni passaggio il numero di stati linearmente indlpati ad un fisso valore dil
aumenta di uno. Questo accade finché Min{2j1,2j2}. Quandon = 2j;, per esempio
(supponendg; < j2), un ulteriore applicazione di_ annulla lo statdji,—j1, j2, j2) per-
cio il numero di stati linearmente indipendenti déin= j» — j1 — 1 & uguale al numero di
tali stati conM = jo — ji1.
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Troviamo cosi che il valore minimo possibile (supponede j2) diJ e jo — ji. Per
genericij; e j2 si ha
J=l1+i2 jaitie—1 jit+ij2—2,...,[ja— 2| (4.131)

Come verifica contiamo il numero totale degli stati lineanteeindipendenti, aventi i
numeri quanticij; e j2. Nella prima base esso & dato da

(2j1+1)(2j2+1), (4.132)

che & semplicemente il prodotto dei numeri delle companientdue multipletti.
Nella seconda base (supponendc< j2), esso € calcolato, sapendo (4.131), con la
formula

jo+i1 1 . ] ] ] ] ] ] ] ]
(2+1) = 2-5[(Jz+11)(12+11+1)—(12—11—1)(12—11)]+211+1
J=J2—]1

= (2j1+1)(2j2+12), (4.133)

che dimostra la consistenza del risultato (4.131) trovapoa

Esempio j; = jo = 1. Ci sono in questo caso 9 stati linearmente indipendehs, c
corrispondono a 5 stati coh= 2, a 3 stati cod = 1, e uno stato cod = 0.

Esempio Il caso conj; = jo = % e di particolare importanza‘é di uso comune indicare
gli stati di singolo spin come

(5) =212, (3)=n2-12 (4.134)
(spin “up e spin “down); i quattro stati della prima base sono

(0),06), (6, ), G, (), 0.0), @

Gli operatori sono

1 1
Sot =51+, S1= 501 $2= 502, (4.136)

dove le matricioy, 02 sono matrici di Pauli, (4.103). Per esempio,
1 . 0 1
s = 3onrion = (3 3) . (4.137)
Applichiamo sugli stati (4.135) I'operatore

3 3
Sy = ST %= 5+51:%- 5191 + 2515 (4.138)

{0,000,  ww

e analogamente ps<r2) (2) . In altre parole questi due stati sono autostati dello spin
1 2

Troviamo

totale, comsior = 1.
D’altra parte,

(000000,  wo
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(0.0-0.0-06,  wo

Questi due stati non sono autostatifj. E facile trovare tuttavia gli autostati &f,: essi
sono le combinazioni “spin paralleli e “spin antiparalleli

G000 e
o0 Q0 e

Infatti essi soddisfano

|par)

ol par) = 2| par); (4.144)
Forlanti) =0, (4.145)

dimostrando che il primo corrispondesg; = 1, il secondo &, = 0. Ricapitolando, il
tripletto di stati

0, 0,000 (.0, e

di spin 1 e un singoletto
(o), (2).- (), (e).2 47

di spin O costituiscono la seconda base di stati.
Nella notazione piu pittoresca utilizzata spesso, gti giaripletto sono

DD +IDID
I, 7 s DD, (4.148)
mentre il singoletto & la combinazione antisimmetrica
IS
7 . (4.149)

4.1.8 Coefficienti di Clebsch-Gordan

Rispondiama ora alla seconda domanda che si era postaz#dl'oel sottocapitolo pre-
cedente. Ciascun stato della prima base pud essere sttupptermini di quelli della
seconda base:

|j15mlv jz,m2> = % |jla 121J5M><Jla j2;J7M|j17ml; j27m2>5 (4150)

dove nella somma sM attualmente un solo termine (c&h = m; + nyp) € non nullo. La
(4.150) puo essere vista come relazione di completezdasdaty di momento angolare. |
coefficienti di sviluppo,

(J1,02;3,M[j1,my, j2,mp) = (I, M|j1,my, j2,mp) (4.151)

sono chiamattoefficienti di Clebsch-Gordan.
Vice versa, ogni autostato df, J,, pud essere espresso come una combinazione lineare
di stati dell’altra base:

1,021 0. M) = 5 [j1, M, j2,m2) (J1, My, j2, Mg j1, 2,0, M). (4.152)
My, My
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| coefficienti di sviluppo in questo caso sono semplicementgugati complessi di quelli
nella (4.150):

<jlamlv j27m2|jla 121J7M> = <j15 jZ;J,M”l,mL jzarnz>*' (4153)

Anche questi sono chiamati coefficienti di Clebsch-Gordan.

| coefficienti che abbiamo trovato nelle (4.125), (4.12844 4 29), sono infatti esempi
di coefficienti di Clebsch-Gordan. Come abbiamo gia notatmefficienti di Clebsch-
Gordan dipendono dalla convenzione di fase di stati di mamangolare. La convenzio-
ne frequentemente usata (che adotteremo anche noi) si @b@mienzione di Condon e
Shortleye consiste nell'imporre le seguenti tre condizioni:

1. | massimi stati delle due basi sono identificati con il foefnte 1, (4.125): questa
convenzione fissa la fase relativa globale tra la prima edars#a base;

2. Tutti gli elementi di matrice degli operatotl;_, J,_, J_ sono reali e semipositivi
definiti: questa condizione fissa le fasi relativi tra glitsteello stesso multipletto;

3. Gli elementi di matrice,
(i1, ]2:I,M|d1z|j1, j2; I £ L, M) (4.154)

sono reali e semipositivi definiti.

Non e difficile dimostrare che queste tre condizioni fissanivocamentdutte le fasi
relativi tra gli stati, in modo esauriente e consistentedi\eer es., il libro di Edmonds,
“Angular Momentum in Quantum Mechanics”.

| coefficienti di Clebsch-Gordan per i primi valori g, j> sono dati nella tabella se-
guente. In programma Mathematica, il commando input penete il coefficiente di C-G,
(j1,j2;3,M]|j1,m, j2,mp) = (I, M|j1,my, j2,Mp) € semplicemente

ClebschGordan [{j1, mi}, {j2, m2},{J, M}]

4.1.9 Spin

Ritorniamo ora alla proprieta di trasformazione dellazione d’'onda per rotazioni degli
assi delle coordinate. Per una particella senza spin, @doa d’onda si trasforma, per
una rotazione attorno alla direzione di un vettaresecondo la regola (vedi (4.26)):

r—r'=r—wxr+...; (4.155)

W) =) = w(r’+wxr’)
= () =e°tyr). (4.156)

In altre parole, peS= 0, il valore della funzione d’'onda sullo stesso punto fisicm n
cambia, ma dovuto al cambiamento delle coordinate, “la éofanzionale rispetto alle
nuove coordinate € modificata.

Questo significa che la funzione d’onda forma una rapprag@nie del gruppo di ro-
tazione,SQ(3). Ora dal punto di vista della teoria dei gruppi € importesdeere quali
sono le rappresentazioinfiducibili, cioé oggetti che si trasformano tra di loro. Come &
chiaro intuitivamente, poiché una rotazione tridimensie non pud cambiare la grandezza
del momento angolare, le rappresentazioni irriducibitrispondono esattamente raiul-
tipletti di stati di momento angolare definito (autostati del momemtgolare quadrato).
Nel caso di una particella senza spin, allora, essi sononiche sferiché’, m(6, @),
m=/¢,£—1,...—£. Una funzione d’'onda generica puo essere sviluppata ineditali
armoniche,

Y(r) = /Z Rem(r)Ye.m(8, @) (4.157)
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Allora il cambiamento della forma funzionale della funzéodionda (4.156) significa

LIJ _ lJJ/ _ eico-I:LIJ )
/Z Rem(N€“M Yo m(0, ). (4.158)

Ma poiché gli operatoii non possono cambiare il valoredsi avra

9Ly, (6, ) = z Dm(m )Y (4.159)

dove la matrice o
Dpy () = (£, [¢,m), (4.160)
e chiamatanatrice di rotazione
La funzione d’'onda di particella con spsha X+ 1 componenti; essa si trasforma
secondo la legge

p— Sy, (4.161)
Pa(r)
W(r) = wz:(r> . (4.162)
llJ25+.1(f)

L'operatorel agisce sulla dipendenza dai ciascun componente, mentre lo spiagisce
sullo spazio di spinore,
V=3 (eiw'é) Wy (4.163)
o 0,0/
| suoi elementi di matrice sono esattamente determinde ¢4l98), (4.99), (4.100) (leggi
i — 5, 2 — 5, 3 — 5,,). Le componenti del momento angolare totale

J=L+s (4.164)

obediscono alla regola standard del momento angolare.
Nota 1
Se I'HamiltonianeH & indipendente dallo spin, il sistema pu0 avere la fureionda
fattorizzata:
Wo(r) = W(r)Xo- (4.165)
Per esempio, questo ¢ il caso per I'Hamiltoniana dell'aainidrogeno nell'approssimaz-
ione non relativistica

R? &
H=——02_-=. 4.166
2m r ( )
Le prime correzioni relativistiche ad essa sono date daiiter
4
p 2 e 5
AH= "4+~ |. —0 . 4.167
ame ~amer St o () (4.167)
Si osservi che I'Hamiltoniana totaté + AH & invariante per rotazioni. Infatti
[J,H+AH] =0, (4.168)

doveJd =L +s. (Esercizio Dimostratela.)
Nota 2

Nel caso di spin 12 I'operatore di spin & rappresentato da tre matrici di Pgu 20.
Un’identita molto utile &

€39 — cosla) +| -0 sinjal, (4.169)

dovea € un vettore costanteP(oblema: Dimostrate la (4.169) usando le proprieta delle
matrici di Pauli, (4.107) ).
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4.1.10 Matrici di rotazione: spin 3

La funzione d’onda di spin (pey= %) si trasforma, per una rotazione di angglattorno
alla direzionen, come

i
X — exp(50(n-0)) Y =U (@) y. (4.170)
Con l'uso dell'identita (4.169) la matrice di rotazionedpessere calcolato esplicitamente:
U(gn) = COS(—2p+ in- osing. (4.171)

Per esempio, per una rotazione attorno all’'asse

d¥2 0o
Uz(g) = < 0 ei(p/2> ; (4.172)
mentre per rotazioni attorno agli assey
cos? isind
Ux((p) = < . 2 2) ;

isind cos?

cos? sin?
U = 2 2. 4.173
y(@) <—sin‘—2p cos%) ( )

Si osservi che per una rotazioni di angofg 2
Ux(2m) = —-1; Uy(2m) =-1; U,(2m) =—-1: (4.174)

la funzione d’onda di una particella con spif2lcambia segno! In questo senso (dal punto
di vista della teorie dei gruppi ) questi sono le rappresaata di particolare tipo (detta
“proiettiva o “spinoriale) del gruppo di rotazioBiQ(3); spinorisono proprio i nomi dati a
questi oggetti. Vettorisi trasformano esattamente come percioJ (2m) = 1 per essi.
(Esercizio: Si verifichi che le matricUy(¢@),Uy(9),U,(®) sono infatti unitarie.)

La matrice di rotazione per una generica rotazione e dicsefpressa in termini di tre
angoli di Eulerog, B ey.

Dl/ZEU(O(,B,y) = Uz(y)Uy(B)Uz(a)

i(04Y)/2 co5P —i(0-y)/2gin P
_ <e' cos; € sm2>' (4.175)

_ei(O(*Y)/zsinF_z3 e*i(O‘JFV)/Zcos%

Nota

Le proprieta di trasformazione (matrici di rotazione) particelle di spinS= 3, n=
1,2,3,... generico possono essere trovate nel seguente modo. Rmendispinori (cia-
scuno cons = 1/2) e costruiamo i loro prodottiotalmente simmetrigber scambi din
spinori. Ci sono esattamentet 1 tali combinazioni, analoghe al tripletto di stati (4.146)
nel caso particolara = 2. E ovvio che le rotazioni non possono cambiare le proprieta d
simmetrie, dunque questi+ 1 oggetti si trasformano tra di loro per rotazioni (i.e.,r&au
rappresentazione irriducibile). Dal numero quantico agate dello “stato piu alto,

(é) . (é) - (é) . (4.176)

(S =n/2) si apprende che questo- 1 -pletto di stati corrispondono ad uno sf@e- n/2.
Percio la matrice di rotazione p& generico € semplicemente il prodotto tensoriale di
n = 2Smatrici (4.175), simmetrizzati per scambirdindici.

Da quanto sopra segue che le funzioni d’onda di spin intepafi) qualsiasi ritornano
a se stesso dopo una rotazione di angatprientre le funzionei d’'onda di particelle con
spin semiinteri cambiano segno.
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4.1.11 Teorema di Wigner-Eckart

Consideriamo uno stato descritto dalla funzione d’oggér): una funzione d’onda di-
pendente solo dal modulo= |r| della posizione. Ovviamente tale stato € invariante per
rotazioni,i.e.,& uno stato df = 0. Ora, gli stati

Wi(r) = costriWo(r) (4.177)

ottenuti con I'azione di un operatore vettorialegs(r) hanno invece = 1, essendo pro-
porzionali aY1 m(6, ). Il valore di¢, quindi le corrispondenti proprieta per rotazioni, natu-
ralmente non dipendono dal dettaglio dell’'operatore (éod#ato), la stessa conclusione &
valida per

lJJ;(r) = costp; Yo(r) (4.178)

Generalizzando questa discussione al generici stati dientarangolare e generici opera-
tori, si arriva ad un teorema importante dovuto a Wigner ealick
Un operatoré si trasforma come

0 d®pegi®d; (4.179)

mentre uno stato qualsiasi come
|y — &), (4.180)

Abbiamo visto che particolari stati, quelli col momento alage definito §, M), si trasfor-
manoin un modo semplice e universdlesdi (4.159)),

13,M) — ZDR’,LM,(w)p,M’). (4.181)
M

Si noti che la matrice di rotazione di spiné nota una volta per tutte; essa non dipende
né dai dettagli dinamici della funzione d’onda né dalleuna del momento angolare stesso
(i.e., se esso & dovuto ad un moto orbitale o se si trattaili sp il sistema & elementare o
composto, ecc. ), ma dipende solo dal valorg.di

Analogamente certi operatori si trasformano in un modo $iempOperatori come?,
p?, U(r), sonoscalari: essi sono invarianti per rotazioni. Operatarp, e J, per esempio,
sonovettori. | prodotti di vettori sono genericamente chiamatisori

Per lo studio delle proprieta della trasformazione pesizioini spaziali, &€ conveniente
riorganizzare le componenti dei tensori (normalmentee=sgdrin termini di componenti
cartesiang, e introdurre la nozione densori sferici. Un operatore tensoriale sferico di
rango 1 e equivalente ad un vettghg, Ay, A;) ma le sue componenti sono chiamaig,,
m=1,0,—1, dove

AHIA . Ax—IA
Ty =i X\/z Y. Tio=iA; Ti_1=i X\/z Y (4.182)
Nel caso dell’'operatore, il tensore sferico corrispondente € semplicemente
X+ . X—I
Ti1= _IWy; Tio=iz;, Ty_1=i \/iy : (4.183)

essi sono proporzionali alle funzioni armoniche sferighe Y1 0, €Y1 —1. (Vedi (4.84).)
Le relazioni inverse,

B iT1.1 —Ty_1,

A — _ Toa+Ti—1,
X \/E 3

Ay \/E ,

A, = —iTyp, (4.184)

sono anche esse utili.
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Il tensore sferico di rango 2 (di “spin 2 ) &, in termini di cpanenti cartesiane del
tensore simmetrico®yy, Axy = Ayx, €CC),

1
TZ,O = \/g(Axx + Ayy - 2Azz);

TZ,il = i(sz:l:iAyz);
1 .
Toiz = —5(Ax—AyE2Ax). (4.185)

Per costruzione i tensori sferici di “spmcon 2p+ 1 componenti si trasformano con la
semplice legge

TP = d9I T Pe @) = Y DPaq Ty, (4.186)
q

Vuol dire che I'azione dilyP sullo stato|j, m;n) produce uno stato
ToP|j,m;n) (4.187)
che si trasforma esattamente come lo stato

Ip.a) @], m), (4.188)

ToP|j,mn) = dwd ToP [j,mn) = dwd que’i‘*"j gl [, m;n)

= > DPag Dy Tglintin. (4.189)
q,n
Di conseguenza gli elementi di matrice

(J,M; 1| TgP|j, m;n) (4.190)

doven,n’ indicano tutti gli altri numeri quantici (e.qg., radialepdi di particelle, ecc.) sono
proporzionali ai coefficienti di Clebsch-Gordan,

(3,M; 0 [TgPlj,mn) = (p, j;3,M|p,q, j,m)(J,n'[|TP||j,n), (4.191)

(teorema di Wigner-Eckart). Nella (4.191) il coefficiente di proporzionalita,
(3,n'||TP||j,n), chiamatoelemento di matrice ridottodipende solo dalla grandezza dei
momenti angolari e altri numeri quantici dinamici, ma nonmameri quantici azimutali.
Tutte le dipendenze azimutali sono contenute nei coefticiiClebsch-Gordan che sono
universali. La (4.191) & molto potente: essa forniscezieta non banali tra numerosi
elementi di matrice (che differiscono solo pérg, m) in termini di una sola quantita.

4.2 Polinomi di Legendre

Per cominciare, consideriamo I'eq.(4.77) pe& 0. L'equazione &

d 5. d B
{51 g, +ie+1)10=0, (4.192)
oppure
(1-x3)0" —2x@ +((t+1)0=0. (4.193)

Una delle soluzionk;(x) pud essere prese finita nell'intervalld < x < 1: essa e chiamata
il polinomio di Legendre. (L'altra soluzione, indicata cQa(x) non € finita ax= +1. )
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Come per i polinomi di Hermite, le proprieta dei polinomildigendre possono essere
studiate con aiuto di una funzione generatrice, che in questo € data da

T(x,s) = (12sx+s2)1/2/ijpf(x)s€, s<1, (4.194)

doves & un parametro arbitraria,= cos. | primi polinomi possono essere trovati facil-
mente da (4.194):

Pox) = 1, Pi(x)=x, Pz(x):%(3x271),

P3(x) (35x* — 302 4 3), (4.195)

%(4x3 —3x), Pyx)=

e ]

ecc.E nota una formula semplice e esplicita Pefx) (formula di Rodrigue)

1 d

Py(x) sono normalizzati con la condizione

P (x)

1 2
dx P (X)Py =——& 4.197
/4 xR (X)Pp(X) TR ( )

e soddisfa inoltre
P =1 P(-1)=(-)" (4.198)

Il fatto che i polinomi di Legendre definiti da (4.194) soddiso I'equazione di Le-
gendre (4.193) segue da certe equazioni di ricorrenza, ci@ &olta si ottengono dalle
considerazioni delle derivafT (x,s)/0x e T (x,s)/0s.

Infine, i polinomi associati di LegendR"(x) possono essere ottenuti Bgx) via la
relazione g

PM(x) = (X% — 1)m/2ﬁpf(x) ; (4.199)
il fatto cheP)"(x) & la soluzione regolare della (4.77) si dimostra facenderivated™ /dX™
dell'eq.(4.193) e considerando I'equazione fier- x2)™2d™M/dx"@. (vedi,i.e., Whittaker
and Watson, “Modern Analysis’.)
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4.3 Gruppi e Rappresentazioni: Elementi di Teoria dei
Gruppi

4.3.1 Assiomi del gruppo e alcuni esempi

Un insiemeG, nel quale ¢ definita I'operazionewhioltiplicazione
aeG, beG — c=a-begG, (4.200)

e chiamato gruppo se i seguenti assiomi sono soddisfatti:

i) associativita del prodotto:
(a-b)-c=a-(b-c); (4.201)

ii) esistenza dell’elemento unig tale che

ea=a (4.202)

per ogni elementa € G;

iii) ogni elementaa possiede un’inverso (a sinistray,

ala=e (4.203)

Un gruppoG & Abeliano (commutativo) se per ogni coppia dei suoi eldmete
a-b=b-a, (4.204)

altrimenti il gruppo & non Abeliano.

Es. 1 Linsieme di numeri interi forma un gruppo (commutative&r@addizione, i.e., se la

moltiplicazione e definita come
a-b=a+h. (4.205)

Es. 2 Gruppo di permutazione di tre ogge#, 8, C) messi in posizioni 12, 3: ci sono sei
elementi nel gruppo,

e : (ABC)— (ABO);
(12) : (ABC) — (BAC);
(23) : (ABC)— (ACB);
(31) : (ABC)— (CBA);
(123 : (ABC)— (CAB);
(321) : (ABC)— (BCA). (4.206)

La regola di moltiplicazione si trova direttamente, per €42) - (23) = (123); (23)-
(123) = (31); ecc. (N.B. 'operazione che sta a destra va eseguita paajri

Es. 3 Linsieme di matrici complessid x N con determinante unitario,
G={M:detM =1}, (4.207)

in cui la moltiplicazione e definita normalmente col prddanatriciale, forma il gruppo
lineare specialSL(N,C).
Es. 4 Linsieme di matrici ortogonalil x d reali con determinante unitario,

G={0:0"0=1;det0 =1}, (4.208)
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forma il gruppo ortogonale&sQ(d). Gli elementi di questo gruppo possono essere identi-
ficati con tutte le possibili rotazioni tri-dimensionaligipd = 3) degli assi di coordinate.
SQ(d) puo essere definito come gruppo degli operatori di trasdaiame (rotazioni) nello
spazio di vettord, che lasciano invariante il modulo quadrato,

T . x (4.209)

dei vettori.
Es. 5 Linsieme di matrici unitarieN x N complesse,

G={U:U'u=1;}, (4.210)

forma il gruppo untaridJ (N). Le matrici unitarie con dé&t = 1 formano il gruppo unitario
speciale SU(N).

Es. 6 Il gruppo di Lorentz & formato dalle matrici>d4 reali,L, che lasciano invariante la
metrica

1 0 0 O
0 -1 0 O
9=lo o 1 ol (4.211)
0 0 0 -1
ie.,
L'gL =g. (4.212)

Equivalentemente, il gruppo di Lorentz & il gruppo di trasfiazioni quadrivettorialit, X, y, 2)
che lasciano invariante
ol =12 -2 —y? - 2. (4.213)

N.B. | gruppi degli esempi 2 - 6 sopra sono non Abeliani, aceeiime delSQ(2) (gruppo

di rotazioni nel pianx —y) che &€ commutativo.

Esercizio Dimostrare che il gruppo unitarid (n), visto come gruppo di trasformazioni
sullo spazio vettoriale complessalimensionale, lascia invariata la forma quadratica (o il
prodotto scalare Hermitiano)

ZT.Z: iiz" (4214)

dove(z,2,...,z,) sono le componenti di un vettore complesso qualsiasi.

Prodotto diretto dei gruppi
Dati due gruppiG e H, il prodotto direttoG® H & definito dagli elementig, h) dove
ge G, heH, eiloroprodotti sono definiti da

(91,h1) - (92,h2) = (9192, M h2). (4.215)

4.3.2 Rappresentazione del Gruppo

Dato un gruppds, I'insieme R di matrici N x N (con N finito o infinito) M, forma una
rappresentazionalel gruppoG, se ad ogni elementpdi G corrisponde un elemento Bj

g— M(g) €R, (4.216)

tale che
M(91)M(gz2) = M(9102), (4.217)

i.e., tale che la legge di moltiplicazione sia conservata.
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In Meccanica Quantistica gli operatori line&@ipossono essere visti equivalenemente
come matrici (finite o infinito-dimensionali) tramite la cispondenza,

Ormn = (MOJn), (4.218)

dove{|m)} € una base completa e ortonormale di stati. Le rappresentalz un gruppo
in termini di operatori lineari possono essere unitarie o noitarie. Le rappresentazioni
in termini di matrici unitarie soncappresentazioni unitarie

Es. 1 Il gruppo di permutazione ha una rappresentazione,

1 00 0 1 O 0 0 1
Me =0 1 o]; M2=[1 0 ; M@3=(0 1 0 (4.219)
0 0 1 0 O 1 0 O
1 0 O0 0 0 1 01 0
M23)=(0 0 1|, M(123={1 0 O]; M@B2)=(0 0 1
010 010 1 00
(4.220)
Se esiste una trasformazione di similitudiBgetale che
M(g)=SM(g)S!, VvgeG, (4.221)

le rappresentaziomil(g) e M(g) sono equivalenti.
Def. Una rappresentazione di un grupBa dettoriducibile se essa e equivalente ad una
rappresentazione di forma blocco-diagonale,

M(g) = (Mlo(g) M;g)>, Vg€ G; (4.222)
altrimenti esso @triducibile .

Lo spazio lineare di vettori in cui agiscono le matrdi{g) & chiamatospazio delle
rappresentazioni

Nelle applicazioni in Meccanica quantistica lo spazioeledppresentazioni € lo spazio
delle funzioni d’onda. Ma poiché gli stati quantistici di dato sistema sono descritti dai
raggi nello spazio di Hilbert (i.elp ~ cd, ¢ # 0), in generale dovremo permettere una
rappresentazione di tipo generalizzato, i.e.,

P—U@W,  U(gr) U(ge) =€99%U(g; - gy), (4.223)

dovew & una fase che in generale dipende sigggdahe dag,. Tale rappresentazione e
chiamata rappresentazione proiettiva.

4.3.3 Gruppo di Lie e Algebra di Lie

Consideriamo un gruppo contin& Gli elementi di un gruppo continuo dipendono da
uno o piu parametfa } in modo continuo,

g=g({a}). (4.224)

Es. Il gruppoSQ(2) & un gruppo continuo, parametrizzato da un paranttohe prende
valore nell'intervallo 0< 6 < 21t

La varieta (spazio) su cui vivono i parametri del gruppa edrieta del gruppo. Quando
la varieta del gruppo & una varieta analitica (rispettsuai parametri) si ha un gruppo di
Lie. (La definizione piu precisa del gruppo di Lie si trova ps., in Barut and Raczka,
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“Theory of Group Representations and Applications.) Séiet spazio dei parametri del
gruppo € compatto (senza la pretesa di massima genetaligspazio chiuso e limitato),
si ha un gruppo di Lie compatto. | gruppO(N) e SU(N) sono gruppi di Lie compatti.
Uno spazio in cui un cammino chiuso arbitrario & contrdétiln maniera continua ad
un punto e dettsemplicemente connesso
Nota: Uno spazio in cui due punti arbitrari sono connessirdeammino continuo, & detto
invececonnesso per archi
Es. La sferaS’ & uno spazio semplicemente connesso, poiché ovviamgnieammino
chiuso su di esso pud essere modificato ad un punto in modmuoonl'anello St (I'in-
sieme dei puntix,y) che soddisfan&® + y? = 1) non & semplicemente conesso perché su
di esso esistono cammini chiusi non contrattibili, ad g=sn6, sinnB), 0 < B < 21, con
n=1,2,...); analogamente il toro (topologicamerkx S') non & semplicemente con-
nesso, anche se e connesso per archi. Infatti, ci sonatinéilsissi di cammini chiusi non
banali su un toro (disegnateli), che sono non contrattibili

Ogni rappresentazione di un gruppo di Lie compatto & edgriva ad una rappresen-
tazione in termine di operatori unitari. Ogni elemento digroppo unitario che si possa
ottenere dall’elemento unita con una variazione contiheigparametri pud essere scritto
come

U({a}) = expiaaXa, (4.225)

doveag, a=1,2,...N sono parametri reali &5 sono operatori Hermitiani.X; sono
? ?
generatoridelle trasformazioni infinitesime,

U({e}) ~ 1+ ieaXa+ O(€?). (4.226)

Es. Non tutti gli elementi di un gruppo continuo sono otteniltikmite una variazione
continua dei parametri. Per es., il grupP@\) (gruppo ortogonale) contiene elementi con
detO = —1 che non sono connessi all’elemento unita in manieraicoatill gruppdsQ(3)

€ connesso per archi ma non & semplicemente connessal o)

| generatoriX, del gruppaG obbediscono le relazioni di chiusura

Xa, X = ifancXe, (4.227)

C

dove
[Xa, Xb] = XaXo — XoXa (4.228)

sono commutatori tra due operatdy e Xy. Le relazioni (4.227) formanodlgebradel
gruppoG, g. Le costantifap che caratterizzano le proprieta attorno all’unita delpgro
dato sonaostanti di strutturadel gruppo.

Momento angolare: L'algebra delle componenti del momento angolare tridincarede &
l'algebraso(3), con generatorily, J2, J3. Le costanti di struttura sonpe = €apc IN queEsto
caso. L'algebra del grup®U(2) e quella del grupp8Q(3) sono le stessesu(2) ~ sa(3).

La struttura globale dei due gruppi € tuttavia diversaiipgpoSQ(3) non & semplicemente
connesso mentre il grupf8UJ(2) lo & (vedi la nota successiva). Infatti, rotazioni tridime
sionali possono essere parametrizzate in termini di treladgEulero, I'angoloa di una
rotazione attorno all'asse(0 < a < 2m) ; I'angolo 3 della rotazione attorno all’'asse nuovo
y (0 < B <m); e l'angoloy della terza rotazione attorno all'ass@uovo (0 < y < 2m).
L'elementoM; = (a,B,y) = (11,0, ) coincide con I'identita come operazione di rotazione,
per cui il cammino che connette l'unigd= (0,0,0) al puntoM & un cammino chiuso, ma
non contrattibile.

Nota: Gli elementi del grupp&U(2) possono essere parametrizzati come

a b
U= <—b* a*> , (4.229)
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con
|al®+ bj>=1. (4.230)

(Verificate che le condiziondUT = 1; e detU = 1 che definiscono un grup@U(N) siano
soddisfatte con le matrici suddette). Poneadox; + ixo eb = X3+ iX4, la (4.230) si riduce
a

X4+ X5 4+ X5+ x4 =1, (4.231)

che dimostra che il gruppdU(2) & topologicaments® ed & percid semplicemente connes-
SO.
Rappresentazione spinoriale:

La funzione d’onda di particelle di spin semi-interi € uepio di rappresentazione
proiettiva (4.223). Infatti, le componenti di spin dellaniione d’onda si trasformano, per
una rotazione tridimensionale degli assi delle coordimatdiante la matrice di rotazione.
Per spin ¥2 la matrice di rotazione & data nella (4.175). Esse sidrasino, per una
rotazione di Zr, come

U — —y; (4.232)

esse fornisconmppresentazione spinoriafkel gruppdSQ(3).
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4.4 Simmetrie in Meccanica Quantistica

4.4.1 Considerazioni generali

Il concetto della simmetria e le conseguenti leggi di covesbne non sono proprieta
esclusive della Meccanica Quantistica. Basti ricordategame tra l'invarianza per tra-
slazioni spaziali del sistema e la conservazione dell'isguquello tra 'omogeneita del
tempo e la conservazione dell’energia, ecc., in Meccanlaasita. Tuttavia I'idea della
simmetria porta le conseguenze piu profonde in Meccanian@stica.

Supponiamo che in un sistema esista un operatore uniasie commuta con I'Ha-
miltoniana:

[S,H] =0. (4.233)
Ma poichésS, essendo unitario, soddisfa la relazione
s§=5's=1, (4.234)
la (4.233) & equivalente con
STHS=H: (4.235)

S & una trasformazione unitaria che lascia invariante I'ttamiana. Abbiamo gia visto
alcuni esempi di tali operatori:
S=¢l® (4.236)

che descrive una rotazione spaziale;
S=¢gPro/h (4.237)

che rappresenta una traslazione.

Una delle possibili conseguenze di una simmetria & la cuas®ne di una carica
(numero quantico) associata. Supponiamo infatti che o $§8 sia un autostato di una
quantita dinamica (operatore Hermitiar®)tale che

S~1-ieG+..., (4.238)

i.e.,G e un generatore @. Dalle (4.233) e (4.235) segue che

[G,H] =0. (4.239)
Ora dall'ipotesi,
G[y(0)) = g|w(0)). (4.240)
Lo stato all'istanteé > O € dato da
w(t)) =e ™/ w(0)), (4.241)
per cui _ .
Glu(t)) = Ge /My(0)) = e MNG|Y(0) = gw(t)). (4.242)

Il sistema dungue rimane autostatdGldurante I'evoluzione, la “caricg & conservata.

La conservazione della carica elettrica nelle interaziondamentali & dovuta a una
tale ragione. L'operatore di carica elettriaagisce sugli stati di particelle elementari
come

Qle) = —ele); Qlp) = +elp); (4.243)

Qn)=0; QIt") = +elr’), (4.244)

ecc., dove i ket indicano gli stati di un singolo elettronel grotone, del neutrone, e del
pione+, rispettivamenteQ commuta con I'Hamiltoniana di tutte le forze conosciuteiogg
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(le forze gravitazionali; le forze elettrodeboli; le irggioni forti): questo fatto garanti-
sce che la carica totale del sistema sia conservata. SimetincMeccanica Quantistica
nonrelativistica che si studia in questo corso la consémmazdella carica elettrica & una
conseguenza della conservazione del numero della piatig@e versa, nellambito rela-
tivistico dove le particelle possono essere prodotte outistla conservazione della carica
elettrica presenta una regola di selezione non banale.

Un’altra conseguenza della simmetria € la degenerazienkvdlli. Si consideri uno
stato stazionario

H |L|Jn> = En|'-|-’n>a (4.245)

e che esista un operatore Hermitighache commuta coll. Supponiamo pero che lo stato
|Wn) Non sia un autostato @:

G|Wn) # cost|Yn). (4.246)
Ma dalla commutativita dG conH segue che
H{G|¢n>} = GH|qJn> = En{G|qJn>} (4.247)

il che implica una degenerazione dello stato stazionanwotifco esempio € quello dovuto
alla simmetria per rotazioni: se si prenfié,L2,L,} come osservabili (operatori simulta-
neamente diagonalizzati), la presenza di altri operatgriy, che commutano anche essi
conH ma che non possono esere diagonali (non commutand@gdmplica che ogni
livello & degenere (tranne lo stato cbA=0.)

4.4.2 Parita (P)

Ci sono le simmetrieontinug(come rotazioni, traslazioni) in cui I'operazione di sinmnige
e descritta da uno o piu parametri continui, e le simmeatisereteche non hanno tali
parametri. La parta ne € un esempio tipico. L'operaziampadta e definito da

PY(r) =y(-—r) (4.248)
sugli stati, e da
PO(r,p)P 1 =0O(-r,—p) (4.249)
sugli operatori. Si tratta dunque di riflessione spaziale HS invariante per riflessione
spaziale,
PHP 1=H (4.250)
(o equivalentementePH = HP,) allora la parta € conservata (i.e2,& un operatore di
simmetria).
Visto che? commuta con I'Hamiltoniana, gli stati stazionari possooelts autostati
anche diP. Gli autovalori di parita sono limitati &1, perché ovviamente

P?=1. (4.251)
Gli stati stazionari sono percio classificati secondo @t@a
PY(r) = P(=r) =+y(r) (4.252)

per gli stati di paritat;
PY(r) = (=) =—u(r) (4.253)
per gli stati di parita-.
La parita € un buon numero quantico quando il potenzialéahgimmetria sferica,
V(r)=V(r),i.e., quando il momento angolare & conservato. Infattgpstati di momento
angolare definita(r) = R(r)Y,m(6, ), si ha una semplice relazione,

P=1 se /=2n,n=0,12,...; (4.254)
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P=-1 se (=2n+1,n=0,12,.... (4.255)

Tale relazione tra la conservazione del momento angolanekacdella parita, tuttavia,
non significa che quest’ultima & una conseguenza del pimggnerale. Ci sono i casi in
cui il potenziale & invariante per riflessione spaziale,

V(=r)=V(r), (4.256)

percio la parita & conservata, ma in cui il momento angatan & un buon numero quanti-
co. Basti pensare un potenziale che dipende, per esemfiicdebinazionex? + 2y? +
72.

Come un altro esempio in cui I'indipendenza della pargaeito al momento angolare
si manifesta chiaramente, si consideri un sistema di duepbe, senza interazioni tra di
loro, che si muovono in un campo (comune) a simmetria centta funzione d'onda ¢ il
prodotto di due funzioni d’'onda, ciascuno un autostato din@aoto angolare orbitale, con
¢1,47. Il momento angolare totale potra prendere valori tréy + 2,01+ (2 —1,...,|¢1—
£2]. Il sistema & chiaramente un autostato di parita con l\altve,

P =(—)1tl, (4.257)

e questo in generale non coincide den).

La parita & un concetto essenzialmente quantistica. harsportanza in Meccanica
Quantistica e accentuata dal fatto che empiricamentealparticelle elementari portano la
paritaintrinsecanegativa, insieme all parita dovuta al moto orbitale. ltaasdine & analoga
allo spin (il momento angolare “intrinseco, non legato atonarbitale). Per esempio,

Plm = —[m;  P|K) =—[K); P[p)=+|p); (4.258)

P|n) = +|n);  P|p) = —[p); (4.259)

ecc., dove i ket rappresentano gli stati di alcune pargécelementari al riposo, quindi
sprowvisti di momento angolare orbitale. Solo la parital®(il prodotto di parita intrinseca
e la parita del moto orbitale) & conservata.

Gli operatori di spin si trasformano per parita come queé8bmomento angolare, i.e.,

PsP~t=s: (4.260)

e pari. Al contrario, I'operatori dell'impulso ovviament dispari cosi come quello della
posizione. In generale, gli operatori possono essereifitasssecondo la loro parita, in-
sieme al valore di spin: I'impulso, la posizione, il potealgivettoriale, ecc., songettori;

lo spin, il momento angolare orbitale sowmettori assiali Le quantita scalari (invarianti
per rotazioni per definizione) che cambiano segno per rifiessspaziale sono chiamate
pseudoscalari

La parita, nonostante la sua definizione naturale, noregésimmetria esatta della Na-
tura, ma & una simmetria approssimativa. Tra le interaZ@mmamentali, le interazioi
gravitazionali, le interazioni elettromagnetiche e leemtzioni forti rispettano la parita,
mentre le interazioni deboli (le interazioni responsaddilidecadimento beta dei nuclei) la
violano. Nel linguaggio pil moderno, le interazione davallo scambio di particelle W e
Z non sono invarianti per parita.

4.4.3 Inversione del tempo (time reversal)

Un altro esempio di una simmetria discreta € l'inversioerétdmpo,T. In Meccanica
Classica, I'equazione di Newton,
mi = -0V (4.261)
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e invariante per I'inversione— —t. Questo significa che se un moto da.{1) a (r2,t2) €
possibile (i.e., € una soluzione dell’equazione (4.2®1¢,anche un’altro moto da4, —t»)
a (r1,—t1), attraverso I'identico cammino, ma tracciato nel senguoos{o.

In Meccanica Quantistica la dinamica & descritta dallagijone di Schrodinger,

iﬁ%w(r,t):Hw(r,t). (4.262)

Per esempio per una particella in tre dimensioni si ha

H= V() (4.263)

La trasformazioné — t' = —t risulta un’equazione

=0
f|h‘ww(r,7t’) =Huy(r,—t"), (4.264)
diversain generale dall’equazione di Schrodinger originale. Bearebbe che l'invarianza
per l'inversione del tempo sia impossibile in Meccanica Qistica.

In verita, non c'e motivo per ritenere che la funzione diardel moto invertito sia
semplicemente(r, —t). Infatti, prendendo il coniugato complesso dell’equagisapra si
trova 5

iﬁwqﬁ(r, —t') = H*Y*(r,t) (4.265)
che assomiglia piu all'eq.(4.262). Lequazione di Schinger sara ritrovata se esiste in
operatoreanti unitario Otale che

OH*O'=H. (4.266)
Infatti in tal caso la funzione d’onda del moto invertitogpessere preso come
Q(r,t) = OW*(r,—t): (4.267)

e evidente allora ché(r,t) soddisfa I'equazione di Schrodinger: & un moto realideab
descrive il moto invertito.
Un operatoré tale che per ogni vettor, @,

(OQOY) = (W|®) (4.268)

(vedi (4.267)), € dettantiunitario. In contrasto, un operatore unitatibsoddisfa ovvia-
mente

(Uguuy) = (gw), (4.269)

come si vede dalla definiziongUT = UTU = 1. E chiaro che sia nel caso di una trasfor-
mazione unitaria che nel caso di una trasformazione atgii@ie predizioni fisiche della
teoria rimangono invariate. In questo contesto, esistearetna importante che riportiamo
gui senza dimostrazione:
(Teorema di Wigner)

Ogni trasformazione di simmetria in Meccanica Quantisgogalizzata tramite o una
trasformazione unitaria o una trasformazione antiuniari

Dalla discussione precedente traspare il fatto che antivatianza per inversione del
tempo, come nel caso della parita, € una proprieta di to tiizo di interazione, piutto-
sto che un’assoluta legge di Natura. In Natura l'inversidebtempo (T) & una buona
simmetria approssimativa delle interazioni fondamentadi interazioni gravitazionali, le
interazioni elettromagnetiche e le interazioni forti ggano T, mentre una parte piccola
delle interazioni deboli, dovuto allo scambio della pati@ W, lo viola.
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Il mistero attorno alla simmetria T deriva dal fatto che nstante che T sia conservato
guasi esattamente nella fisica micoscopica, I'invariaezd @ grossolanamente violata nel
mondo macroscopico. Basti pensare alla seconda leggentbdémamica - delllaumento
dell'entropia - che implica una freccia preferita del temgora, € mai possibile che la
minuscola violazione della simmetria T nelle interazioomdamentali (che & certamente
estranea per la stragrande maggioranza delle reazioniattérrelettromagnetiche e gravi-
tazionali che sembrano dominare il mondo macroscopicapabbhe fare con la seconda
legge di termodinamica? L'espansione dell’'universo inviviemo ha a che fare con essa?
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4.5 Sistemiin Tre Dimensioni

45.1 Massa ridotta

L’'Hamiltoniana di un sistema di due particelle con masgem, che interagiscono tramite
il potenzialeV(r) dove

r=ri—rp (4.270)
e la posizione relativa, & data da
h2 h2
H=——W~.A1——»2/+V(r). 4.271
g amp Rt (r) ( )
Cambiando le variabili
r= ri—rz
R — Mufitmers (4.272)
m +mp
si ha
r i 273
H=——— ArR— —A +V(r 4.
2(m1+m2) R 2“ r+ ()a ( )
dove
= M (4.274)
m +mp
e lamassa ridottaSeparando le variabili
b =®(R)Y(r), (4.275)
troviamo I'equazione per la funzione d’onda del moto retati
iﬁﬁqJ:H“e')qJ:{jA +V(r)} (4.276)
ot 2u '

che e I'equazione di Schrodinger per una singola palticgie si muove nel potenziale
V(r). Il problema di due corpi & dunque ridotto a quello di un @orp

4.5.2 Moto in campo a simmetria centrale

Quando il potenziale dipende solo dal modulo della posiiaa |r | 'equazione di Schrddin-
ger indipendente dal tempo

ﬁZ
HY = (=507 + V(1) W(r) = EY(r). (4.277)
puo essere risolta ponendo
W(r) =R(r)P(6, ). (4.278)
La parte angolare dell’equazione si risolve con le funzaymoniche sferiche
'equazione radiale & data da
1d ,d 2m L(0+1) _
[r—za(r a)4—?(E—V(r))— 2 JR(r) =0. (4.280)

Ponendo

>

—~
=

~—

R(r)==—= (Def.x), (4.281)
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'equazione radiale diventa

d’x . 2m (+1)

WJr{?(E—V(r))f = x=0, (4.282)
ma questa ha esattamente la forma dell’equazione di Scig#din una dimensione, con
il potenziale “efficace,

00+ 1)R?
Veff(r) =V(r)+ “om2

Il secondo termine sopra ha un significato fisico evidentergergia associata alle forze
centrifughe (si noti che classicameifte- mr@? ~ (r x p)?/mr3 per un moto circolare).
La condizione di normalizzazione &

/ drr?|R2 :/ dr|x> =1, (4.284)
0 0

(4.283)

mentre la condizione di regolarita della funzione d’onda=a0 implica
x(0)=0. (4.285)

Il problema e percio equivalente a quello di una particetie si muove in una semiretta
0 <r < o, sottoposta al potenziale=Vet¢(r), r>0; V(0)=co.

Un noto teorema (vedi Sec.2.2.2) sull'assenza della degeiome dei livelli discreti
nei sistemi unidimensionali, vale anche per una partic#ik si muove in una semiretta:
risulta che la funzione d’'onda radiale € univocamenterdeteata da un numero quanti-
co n - chiamato il numero quantico principale - che numera glowatori dell’energia.
Segue che uno stato stazionario in un campo a simmetrisateBtunivocamente specifi-
cato da tre numeri quanti¢n, /,m) corrispondenti agli osservabili massiméi, L2, L).
Per ragioni storiche gli stati stazionari con vari valori‘ldsono denominati come onda -
SPD,F,GH,I K,..., rispettivamente pef=0,1,2,3,4,5,6,7,....

45.3 Onde sferiche

Consideriamo prima di tutto il caso di una paticella lib&fa<0). L'equazione di Schrodin-
ger in questo caso & banalmente solubile nella base inimpulso & diagonale (le onde
piane); tuttavia le soluzioni di questo problema nella baseui il momento angolare e
ben definito, sono essenziali nello studio dei processiftligioni. Inoltre queste soluzio-
ni forniscono il punto di partenza per analizzare i probleingtati legati in potenziali a
simmetria centrale.

L'equazione darisolvere &

23 d e R =0 (4.286)
dovek? = ZH—TE, o
R + %R’ (KR W; Yir—0 (4.287)
Perl =0, la (4.286) si semplifica:
R + % R +kKR=0 (4.288)
oppure
(rR)" +K3(rR) = 0. (4.289)

La soluzione regolarera=0 &

R:Aﬂ; (4.290)
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quella singolare &

R=A Cofkr. (4.291)

La costanté di normalizzazione pu0 essere fissata dalla condizione

/O " drr2Ry Ry = 2m5(K — k). (4.292)

L'integrale & fatta senza difficolta:

0o ] ] A2 00 . L -
A2/ dr sinkrsink'x _7/ drekr(gkt — e k™)
0 —o00

- "A%Za(kf K), (4.293)

da cuiA=2.
La soluzione pef # 0 si ottiene con la seguente considerazione. Se si Rorer‘n,,

'equazione peny €
2(04+1)

N, + r N, + k2N, =0. (4.294)
Ora derivando questa equazione rispettpsi ha
n[+2wj1%ﬁ+03—2%jlhn}=0 (4.295)
Ma con la sostituzionq’g =r{, essa diviene
¢+ 227 ey —o: (4.296)

r
equazione soddisfatta dja ;. Ci0 significal; = ng. 1, cioe
Ny ="rneas (4.297)

abbiamo quindi una relazione ricorsiva. A partirexta= Ry si pud determinare tutte le
funzioni radiali. Le soluzioni regolari (che corrispondomonde sferiche libere) sono

1d ,sinkr
R =Nyrf(=—=)" —. 4.2
¢ ef (r dr) r (4.298)
Analogamente per le soluzioni singolari,
1d ,coskr
Nz Y
Qr=Ngr (rdr) — (4.299)

La costante di normalizzazione puo0 essere fissata coasideil loro andamento asin-
totico, con il risultatoN; = (—)‘2/k’ (vedi Laudau-Lifshitz).

Per studiare il comportamento vicinora= 0 di R, conviene introdurre la variabile
& =r2: infatti,

1d ,sinkr d, < ()" | oniten
G v = Ce) L
k2£+l(_)£ )
= m"‘rO(r ), (4.300)
dove(20+1)!' = (20+1)(2¢—1)(2¢ —3)...5-3- 1, per cui
R~ 2K o). (4.301)

20+ 1)1
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Le onde sferiche libere si possono esprimere in termiriudzioni di Bessel sferiche
je,Ne, che a sua volta sorfanzioni di Besseton ordini semi-interi:

/21K .
Re(r) = TJ€+1/2(kr) = 2K jo(kr), (4.302)
[ 21K
Qke(r) = TN4+1/2(|<T) = 2k ny(kr). (4.303)
J(2),Ny(z) sono le due soluzioni indipendenti del’'equazione di Besse
d? 1 v2
qgo T T1-%)a =0 (4.304)

di cui J,(z) & quella regolare a= 0. (Vedi per es. Gradshteyn-Rythii)faciIe verificare
che nel caso di ordine semi-intero, I'equazione di Bess@dsce alla (4.287) (con= kr).

Le funzioni di Bessel di ordine semi-intero - funzioni di Bessferiche - sono funzioni
elementari:

1d,,sinx 1d cosx

; (gt G SinX, __(_ i

0= (NG S =)' (G5 == (4.305)
Le prime funzioni di Bessel sferiche sono:

. sinx _ COX,

jox) = B No(x) = — X

. sSinx  COSX. cosx  sinx.

B = Sg T M= T

. 3 1 . 3CoX, .3 1 SSlnx

j2(x) = (?fg)smxf 2 ng(x)ff(gf;)cosxf ; (4.306)
ecc.

L'andamento vicino & = 0 di queste funzioni &
. X (20— 1)
mentre il comportamento asintoticoXa— ) &
je(X) ~ )—1(cos(xf @T); Ng(X) ~ )—1(sin(xf @[). (4.308)

A volte & conveniente introdurre le funzioni di Hankel $be, definite come
() = jo(x) +ine(x); A2 (%) = jo(x) —ing(x) : (4.309)
il loro comportamento asintotico € allora

9 ~ _ei = P ~ Lot

X (4.310)

(Si noti - a parte il fattore Ax - che le funzioni di Hankel sferiche sono analoghe rispetto a
j,n, alle funzioni esponenziali rispetto alle funzioni sinscd
Le funzioni radiali corrispondenti,

RY = 2khY(kr);  RY) = 2kh? (kr) (4.311)
hanno I'andamento asintotico
RY ~ klréa« G, R %e  (kr—(E50m) (4.312)
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sono onde sferiche che si espanddRd)] o si contraggonoR@).

Sia le onde piane (le soluzioni dell’equazione di Schrgdiibera nella base d’impul-
so0) che le onde sferiche (col momento angolare ben defimito)dno un insieme completo
delle funzioni: le une possono essere sviluppate in terdale altre. Per esempio, un’onda
piana ha uno sviluppo

00

gz — ghkroosd _ /zo(ze +1)i’jo(kr)P;(cosB). (4.313)

Questa formula puo essere verificata paragonando il cieeffecdi(r cosd)" nei due mem-
bri.

4.5.4 Stati legati in una buca di potenziale tridimensionad

Il potenziale descritto da

V(r) = {VO a4 (4.314)
0 sg >a

rappresenta un modello rudimentale di mcleoatomico: la forza nucleare ha un rag-
gio finito e ben definito. Si paragoni questa situazione cdstémi atomici legati dalla
forza Colombiana, cha ha il raggio d’azione infinita, cheasstudiata nella sottosezione
successiva.

Per calcolare i livelli discreti consideriamo I'equaziatieSchrodinger radiale

y 2 ((0+1
R 4+ =R + (K- (er )
r r

JR=0, r>g (4.315)

dovek? = 2mE/F? < 0 (kimmaginario), e

0(0+1)
r2

U 2 /
R'+-R + (K?—

JR=0, r<a (4.316)

dovek? = 2m(E + Vp)/h? > 0 (K reale), per valori dell'energiaVp < E < 0, Essa ha la
forma dell’equazione di Schrodinger libera in ambeduesi:da soluzione generale € data
da una combinazione lineare di funzioni di Bessel sferighen,, o equivalentemente, di
hD e h(@

Per la soluzione interna & a) la condizione di regolarita della funzione d’onda-a 0
univocamente seleziona la soluzione

RI™ = A j,(Kr) (4.317)

(A & una costante). D’altra parte, la soluzione esterna dssere tale da garantire la
normalizzabilita della funzione d’onda. Dalle formulerdstiche (4.308), (4.310), si ap-
prende che pek=iv/—2mE/h=ik (k > 0) e pemr — oo,

oo, P ~ %e*”; hiY ~ %e*” (4.318)

percio soltantchél)(ikr) e compatibile con la normalizzabilita. Si ha allora
R — BhY(ikr). (4.319)

La soluzione interna (4.317) e quella esterna (4.319) deessere connesse di modo
che la funzione d’onda e la sua derivata prima siano contue a. Segue la condizione

ikn(Y (ika)  Kj,(Ka)
hP(ka)  Je(ka)’

(4.320)
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che determina gli autovalori dell’energia.
Per esempio, pef = 0 abbiamojo(K'r) = SIKt: hil)(ikr) = —& e la condizione
sopra si riduce, col cambiamento di varialfiliz K'a; n = ka, a

&coté = —n. (4.321)
Le variabili§ en non sono indipendenti ma sono legati da
&2+ n? = 2m\pa?/F2. (4.322)

Questo sistema di equazioni e lo stesso di quello (cf. @)28contrato nel caso della buca
di potenziale uni-dimensionale. Per essere piu preaisirqviamo un tipo solo di soluzio-
ni (nel caso unidimensionale, ci sono due tipi di soluziobiai grafici che rappresentano
le curve (4.321) e (4.322) nel quadragte 0;n > O si vede allora che

(1) pery/2mwpa2/R? < 11/2, nessuna soluzione & possibile: non ci sono i stati legati
(2) perm/2 < \/Zm\,{)az/h_2 < 3m/2 c’e una sola soluzione (un solo stato legato);

(3) per 312 < y/2m\pa2/h? < 511/2 esistono due livelli discreti, etc.

A differenza col caso uni-dimensionale, percio, esist@alore minimo dei parametri

(corrispondentia,/ 2m\,{)a2/ﬁ2 =T11/2) al di sotto del quale la buca non confina la particella.
Qualitativamente, tale differenza puo essere attritalifatto che una particella confinata
in una regione finitaXx; < a) deve avere una minima indeterminazione in ciascun com-
ponente dell'impulsoXp; > h/a). Il contributo all’energia cinetica di tale fluttuazione
guantistica minima € piu grande, piu grande ¢ la dinmresspaziale del sistema.
Esercizio:

Calcolare numericamente, con I'uso del programma Mathem@¥laple, ecc.), i primi
cinque livelli energetici della buca di potenziale tridinséonale, con parametri, determi-
nando il momento angolare orbital@i ciascuno:

m=940MeV/c%, a=3fm; V =300MeV. (4.323)

4.5.5 Atomo diidrogeno

L'atomo di idrogeno - uno stato legato di un elettrone ed e formato dall’attrazione
Coulombiana

H=—-——0-— 4.324
2m r (4.324)

- € il pit semplice di tutti i sistemi atomici. La massa ridam in questo caso € uguale a

m=memp/(mMe+mp) ~ 0.995m. e pud essere considerato uguale alla massa dell’elettrone

vista I'approssimazione (non-relativistica) implicitalla formula sopra (vedi dopo).
L'equazione radiale &

d_ ((t+1)_ 2m _ & _
Rt TR~z R+ Z(E+)R=0. (4.325)

dr?

2
ng
r

Il potenziale “efficace radiale

&€ (({+1)R?

Verf(r) = ——+ =55 (4.326)

tende a zero a— . Stati legati sono possibili solo per i valori negativi deflergia.
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Per semplificare la scrittura, conviene fare alcune sastiti: porremo
— =[emi=1 (4.327)

Non ci sara difficolta a recuperare la costa% alla fine dell'analisi, con una semplice
considerazione dimensionale. L'equazione
d2 _ 2d_ ((+1)

WR+ rdr r2

R+ 2(E+%)R:O, (4.328)

sara ulteriormente semplificata con il cambio della valgab

p= a; A= ! —. (4.329)
A —2E
(4.328) ora prende forma
2 1 A (41
R+ R4 [->+=— R=0, 4.330

doveR = (d/dp)R.
A piccoli p il termine centrifugo domina nella parentesi quadrateg & domportamen-
to
Re~p', (4.331)

mentre a grandg I'equazione si riduce & — (1/4)R~ 0 sicché
R~ e-2P. (4.332)

. . N . . 1 . . Spas
Ovviamente si dovra scegliere la soluzione eoiP per assicurare la normalizabilita.
Poniamo ora
1
R=p'e 2Pw,, (Def.w). (4.333)

L'equazione pew; €
PW + (20+2—pW +(A—{—1)w=0; (4.334)

si vuole trovarne la soluzione tale ciw0) = cost(# 0); w(p) < p*, p — . La (4.334)
puo essere risolta col metodo di sviluppo in serie (metadwabenius). Sostituendo

_5 K 0 4.335
w(p) k;akp ap # ( )

nella (4.334) si trovano le equazioni

(20+2)ag+ (A — £ —1)ag=0; (4.336)

2ap —a1+2(20+2)ap+ (A—¢—1)a; =0; (4.337)

...... (4.338)

(k+ L)kar1 — ka+ (k4 1) (20 + 2)ag 1+ (A — £ — 1)a = 0; (4.339)

ecc. Pek > 1 si ha dunque una relazione ricorsiva

(k+1)(20+2+K)ag1+ (A — € —k—1)a=0. (4.340)
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La serie (4.335) o termina ad Wfinito (in tal caso,w & un polinomio) o € una serie
infinita. Nel secondo caso, 'andamento asintoticavc® determinato dai termini cok
grandi. Ma pek grandi vale una relazione approssimativa

O = 1
A1 =1 = K1) —costk!, (4.341)
percio
w(p) ~ €, p— oo, (4.342)

Tale comportamento & incompatibile con la richiesta delanalizabilita dR= p* e*%pw/g:
la serie (4.335) deve terminare.
Dalla relazione ricorsiva si apprende che la serieviermina se il parametrd e tale
che
A—{l—k—1=0 (4.343)

per qualche intero nonnegatiko Visto che anche (momento angolare) & un numero
naturale, segue che
A=n (n=123,...). (4.344)

Ricordando le (4.329) e (4.327) questo risultato significadndizione di quantizzazione
dell'energia
ﬁ2
E=-——. 4.345
2mre ( )
Il secondo membro (con la dimensione apparégtecnt - sec2]) non ha la dimensione
giusta di un’energia, ma questo & dovuto all’'unita peseliadottata (la seconda relazione
della (4.327)): ricuperando la dimensione mancdate 2] tramite il quadrato di “1 =
me?/F?, si ottiene
me?
E=-——- (n=123,..)), 4.346
la famosa formula di Bohr.
Ad ogni dato valore din (> 0) il numero quanticd prende i valori

(=0,1,2,..n—1 (4.347)

(vedi (4.343)). Visto che I'energia non dipende dal valoeérdomento angolarée visto
che ad ogni valore di ci sono Z + 1 possibili valori dim (e gli autostati corrispondenti) ,

risulta che Ih-simo livello &
n-1

/Z)(ZH 1) =n? (4.348)

volte degenere. Tale degenerazione e specifica del cadorGinano.

La soluzione sopra puod essere usata per costruire ananezi@me d’'onda associata ad
ogni autovalore. Tuttavia esiste un metodo piu efficacetodwdi funzione generatrice -
che ci permette di ottenere i risultati generali. Lequagigoddisfatta de(p) perA =n

oW 4 (20+2—p)W + (N—£—1)w=0 (4.349)
ha una nota soluzione regolare che galinomio associato di Laguerre
Wn,e = L2 (p). (4.350)

| polinomi di Laguerresono generati dalla funzione generatrice

e Ps/(1-s) = Lk(p)sk

Up9="—=3

T (4.351)
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(s< 1). Come nel caso di polinomi di Legendre o di Hermite, si poccon la conside-
razione delle derivate rispetto alla variabile e al parao®tLa derivatad/dp risulta una
relazione

Ly — KLy 1 = —KLy_1; (4.352)

mentre I'operaziond/dssulla funzione generatrice da
Lir1 = (2k4+1—p)Lyx— KLy 1. (4.353)
L'equazione che contiene sdlq e le sue derivate si trova da queste due relazioni ricorsiva:
oLy + (1— p)Ly+ kg = 0. (4.354)

Questa assomiglia all’eq.(4.349) ma non ha esattamenterfeafgiusta.
Se inroduciamo invece i polinomi associati di Laguerre,

dp
LE(p) = dop k(P (4.355)

I'equazione soddisfatta da essi
pLE +(p+1-p)Lf + (k—p)LE =0 (4.356)
coincide con la (4.349) se si identificano
p=2(+1 k=n+/¢: (4.357)

cio significa la (4.350).
| polinomi associati di Laguerre sono generati da

(f)pefpS/ﬂfS) o LE(p)sk

Up(p,S) - W - kZO k' . (4358)
In conclusione la funzione d’onda radiale &
Rn = p'e P 2w(p) = Corpe P2L2H (), (4.359)
2r meé2r 2 R?
=—=——=—; =— 4.
P n R n nrB’ B me? (4.360)

(rg ~ 5.291- 10 %m = raggio di Bohr). La costante di normalizzazione & data da

2 -3/2 (n—f—l)!
)= —= ~ - 4.361
A (R E (4.301)
Le prime funzioni d’onda possono essere calcolate senfiacdih dalla (4.358). Le fun-
zioni radiali deilivelli(n= 1,¢ = 0) (stato fondamentale)@=2,¢ = 0,1) (il primo livello
di eccitazione) sono:

Rio(r) = 2r§3/2e*r/r3;
1 —3/2 r —r/2r
Roo(r) = ——=r 2——)e B;
270( ) 2\/2 B ( rB)
1 320 o
Ro1(r) = ——=r —€ B, 4,362
271( ) 2\/6 B s ( )

Infine, la funzione d'onda completa dello stdtg¢,m) €

Wnem = Rae(r) Yem(8, @). (4.363)
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Per convenienza riportiamo qui le prime armoniche sfer{dh#&4):

1
Var

—_ i 3 — 3 . iQ
Yio = iy Ecose, Y141 = Fiy/ o sinfe™'?,
wi(17300§6)
16m ’
1 . i
Y201 = i\/—ScosesmGei"P,
’ 8mn

Yoi2 = —4/ %?_[ sinf9et2e, (4.364)

Yo,0

Y20

Osservazioni

(i) La meccanica Quantistica riproduce esattamente illidénergia ottenuti da Bohr
con l'uso del principio di corrispondenza (e che sono in agc@on le linee spettrali
osservate.)

(i) Lestensione spaziale della funzione d’onda delldsfandamentale ~ rg ~ 5.291.
10-%m determina la grandezza dell’atomo d’idrogeno.

(iii) Le formule (per I'energia e per la funzione d’onda) ertite qui sono valide per
tutti gli ioni composti di un elettrone e un nucelo di caridat&ica Z|e|, dopo la
sostituzione? — Z€.

(iv) Il valor medio dell'impulso,/({p2) (calcolabile esplicitamente con la funzione d’'onda
data sopra, o con la relazione di Heisenberg con l'idput- rg), € dell'ordine di
mée/h. La “velocita media & allora

v~ p/m~€/h=0ac~c/137<c, (4.365)

dovea = €?/hc~ 1/137 & lacostante di struttura findl moto dell’elettone & quin-
di non relativistico, e questo giustifi@ posterioril'approssimazione nell’Hamil-
toniana (4.324). Allo stesso tempo si dovra aspettare ieigde delle correzioni
relativistiche dell’'ordine di un per cento.

4.6 Problemi
(1) Sidimostrila disuguaglianza
(WIE W) < W) (4.366)

per qualsiasi statp). Si dimostri che un autovaloradi J3 soddisfar? < j(j +1).

(2) Un sistema di spin A2 sottoposto ad un campo magnetico esterno uniforme si trova
all'istante iniziale nello stato di spin “up (i.e., autastali s;). Sia

I'Hamiltoniana del sistema. Si calcoli la probabilita dhsistema si trovi all'istante
t successivo nello stato di spin “up o nello stato di spin “down
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(3) Costruire le tre matrici che rappresentano le componeltoderatore di spin nel caso
diS=1.

(4) Una particella di spin 1 & nell’autostato$},

Silw) = (W),

dove S, = S-n ¢ la proiezione (componente) dell’operatore di spin nditazione
n. Supponiamo che il versoresia dato da

n = (sinB,0,cosh).

All'istantet = 0 si accende un campo magnetico uniforme e costéhte 0,0, B).
Linterazione e descritta dall’Hamiltoniana,

H=—pS-H

(a) Calcolare la funzione d’onda all'istante- 0.
(b) Calcolare I'operatore di evoluzione

U= efth/ﬁ'

(c) Determinare la probabilitR(t) che una misura ds fatta all’'istantet (per es.,
con un apparato di tipo Stern-Gerlach) dia il risultato,dme funzione df.

(5) Un sistema di due particelle (ambedue di spi & descritto dall’Hamiltoniana,

dove ox(1) & la matrice di Pauloy per la particella 1, ecc. Calcolare i livelli
energetici e le funzioni d’'onda.

(6) Una particella classica con carica elettré&csi muove in un campo magnetico prodotto
da un monopolo magneticB,= gr /r3, doveg & la carica magnetica. Lequazione
del moto (classico)

. e

mr = —r x B.
c

Si dimostri che il “momento angolarex mi non € conservato, e che il momento

angolare modificato

. r
L:rxmrfegF

e invece conservato. In meccanica quantistica le comgbdehmomento ango-
lare sono quantizzate. Dalla considerazione della compenadiale del suddetto
momento angolare modificato, si ottiene la famosa condizdirquantizzazione di
Dirac, o n

J-2h n=012.. (4.368)
La carica elettrica € quantizzata, se supponiamo che datwgiparte dell’'universo
esiste un monopolo magnetico!

(7) Il sistema composto di un elettrone e di un positrone (améefispin /2) € in un
campo magnetico uniforme. L'Hamiltoniana (pit precisateda parte dipendente
dallo spin: ci interesseremo solo di questa) & data da

H=As S+ B(s1z— S2),

doveA e B sono costanti.
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(i) Determinare gli autovalori e gli autostati dell’energid c&esoB = 0,A #£ 0.

(i) Determinare gli autovalori e gli autostati dell'energid o@soA = 0,B # 0.

(iii) Calcolare gli autovaloridell’energia nel caso generalg,0; B+ 0, e discutere
i due limiti (A>>B; B> A)

(8) Siconsideri una particella di spiry2 che si muove in una dimensione, con I'Hamilto-

niana,
1 W
H= —(p2+W(x)2+ﬁcgd—(X)), (4.369)
2 dx
dovep = —ih(d/dx); W(x) & una funzione reale, @ € una delle matrici di Pauli.
Supponiamo che
W[ — oo (4.370)

perx — +oo, di modo che lo spettro & puramente discreto.

(i) PerW(x) = wx, dovew & una costante reale positiva, si trovi lo spettro, i.e., i
livelli energetici e la loro degenerazione.

(i) Per genericaV(x) si dimostrino le seguente identita:

Q?=Q%=H, (4.371)

dove .
Q= 73 (01p+02W(X)); (4.372)
Q= %2 (02p—01W(X)). (4.373)

(iii) Si calcolino i seguenti commutatori e “anticommutatp

{Q1,Q2} = Q1Q2+Q2Q1;  [Q1,H];  [Q2,H];
[o3,H]; [03,Q1]; [03,Q2); {03,Qi}; {03,Q2}. (4.374)

(iv) Dimostrare che per uno stato qualsiasi
(WH|p) = 0. (4.375)
Si dimostri dunque che per I'energia dello stato fondamentale:

Eo > 0. (4.376)

(v) Sidimostri che la condizione necessaria e sufficienté&pe= 0 & che esista una
soluzione normalizzabile di

PWo(X) = —IW (x) 03 Yo(X). (4.377)

Di conseguenza, si dimostri che p&i(x) di Fig.4.1 A esiste uno stato fonda-
mentale coriEg = 0 mentre peW(x) di Fig.4.1 B non esiste alcuno.

(vi) Dimostrare che tutti gli stati coR # 0 sono doppiamente degeneri, mentre lo
stato cork = 0 (se esiste) e singolo.

Nota: Q1, Q2 sono esempi di operatori dupersimmetria Questo sistema (mec-
canica quantistica supersimmetrica in una dimensioneteW(tL981)) illustra bene
l'uso e la potenza di una simmetria.
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W(x) W0

/ N

Figura 4.1: W(x)

(9) Un deutone & composto da un protone e un neutrone. Si sugpbegl potenziale tra
i due nucleoni sia approssimato con una buca tridimensional

Vo s <a
Viual() = {o 0 o a (4.378)

dover =ry1—rp, r1 €rp, sono le posizioni del protone e del neutrone.

i) Supponendo che la massa ridotta dei due nuclgeniny /2, il raggio delle forze
nucleari,a, e la profondita del potenzial, siano tali che

\/2uwpa2 /P2 = g+ g, £k, (4.379)

si trovi 'energia (all'ordineO(g?) ) dello stato fondamentalé & 0) del deuto-
ne.
if) Prendendo per valori del raggio del deutone e della meskaucleone,

a~20fm, my~17-10 ?*gr~940MeV/c? (4.380)

e usando il valore empirico dell’energia di legame del deat@d3 MeV, si
determiniVp. (1 MeV~ 1.6-10%erg.)

Attenzione: per trovar€& all’'ordine O(g?) & sufficiente determinang al primo or-

dine in g, dalle equazioni soddisfatte dae dan, dove& = Ka; n = ka, k? =
2U(E+Vo)/R? > 0,k = \/—2HE/h > 0.

(10) Si consideri un atomo di idrogeno con un termine perturbativ
H =V(r)s-p+s-pV(r) (4.381)

doves e I'operatore di spin dell’elettrone~ %0; p l'impulso,V(r) € un potenziale
a simmetria centrale.

i) Spiegare perchBl’ non puod essere semplicemente scritto covér?s- p;

i) Dire quali degli operatori tr& (paritd),L (momento angolare orbitale)=L +s
(momento angolare totale)?, eL?, sono conservati;

iii) Elencare, senza calcoli espliciti, gli stati non peliati |n,¢,m;s;) per i quali
I'elemento di matrice

/ 1
C(n,Z,m;s;) = (n, £, m;s;|H |1,0,0;5> (4.382)
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e non nullo, dove coiin,¢,m;s;) sono indicati il numero quantico principale,
i momento angolare orbitale, il numero quantico azimytaléa componente
z di spin dell’elettrone. Determinare i rapporti tra gli elenti non nulli per lo
stesso valore di, i.e.,

C(n,¢,m;s;)

Cnonrs,)’ (4.383)

iv) Calcolare esplicitamente gli elementi di matricén, ¢, m;s;) del punto (iii) per
n=2 e per la scelta del potenzialg(r) = g&%(r), e verificare il risultato
generale (4.383),
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4.7 Particelle cariche in campi elettromagnetici

Il moto di una particella caricayf in un campo elettromagnetids, B & descritto dall’'Ha-
miltoniana q

H :[pfEA(r,t)]2+q(p(r,t)+V(r), (4.384)
doveV e il potenziale meccanico.

10A
B=0OxA E=-0UOp— ——. 4.385
xA, i ( )
Il potenziale vettorialéd e il potenziale scalar@ sono definiti a meno di transformazioni

di gauge

10f
A — A+ 0Of; —Q———=; 4,
O - o (4.386)
E, B sono invarianti. L'Hamiltoniana non € invariante:
gof
HoH-J9 4.387
c ot (4.387)

Tuttavia, la fisica resta invariante per tali trasformagioome si dimostra facendo trasfor-
mazioni di gauge sulla funzione d’onda

wodify: (4.388)

'equazione di Schrodinger ha la forma originale
.0
Ih_ﬁ w=Huy (4.389)

in termini di funzione d’onda trasformata.

Le interazioni con il campo vettoriale, rappresentata dasostituzione formalp —
p— ‘C‘A(r,t) nel termine cinetico, € noto come interazioni (o I'acc@wpéento) minimali.
L'equazione di Heisenberg (o I'equazione classica) chaeeég

q

mi = qE+Ef x B, (4.390)

con il noto termine di forza di Lorentz.

4.8 Effetto Aharonov-Bohm

Consideriamo ora il moto di tale particella in un campo maignstaticg 9= 0; A =A(r).
Prima di tutto dimostreremo che la soluzione dell’equazidel moto

0
iAo =Hy (4.391)

in presenza del campo magnetico, e dato, in termini dell@sme del problemaenzaB,
come T

W(r.t) = e FAYO(r ), (4.392)

dove 5

iﬁaqﬂo)(r,t) = H{a—oWO(r,1).

La dismostrazione € elementare: ogni azionp €i —ih] da

p[esh/ PA YO 1 1)] = gAeiaqw‘fr A YO (r 1)+ ech/ HAp YO (r 1), (4.393)
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C

P

c

Figura 4.2:

Percid ogni fattore in H diventap — gA attraversando il fattore di fase, e cosi
H s 1" O (1.1)] = e6h " 548 Hoy O (1, 1) = D (eI #A 0 r,1)), - (4.392)

per un campo magnetico statico.

L'esponente nella (4.392) & I'integrale lungo un cammioa testremita al punto
2, Tale fattore potrebbe essere mal definito se esso dipendaksammino. La modifica
dell'integrale al variare del camminG,— C’ &

L I A PN [ AP D 1 I (PN [« iq
& Lo cﬁ/c dXA = Cﬁfdm _ Ch_/dS (OxA)=clo,  (@:395)
dove® ¢ il flusso magnetico attraverso la superficie circondalia darva chius&’ — C.
Il fattore esponenziale & percio ben definite.( dipende solo dal punto di estremita del
camminor) se il percorso & interamente in una regione priva di campgnatico. Vice
versa, se due cammini rinchiudono una regione con un flusgaatiao non nullo®) (Fig.
4.2), la fase della funzione d’onda in due casi differiscg%db.

Si noti che la differenza della fase (4.395) e, inoltre am&nte per trasformazioni di
gauge

A(r)HA(r)f%Da(r); (4.396)
a differenza della fase in assoluto che di per sé non ha wifisgto fisico.

Una situazione fisica molto interessante si presenta sensidera I'esperienza a la
Young con un fascio di elettroni, con una doppia fenditura® eno schermo (Fig. 1.1)),
ma con l'aggiunta di un solenoide molto lungo e sottile, pagtisto dietro la fenditura
(Fig. ??, il solenoide si estende nella direzione perpendicoldeegina) di modo che
la probablita che I'elettrone passi nella vicinanza déésoide sia trascurabile. Senza la
corrente nel solenoide, percid senza il flusso magnetieietto di tale solenoide sara
trascurabile, e ci si aspetta di osservare la solita frangetferenza equidistante sullo
schermo, dovuta alla differenza dei percorsi tra le ondehaelmeio passato attraverso le due
fenditure (Egs. (4.122), (1.1)).

Ora, in presenza del campo magnetico nel solenoide, laeliffa delle fase delle due
onde acquista un termine in piu, (4.395),

21 qo 2xd

di consegueza le posizioni delle massime intensita salesno si sposteranno di

«— gAL®
" 4mchd’

Questo effetto & stato predetto da Aharonov e Bohm ed@ sparimentalmente conferma-
to. Esso e sorprendente se ci rendiamo conto del fatto aharcgolenoide molto sottile e

(4.398)

2|l punto iniziale del camminag & arbitrario. La dipendenza da pud essere compensato da un opportuno
fattore di fase costante della funziopé” .
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® @ % %
D=0 D =<0

Figura 4.3:

molto lungo (solenoide ideale), il campo magnetico & coute all'interno del solenoide:

B = 0 fuori. In una buona approssimazione si puo supporre ehettfone passa sempre
nella regione di spazio dov® = 0. In meccanica classica, in tale situazione non ci si
aspetterebbe nessun effetto fisico osservabile.

In meccanica quantistica, la particella interagisce copotenziale vettoriale (I'ac-
coppiamento “minimale”: vedi I'eq. A?)), e non direttamente al campo magnetiBo,
L'effetto Aharonov-Bohm & dovuto a questo fatto. Non sieléwttavia affrettarsi a con-
cludere chéA abbia un significato fisico: esso dipende dalla scelta di galmgverita, in
meccanica quantistica, € il fattore di fase, o0 meglio, fletknza di tali fase, (4.395), che
ha un significato fisico ben definito. Si noti che quest'ultinavariante di gauge.

E curioso che I'effetto Aharonov-Bohm, una semplice agglione dei principi della
meccanica quantistica e dell’elettromagnetismo, fostte sicoperto solo trenta anni dopo
che la meccanica quantistica e stata correttamente fatendh Heisenberg, Schrodinger,
Bohr, attorno a 1924. La sottigliezza menzionata sopral’@leaquantita fisica osserva-
bile), tuttavia, ha portato alcuni fisici a mettere in digiaoee la correttezza dell'interpre-
tazione dell'effetto osservato. Tale diatriba & stataltésin modo definitivo in una recente
serie di esperimenti sorprendenti fatti al Laboratoriat@da di Hitachi, da Tonomura e dai
suoi collaboratori.

La diatriba nasceva dai seguenti aspetti piuttosto dglisia sperimentali che teorici,
dell'effetto A-B. Prima di tutto, in meccanica quantisti€alettrone & descritto da una fun-
zione d’'onda, ed ¢ difficile escludere completamente che psnetri anche nella regione
dove & situato il solenoideB # 0. Un altro problema sperimentale & che un solenoide
non € mai ideale, non & mai infinitamente lungo, il campo meéigo non & mai comple-
tamente contenuto all'interno del solenoide. Inoltre, latto di vista teorico, ci sarebbe
la possibilita di scegliere la gauge di modo che nelle equrappaiono soltanto il campo
magneticdB (o le sue derivate), e non piu il potenziale vettorialégauge di Schwinger).
Se tale scelta di gauge fosse legittima, non ci si dovrebpett@se nessun effetto A-B,
se I'elettrone non passa mai nella regione con il campo nagn@ se I'apparato speri-
mentale & costruito di modo che tale probabilita sia coguertrascurabile). Ogni effetto
osservato sarebbe da attribuire alla non perfezione gelieato.

A quest'ultima obiezione teorica pu0 essere rispostareasdo che una gauge in cui
il potenziale vettoriale viene eliminata in favoreRIe necessariamente singolare, e percio
non & una scelta accettabile.

Le prime obiezioni sono pero piu insidiose. L'idea brlfta che ha permesso al gruppo
di Tonomura di ovviare questi problemi, sotto il suggerimeegi C.N. Yang, € stato quello
di ricoprire completamente un anello microscopico di magmen uno strato supercon-
duttore (Fig.4.4). Si veda la nota seguente su aspettinsiatiella superconduttivita e del
fenomeno della quantizzazione del flusso magnetico.

Facendo attraversare il fascio di elettroni parzialmeeter e parzialmente fuori il fo-
ro e osservando la frange dell'interferenza, si osservhedfetti a la Aharonov-Bohm. Ma
I'osservazione determinante € il fatto che lo spostaméifase diventa o zeron, quando
il ricoprimento superconduttore dell’anello diventa stgpaduttore (al di sotto della tem-
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/

Interferenze

Figura 4.4: Lo schema dell’esperimento di Tonomura et.al.

peratura critica per NB; = 9.2K), mentre al di sopra della temperatura critite,prende
un valore generico casuale, dipendente da come il campistao preparato.

Si osservino in particolare che
(i) il campo magnetico & contenuto all'interno dell’amsduperconduttore e non puo fuo-
riuscire (effetto Meissner), e forma un selenoide di formallare idealeij.e., senza
le estremita;
(ii) I'elettrone & schermato dalla ricoprimento esterral’dnello e non pud penetrare
allinterno;
(iii) il flusso magnetico all'interno del anello € quantie:

_mcnh

®h=——, neL (4.399)

Sostituendo questo nella formula (4.397) e ricordando ehéglettroneq = —e, si
ha che lo spostamento di fase sia dato da un multipha, diome e effettivamente
osservato sperimentalmente. Si noti un fattore 2 deteméntia la carica della

coppia di Cooperd = 2€) e quella dell’elettrone.

E da notare che questo esperimento rappresenta una dopifizayea un lato dell’ef-
fetto A-B (nelle campioni con lo sfasament, dall’altro della quantizzazione di flusso

magnetico.

Superconduttore Riportiamo qui gli aspetti principali della superconduité nei metalli

a temperature extremamente basse, in un campo magnetcoeddovute alle interazioni
attrattive dai scambi di fononi gli elettroni formano stetjati chiamate coppie di Cooper.
alle temperature extrememente basse (al di sotto di unaetatypa critica, che dipende
dalla sostanza) le coppie di Cooper - bosoni - condensanoedescritt® da una sorta di

3| bosoni identici debolmente accoppiati tendono a occufmastesso stato quantistico. A temperatura sotto

quella critica, un numero macroscopico dei bosoni occupginstessi stati piu bassi - condensazione di Bose-
Einstein. Il sistema in un tale stato & descritto dallaritiszione dei numeri di occupaziorp) o dalla sua
trasformata di Fouriet¥(r). |W(r)|? rappresenta allora realmente la densita, non la derisitéobabilita, delle

particelle.
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funzione d’onda macroscopitia W soddisfa alle equazioni di Laudau-Ginzburg (prendia-
mo la carica di elettrone;e < 0; quella di una coppia di Coopgr= —2€; m e la massa
dell’elettrone),

i L INY 2w _ -
(P CA) W4aW+b|W2Y =0; (4.400)
DxBZ%T[J, B=0OxA; (4.401)

1 — i * _9 _ _9 *
1= |V (P— AV {(p- AW Y, (4.402)

dovea, b sono parametri che dipendono dalla materia e dalla temparat
Nello stato superconduttore, le coppie di Cooper condensan

W=pe®  p(r)=ww£o (4.403)

con %t—p = 0. La corrente € data da

R I D
j =5 (08— A): (4.404)

I'equazione di continuita allora implica ché-j =0, i.e.,
026 =0, (4.405)

dove é stata assunta la galigeA = 0.
In una massa di superconduttore la (4.405) implica

6 = const (4.406)
Segue la relazione
: aqp
Ly 4.407
: 2mc (4.407)

nota come equazione di London. Visto che la correttricadelle coppie di Cooper &
jel = qj = —2¢j, I'equazione di Maxwell da

_4m, _ 2mpg?

c Jel mCZ ( 08)
di cui la soluzione, assumendo che essa dipende solo da Ueaa®ponenti dr, &
- anqz -1/2
= Z/A =
A=Ape 7", A ( ] ) . (4.409)

Nel gergo della fisica delle particelle, il fotone ha accatistina massa effettiva tramite
il meccanismo di Higgs! In un linguaggio piu tradiziondke(4.409) significa che il cam-
po magnetico e fortemente dampato in una media superdoneluB pud penetrare nel
corpo di superconduttore soltanto per uno spessat@iamato lunghezza di penetrazione
di London. Con dei parametri appropriati per il piombo, pgr éassumendo che ognuno
degli atomi dia un elettrone di conduziong), 3. 107?/ cn?, si ha

1me 1 \/1 1 1 5
)\N\/&?FZN 2_E)T(Tlsmwouo yem. (4.410)

Questo fenomeno, che il campo magnetico viene espulsostatanza superconduttore &
noto comeeffetto Meissner
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Figura 4.6:

Quantizzazione del flusso magnetico

Accade una cosa molto interessante nel caso che la matpeacsmduttrice ha una
forma di un toro (topologicamente l'interno @). Riflettendo il fatto ché e una variabile
angolare, la (4.405) ammette ora una soluzione non b&nale

e(x’y’ Z) =Cz C=—, N¢ Z7 (4411)

dovez ¢ la coordinata lungo il cerchio del toro, con il pericBo(Fig.4.5). In questo caso,
j # A, mavale ancora

2 PO 7&-
09 = —2mcD Af}\zj. (4.412)

La (4.411) e la (4.412) implicano che la correptella direzione dk circola soltanto sulla
superficie del torai,e.,in uno strato di spessore dell’'ordineX]ivice versa, all'interno del
toro abbiamg = 0.

Quest'ultimo fatto significa che lungo il cerchio al centrel doro (la curvaC della
Fig.4.6)) vale

RO — gA, (4.413)
per cui integrando questa equazione lufgg ha (Eq.(4.411))
gjfdm _ ﬁ/de — 2R (4.414)
D’altra parte,
?{dxiA.-:/dS-DxA:/dS-B:qJ: (4.415)

§dx A e uguale al flusso magnetico intrappolato dal toro. Segueigpehe il flusso
magnetico che attraversa un toro di superconduttore &igaato:

o= 2 Cﬁ, nez. (4.416)

q

4Dal punto di vista matematico, le soluzioni non banali (4)4tappresentano elementi del gruppo
fondamentale d&, M1 (S') = Z.
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4.9 Disuguaglianze di Bell, Disuguaglianza di CHSH e Quan-
tum Entanglement

49.1 Problema

L'aspetto probabilistico della meccanica quantisticaystante innumereboli verifiche spe-
rimentali, ci produce tuttora un certo senso di inquietaedirl paradosso di Einstein-
Podolsky-Rosen & stato infatti proposto per “dimostréwe la meccanica quantistica non
poteva essere una teoria completa, ma che essa dovevaczssgietata da variabili addi-
zionali, di modo che la natura probabilistica della preatie della Meccanica Quantistica
fosse dovuta alla media statistica su queste variabili¢d@riabili nascostg Le ipotesi
fondamentali del loro argomento sono la localita e la citasa

J.S. Bell ha formulato I'idea delle variabili nascoste maaticamente, ed ha dimostrato
che, indipendentemente dalla natura delle variabili nstecdale teoria non puo riprodurre
completamente le predizioni della meccanica quantistica.

Le verifiche sperimentali successivamente escogitatechemmfermato I'esattezza del-
le predizioni della meccanica quantistica, escludendo qaalsiasi tipo di teorie con va-
riabili nascoste.

L'esempio considerato da BelPhysics1 (1964) p.195) e quello di un sistema di due
spin%, in uno stato di singolett&e; = 0O,

1
W= TZ[ITU* FANE (4.417)

doves,| 1) = 3| 1), etc. Supponiamo che le due particeNeB siano i prodotti di decadi-
mento di una particella parente cda= 0 e che le particell&, B viaggino in due direzioni
opposte, di modo tale che la misura eseguita sulla padigelbn puo influenzare il risulta-
to della misura fatta sulla particel&a(o vice versa). Supponiamo inoltre che gli osservatori
A e B misurino la componente di spio B, i.e., (a-oa), (b-0g), dovea, b sono due
versori arbitrari.

Prima consideriamo il caso particolage= b. La misura di(a-ga), da o+10-1
come risultato. Supponiamo che la misura della quatditérg), sia fatta immediatamen-
te dopo quella dA. Nel caso(a-oa) =1 il risultato di(a-og), & predetto con certezza
ad essere-1, e vice versa. Visto che la misuradanon puo influenzare dinamicamente
quella diB per ipotesi (la localita e la causalita), sembrerebbedaleepredittivita del risul-
tato di singole misure contradisca con il principio dellacgenica quantistica, secondo il
quale il risultato dovrebbe essetd, conprobabilita % per ciascuno. L'unica via di usci-
ta sembrerebbe che in realta le cose siano “predetermit@spetto probabilistico della
predizione della meccanica quantistica sarebbe dovwuaradincanza della conoscenza -
nel senso classico - del processo microscopico. Perci@tamica quantistica dovrebbe
essere sostituito da una teoria piu completa, con deliahitiraddizionali, di modo che
le predizioni probablistiche della meccanica quantisteguono come legge statistica su
guese ultime.

Questa argomentazione in realta non € corretta. Inf@sto che i due eventi (le misure
di A e di B) non possono essere collegati causalmente, anche l'iafoome che riguar-
da i risultati della misura dA risulta inutile (o meglio, inutilizzabile) per 'osseneat B.
Infatti, non avendo accesso ai risultati di A (almeno non ediatamente prima della mi-
sura), l'osservatore B troverebbe semplicemente per la dedle volte il risultatot-1 e per
I'altra meta delle volte-1, in accordo con la predizione standard della meccanica quan-
tistica. Inoltre, il concetto della successione cronatagiei due eventi non € un concetto
relativisticamente invariante. Secondo la teoria dellatirgta speciale, si puo realizzare
una situazione di modo che sia A che B vede, nel loro risgesiitema di riferimento, la
propia misura anticedente alla misura dell’altro oss@mneatin questo caso I'impostazione
del “paradosso stesso non avrebbe senso.
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Resta tuttavia il fatto che, paragonando le registrazietiedsuccessive misure fatte a
A con quelle fatte a B, si pua posterioriverificare lacorrelazionetra i risultati dei due
esperimenti. Secondo la meccanica quantistica una sumcess risultati ad A(++ — +
— —...), dovrebbe essere accompagnato dalla successionret — + +...), trovata a B:
le due serie di risultati sono perfettamente correlateutddtnente questa predizione della
meccanica quantistica & verificata sperimentalmente.

Dal punto di vista filosofico la situazione appare infatti uparadossale. Per 'osser-
vatore B, la successiorie- — + — + +...), appare completamente casuale. Ogni misura
da il risultato 0 1 0-1, con probabilité% ciascuno, la funzione d’'onda essendo la (4.417)
prima della misura. Se si dovesse considerare il collaséafdazione d’'ond& dovuta ad
ogni misura a B, per es. L

ﬁ[lm D =111), (4.418)
come processo fisico (che avviene attorno al punto B in unmmé@tato momento), la pre-
dizione della meccanica quantistica implicherebbe cheitara fatta al punto B induce
istantaneamente il collasso della funzione d’'onda anchmuato A. Il che sarebbe una
violazione grossolana della localita delle interaziodeda causalita.

Nel caso in cui i due apparecchi a la Stern-Gerlach sonof@tien maniera generica, i
risultati delle misure a B non saranno piu univocamenterdehati da quelli delle misure
fatte a A. Per es., la successione di risultati agtA+ — + — —...) potrebbe essere accom-
pagnata d&+ —++ —+...) con assenza apparente delle correlazioni tra le due. In@ues
caso, dunque, non ci sono contraddizioni?

Il fatto € che la meccanica quantistica da una precisazoe sulla media della corre-
lazione tra le due serie di misure, per generico orientaoratativo dia eb. Se definiamo
la correlazione spin-spin,

F(a,b) =((a-oa)(b-08)) =R(a-oa)R(b-0g), (4.419)

doveR(a-oa) = +1 eR(b-og) = +1 rappresentano i possibili risultati delle misure, la
meccanica quantistica predice che ci sia una correlaziarie tue registrazioni,

M.Q.: F(a,b) ={((a-oa)(b-0B)) = —(a-b) = —cosh, (4.420)

(dimostrateld dove® € I'angolo traaeb. Il problema & percio ben definito, indipendente
da qualsiasi questione filosoficag capace una teoria di tipo con le variabili nascoste,
riprodurre esattamente il risultato della meccanica quantstica, Eq.(4.420)?

4.9.2 Dimostrazione
La dimostrazione che la risposta & negativa, € stata dalasd Bell (1960). Siano

A(@A) =+1,  B(bA)==+1 (4.421)

la predizione peR(a- oa) e R(b- og), rispettivamente, di una teoria con variabili nascoste
{A}. Naturalmente teorie che predicono i risultati diversi&th possono essere esclusi,
visto che tale & un fatto empirico.

La correlazione spin-spin & dato, in questa teoria da

Teo. Var. Nasc: F(ab) = /d)\ P(N)A(a,A)B(b,A), (4.422)
dove®?(\) & la probabilita statistica per vari valori Nj con®

P(\) >0, VA, / dAP(\) = 1. (4.423)

SErwin Schrédinger disse: “If we should go on with this danedrvave function collapse, then I'm sorry that
| ever got involved.

6Tutte le formule saranno scritte con una variabilema la generalizzazione ai casi con pil variabili &
immediata.
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Inoltre, per garantire che questo modello riproduca illté&o della meccanica quantistica
per il caso particolargg = b, possiamo porre

B(a,A) = —A(aA) (4.424)

per cui
F(ab)=— / dA PO\ A(@,A) A(b, ). (4.425)

Ora consideriamo

F(a,b)—F(ac)
—/d)\ P(N)[A(a,A)A(b,A) —A(a,A)A(c,N) ]

_ /d)\ P(\) AN A(b, A [A(b, ) A(C, ) — 1], (4.426)
percio

IF(a,b)—F(a,c)| < /d}\ P(\) (1—A(b,M)A(C,)))
= 1+F(b,c). (4.427)

Dunque in qualsiasi teoria con delle variabili nascostedaelazione spin-spin soddisfa
la disuguaglianza,
|F(a,b)—F(a,c)| <1+F(b,c). (4.428)

(Disuguaglianza di BeJl Si vede facilmente che la meccanica quantistica violka et
lazione. Sea € in una generica direzionele~ c, il primo membro della (4.428) sara
dell'ordine diO(|b —c|): di conseguenza la funziorig(b,c) non pud essere al minimo
stazionario e uguale al, poiché in questo caso il secondo membro sarebbe defi®rd
di O((b — ¢)?). Visto che in meccanica quantistica, la funzione di coriiela spin-spin &
F(a,b) = —(a-b) e ha il minimo stazionario aal= b, concludiamo che nessuna teoria del
tipo (4.425) puo riprodurre le predizioni della meccargeantistica per tutte le scelte @i
eb.

Bell ha dimostrato che & possibile costruire un modellordi teoria con variabili na-
scoste, se tal modello dovesse riprodurre il risultatoadeleccanica quantistica soltanto
per particolare configurazioni die b, per es.a=b, a= —b, oa L b. E 'impossibilita
che tale modello “imiti perfettamente la predizioni dell@aecnanica quantistica per tutte le
scelte dia e b, che esclude teorie di questo genere come teorie fisiche.

La correlazione tra le due particelle che non possono igieraé nel presente né in
futuro, ma che sono interagite nel passato, come nell’egediplue elettroni, & caratteri-
stica tipica di tutti i sistemi quantistici. Questa cormtme, sperimentalmente osservata
e perfettamente in accordo con la predizione della mecaapantistica, ma che non puo
essere riprodotta da nessun tipo di teoria con variabiissizhe classiche addizionnali, &
nota come “Quantum Entanglement.

4.9.3 Coppie di fotoni correlati

Si puo fare un’analisi molto analoga con una coppia di fotiomece di elettroni. Conside-
riamo un atomo in uno stato eccitato cba- 0, che decade con due successive transizioni
a dipolo elettrico,

J=0—-J=1)—J=0), (4.429)

processo chiamato cascata atomica SPS. Se i due fotoni seapvati in direzioni oppo-
ste, essi avranno la stessa polarizzazione. Infatti, &fi stiziali e finali dell’atomo sono
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ambedue invarianti per rotazioni tridimensionali. Seghe anche lo stato di due fotoni
deve essere invariante. Se indichiamo con

X, LY, I, Iy, (4.430)

i quattro possibili stati di polarizzazioni lineari dei disgoni, soltanto le due combianzioni
lineari
A1 1 B 11 e V1 (8.43)
v2 o v2 o
sono invarianti per rotazioni attorno all’ass@a direzione dell'impulso di uno dei fotoni).
Visto che le interazioni elettromagnetiche sono invaripet parita, si trova che la funzione
d’onda corretta dei due fotoni in questo sistemp,e—= M
La misura della polarizzazione e i possibili risultati perfotone sono descritti dall'o-
peratore

PL=|x)(X| = (é 8) ; (4.432)

che misura la polarizzazione lineare nella direzioneon il risultato 1 o 0. (Vedi la
(3.118)),0da

00
P2 =y){yl = (o 1) : (4.433)
che misura la polarizzazione lineare nella direzigne piti in generale da

Py = (|x) cosB + |y) sinB)((x| cosO + (y||sinB) = (cc?sc()as;ie cossienzsgne)_ (4.434)

che misura la polarizzazione lineare nella direziwesd, sin6, 0). Gli autovalori di questi
operatori sono 1 o 0. Introdurremo operatori associati

Ze = 2P9 — 1, 21’2 = 2P1,2 -1 (4.435)

con autovalori1.

Se i due osservatori misurassero la stessa polarizzagienes. 21, le due registrazio-
ni saranno perfettamente correlati, per8s.(++—-—-—+...)eB: (++———+...). Lo
stesso vale se i due polarizzatori sono messi nella stessaatie(cosd, sin, 0). Se inve-
ce i due osservatori misurano la polarizzazione in due idinegeneriche\ : (cosd, siné, 0)
eB: (cosY, sin®’, 0), allora la predizione della meccanica quantistica per leetazione

F(6,0) =R(Zo)R(Zg) (4.436)

(Pi|Zg®@Zg|Py) =cos20—8). (4.437)
L'argomento di Bell si applica esattamente (quasi) cosi'épalla correlazion& (6,8):

F(6,6) = /dw ABNA®.N),  ABA) =1, (4.438)
Perciod in una teoria qualsiasi con le variabili nascosteysx la disuguaglianza,
|F(8,0') —F(6,8")| <1-F(0",0). (4.439)

Tale disuguagliaza ¢ violata dalla meccanica quantigeécayenerica scelta 6i6',0”.
Esercizio Dimostrare che la disuguagliaza di Bell (4.439) ¢ violaaladmeccanica quan-
tistica (4.437), peres. p€r— 0 =0 - 0" =T
La disuguaglianza di Bell pud essere generalizzata. Un@atwazione delle funzioni
di correlazione,
F(61,082) 4+ F(03,02) + F(61,64) — F(03,04) (4.440)
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e data, secondo una teoria con variabili nascoste, datkssione
/d)\ P(N)[(A(B1,A) + A(B3,A)) A(B2,A) + (A(B1,A) — A(B3,A)) A(Ba,A)].  (4.441)
Ma I'espressione tra la parentesi quadrata di (4.441) éeem?2, poiché seA(81,A) =
A(B3,A) il primo termine e+2 mentre se\(61,A) = —A(B3,A) il secondo termine &-2.
Segue percio (disugualgianza di CHSH)
|F(61,02) + F(83,082) + F(01,04) — F(03,04) | < 2. (4.442)

E facile verificare che la meccanica quantistica viola tideguaglianza, in generale.



