
Problems Chapter 10

                     Quantum                 Mechanics
                      K. Konishi, G. Paffuti

                    

Problem 1

Apply a variational method with hydrogenoid wave functions to the computation of the ground state energy of the helium. Use Temple's method to
give an estimate of the error.

æ Solution

The variational wave function is (see also the text)

(1.1)Ψ@x1, x2D = j@r1D j@r2D; j@rD =
1

Π

 Z1
3�2

ã
-Z1 r .

We use atomic units. Z1is the variational parameter and plays the role of an effective charge.

The Hamiltonian of the system is

(1.2)H =
p1
2

2
+
p2
2

2
-

Z

r1
-

Z

r2
+

1

È x1 - x2 È º H0 + H12.

In the text it has been shown that 

(1.3)X  Ψ È H È Ψ \ = - Z -
5

16

2

.

which has a minimum at

(1.4)Z1 = Z -
5

16
.

The Temple estimate for the error is

(1.5)E - Σ £ E £ E + Σ ,

where E is the exact value and Σ is the variance of the variational calculation

(1.6)Σ = X  H Ψ É H Ψ \ - E2 = X  H0 Ψ É H0 Ψ \ + 2 X  H0 Ψ É H12 Ψ \ + X  H12 Ψ É H12 Ψ \ - E2.

In polar coordinates we have easily

(1.7)H0 Ψ = -Z1
2

+ HZ1 - ZL 
1

r1
+

1

r2
 Ψ; H12 Ψ =

1

È x1 - x2 È  Ψ.

From (1) it follows easily

X Ψ È  
1

r1
 È Ψ \ = Z1 ; X Ψ È  

1

r1
2

 È Ψ \ = 2 Z1
2 ;

substitution in previous equation gives

(1.8)X  H0 Ψ È H0 Ψ \ = Z1
2 I6 Z2 - 8 Z Z1 + 3 Z1

2M.
The second term in (6) is, using again (7) and symmetry

X  H0 Ψ È H12 Ψ \ = - Z1
2
 X Ψ H12 È Ψ \ + 2 HZ1 - ZL à Ψ

1

È x1 - x2 È  
1

r1
 Ψ = -

5

8
 Z1
3

+ 2 HZ1 - ZL I.

Use has been made of the integral computed in the text



(1.9)X Ψ È H12 È Ψ \ =
5

8
 Z1.

The integral I can be computed using multipole expansion (or using Fourier transform):

(1.10)
1

È r1 - r2 È = â
{=0

¥ 1

r>

 
r<

r>

{

 P{@Cos HΓLD;
Only the term with { = 0 contributes

I = H4 ΠL2 à
0

¥

dr1 r1
2 à

0

r1

dr2 r2
2
1

r1
2

Hj@r1D j@r2DL2 + à
0

¥

dr1 r1
2 à

0

r1

dr2 r2
2
1

r1
 
1

r2
 Hj@r1D j@r2DL2 =

3

4
 Z1
2.

The third integral in (6) can be written, rescaling coordinates with r ® x�Z1:

X  H12 Ψ È H12 Ψ \ =
Z1
2

Π2
 à d3 x1 d3 x2

1

È x1 - x2 È2  ã
-2 x1  ã

-2 x2.

Taking the z axis along the direction of x1, the integrand depend only on Θ, the angle between x1and x2. Integrating on the rest of angles give a facto

4Π for the solid angle of x1and a factor 2Π for the azimuthal angle of x2, then

X  H12 Ψ È H12 Ψ \ =
Z1
2

Π2
8 Π

2
 à dr1 r1

2 dr2 r2
2 d HCos@ΘDL 

1

r1
2 + r2

2 - 2 r1 r2 Cos@ΘD  ã
-2 Hr1+r2L

=
2

3
 Z1
2.

The  integral  in  Θ  is  elementary.  The  radial  integral  can  be  computed  integrating  by  part.  The  whole  integral  an  also  been  computed  using  Fourier
transform, with the three dimensional transforms:

F@e-rD =
8 Π

Ik2 + 1M2
; FB 1

r2
F =

2 Π2

È k È.

Summing the various contribution we get, inserting the value for Z1and with Z=2

Σ =
121 H5 - 16 ZL2

98304
> 0.897; Σ > 0.95 .

As the first order value is E~2.85 we see that Temple's  estimate is quite poor. 

Problem 2

Let us interpret the scale parameter Α used in the variational computations of anharmonic oscillator as a variable frequency. Show that the choice
used in the test is the  one suggested by the Bohr-Sommerfeld quantization conditions.

æ Solution

à The choice of the scale

The Hamiltonian of the problem is

(2.1)H =
1

2
 p2 +

Μ

2
 x2 +

g

2
 x4.

In the text and in the numerical applications we introduced a scale parameter Α with the change of variables x® x/Α:

(2.2)HΑ =
1

2
 Α
2
 p2 +

Μ

2 Α2
 x2 +

g

2 Α4
 x4.

Clearly  the  spectrum  do  not  depend  on  a  change  of  variables,  or,  equivalently,  dE[Α]/dΑ  =  0,  the  eigenvalues  are  stationary  with  respect  to  Α
variations. This is true in the exact problem. If the problem is solved with within a finite - size basis Hilbert space, the stationarity  with respect to Α
becomes a constraint which select the "best" approximation. 

In the text we try to make this choice of Α nearly independent on the particular eigenvalue to be studied, by minimizing the mean value of H on the
highest  state  in the basis.  The idea is  that  lower eigenvalues for  systems like an anharmonic oscillator are more stable,  than a stabilization of high
eigenvalues automatically should work for the lower ones.

Let fk@xDthe usual harmonic oscillator basis with Ω=1:
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(2.3)fk@xD =
1

Π1�4
1

2k-1 Hk - 1L!

 Hk-1@xD Exp@-x^2�2D; k = 1, 2, ...

The scale parameter Α is introduced by taking as a basis the functions

(2.4)Fk@xD = Α  fk@Α xD.
A change of scale show that matrix elements of the Hamiltonian (1) in this basis are equal to matrix element of the modified Hamiltonian in the basis
fk:

(2.5)à âx Fk@xD H@xD Fj@xD = Α à âx fk@Α xD H@xD fj@Α xD = à ây fk@yD HBy
Α

F fj@yD = à ây fk@yD HΑ@y D fj@yD.
The wave functions of an harmonic oscillator depend on x through the combination

Ξ
2

= m Ω x2

then the functions Fk can be viewed as the harmonic oscillator functions for an oscillator with Ω = Α2.

In  this  interpretation  the  best  Α  is  the  best  frequency  to  choose  for  the  basis  functions.  The  problem  of  optimization  for  Α  can  be  stated  in  the
alternative way: which is the best oscillator which approximate the system? If we found this oscillator we expect that the zero order approach to the
problem is optimal.

à The equation for Α

From known matrix elements for x and p it is trivial to compute the mean value of the Hamiltonian for the n-th state  of the Α oscillator.

From

(2.6)

< n É x2 É n > =
Ñ

mΩ
 
2 n + 1

2
;

< n É x4 É n > =
Ñ

mΩ

2

 
3

4
 I2 n2 + 2 n + 1M;

< n É p2 É n > = Ñ m Ω 
2 n + 1

2
;

we have (we write Ω = Α2 )

(2.7)E@ΩD = Xn È  HΑ È n\ =
2 n + 1

4
 Ω +

Μ2

Ω
+
3

8
 g

1

Ω2
 I2 n2 + 2 n + 1M.

Stationarity with respect to Ω, i.e. imposing ¶ E/¶ Ω = 0, we get

(2.8)Μ
2
 H2 n + 1L Ω - Ω

3
 H2 n + 1L + 3 g I1 + 2 n + 2 n2M = 0.

With Ω ® Α2this is the equation used in the text and in the numerical notebooks.

à Bohr Sommerfeld conditions

For large n we see that to cancel the quadratic term in (8) Ω must grow with n. The leading term in n becomes

- Ω
3
 2 n + 6 g n2 = 0 Þ Ω ~ H3 g nL1�3

.

Substitution in (7) gives at the leading order in n

(2.9)E ~
3

4
 H3 gL1�3

 n4�3
> 1.08 g1�3

 n4�3.

To (9) contribute the kinetic term and the anharmonic term, in agreement with the expectation that for high energies the x4term is the leading term in

potential energy.

At large n we expect that old quantum theory is at work. The Bohr Sommerfeld quantization condition

2 à
a

a

âx 2 E - Μ
2
 x2 - g x4 = 2 Π n,

with  ±a  the  classical  inversion  points,  should  give  a  good  approximation  to  the  eigenvalues  of  (1).  For  large  n  we  can  neglect  the  x2term,  the

inversion points are approximated by
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± a = ±
2 E

g

1�4
,

and the Bohr Sommerfeld condition reads, with x = a z:

2 Π n = 2
2 E

g

1�4
2 E à

-1

1

âz 1 - z4 = 27�4 g-1�4
 E3�4 K ;

K =
Π G@1�4D
4 G@7�4D > 1.748

The resulting energies are

(2.10)E ~ 2-7�3
 
2 Π

K

4�3
g1�3

 n4�3
> 1.09 g1�3

 n4�3.

Confronting  this  result  with  (9)  we  see  that  our  choice  for  Ω  (i.e.  for  Α)  gives  an  almost  correct  result  for  higher  n,  this  means  that  our  effective
oscillator, by itself,  fit the levels. In terms of the Hamiltonian matrix the diagonal elements of the HΑ Hamiltonian give almost the whole eigenvalue,

the mixing with other states is small, this means that our approximation is a good one.

Problem 3

Compute the corrections m/M to the helium atom Hamiltonian by an explicit coordinate transformation in the Schrödinger equation.

æ Solution

The Hamiltonian of the problem is:

(3.1)H =
1

2 m
 q1

2
+

1

2 m
 q2

2
+

1

2 M
 qN

2
-

Z e2

È  Ξ1 - ΞN È -
Z e2

È  Ξ2 - ΞN È +
e2

È  Ξ1 - Ξ2 È
Ξ = (Ξ, Η, Ζ) are the coordinates of the electron (1,2) and of the nucleus in a given inertial frame. q are the momenta in the inertial frame.

We change coordinates choosing as independent degrees of freedom the coordinates of center of mass of the system and the relative coordinate of the
electrons with respect to the nucleus:

(3.2)X =
1

2 m + M
 IM ΞN + m Ξ1 + m Ξ2M ; x1 = Ξ1 - ΞN ; x2 = Ξ2 - ΞN .

The interaction depend only on x coordinates as Ξ1 - Ξ2= x1- x2 .

Let us consider the change of variables for one axis,  the first as an example (index here refer to electrons, i,j = 1,2 )

(3.3)

¶

¶Ξi

=
¶X

¶Ξi

 
¶

¶X
+ â

j=1

2 ¶xj

¶Ξi

 
¶

¶xj
=

m

2 m + M
 

¶

¶X
+

¶

¶xi
;

¶

¶ΞN

=
¶X

¶ΞN

 
¶

¶X
+ â

j=1

2 ¶xj

¶ΞN

 
¶

¶xj
=

M

2 m + M
 

¶

¶X
-

¶

¶x1
-

¶

¶x2
;

In the Schrödinger representation q = -ä Ñ ¶ /¶ Ξ. Defining the corresponding momenta in the C.M. frame:

(3.4)P =
Ñ

ä
 

¶

¶X
; pi =

Ñ

ä
 

¶

¶xi

The relations (3) imply

(3.5)qi =
m

2 m + M
 P + pi ; qN =

M

2 m + M
 P - Hp1 + p2L.

The two terms in kinetic energy become

(3.6)

1

2 M
 qN

2
=

1

2
 

M

H2 m + ML2  P2 -
1

2 m + M
 P× Hp1 + p2L +

1

2 M
 Hp1 + p2L2;

1

2 m
 q1

2
+

1

2 m
 q2

2
=

m

H2 m + ML2  P2 +
1

2 m
 p1
2

+
1

2 m
 p2
2

+
1

2 m + M
 P× Hp1 + p2L.

And summing the two contribution
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And summing the two contribution

(3.7)EKin =
1

2 m + M
 P2 +

1

2 Μ
 Ip12 + p2

2M +
1

M
 p1 ×p2 ; Μ =

m M

m + M
= reduced mass of the electron.

The total Hamiltonian takes the form

(3.8)H =
1

2 m + M
 P2 +

1

2 Μ
 Ip12 + p2

2M + U +
1

M
 p1 ×p2 .

The first term is the kinetic energy due to the movement of the center of mass of the atom. The second term is the one usually considered to compute
energy levels: it is equivalent to a system with an infinite mass nucleus where electron mass has been substituted by the reduced mass. The last term is
called mass correction, or polarization term.

Problem 4

Perform the change of variables for Hylleraas coordinates in helium

(4.1)s = r1 + r2 ; t = r1 - r2 ; u = r12; 0 £ t £ u £ s £ ¥

Write the Schrödinger equation for a rotational invariant state in these coordinates.

æ Solution

If (r, Θ, j) the angular coordinates for each electron and Γ is the angle between the directions between the two vectors x1and x2:

r12
2

= r1
2

+ r2
2

- 2 r1 r2 Cos@ΓD; Cos@ΓD = Cos@Θ1D Cos@Θ2D + Sin@Θ1D Sin@Θ2D Cos@j2 - j1D.
From (1) and this relation one get easily the relations

(4.2)

r1
2

+ r2
2

=
s2 + t2

2
; 2 r1 r2 =

s2 - t2

2
;

1

r1
+

1

r2
=
r1 + r2

r1 r2
=

4 s

s2 - t2
;

1

r1
-

1

r2
=
r2 - r1

r1 r2
= -

4 t

s2 - t2
;

1 - Cos@ΓD = 2
u2 - t2

s2 - t2
; 1 + Cos@ΓD = 2

s2 - u2

s2 - t2
.

A function with spherical symmetry can depend only on s, t, u variables. Let us see how the usual derivatives are written on Ψ[s,t,u]. x and y are the
coordinates of electron 1 and 2 respectively. A short computation gives

¶

¶xi
 Ψ =

xi

r1
 ¶sΨ +

xi

r1
 ¶tΨ +

xi - yi

r12
 ¶uΨ ;

¶

¶xi
 
xi

r1
 ¶sΨ =

2

r1
 ¶sΨ + ¶ssΨ + ¶stΨ +

x× Hx - yL
r1 r12

 ¶suΨ ;

¶

¶xi
 
xi

r1
 ¶tΨ =

2

r1
 ¶tΨ + ¶stΨ + ¶ttΨ +

x× Hx - yL
r1 r12

 ¶tuΨ ;

¶

¶xi
 
xi - yi

r12
 ¶uΨ =

2

r12
 ¶uΨ +

x× Hx - yL
r1 r12

 H¶suΨ + ¶tuΨ L + ¶uuΨ.

Using

x× Hx - yL =
1

2
 Hx + yL × Hx - yL +

1

2
 Hx - yL2 =

st + u2

2
;

one can compute easily the action of the laplacian operator for the first variable on Ψ

(4.3)Dx Ψ =
4

s + t
 H¶sΨ + ¶tΨL +

2

u
 ¶uΨ + H¶ssΨ + ¶ttΨ + ¶uuΨL + 2 ¶stΨ + 2 

st + u2

u Hs + tL  H¶suΨ + ¶tuΨ L.
The operator with respect to y can be obtained by changing t®-t:

(4.4)Dy Ψ =
4

s - t
 H¶sΨ - ¶tΨL +

2

u
 ¶uΨ + H¶ssΨ + ¶ttΨ + ¶uuΨL - 2 ¶stΨ + 2 

-st + u2

u Hs - tL  H¶suΨ - ¶tuΨ L.
The kinetic part of the Schrödinger equation takes the form
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The kinetic part of the Schrödinger equation takes the form

(4.5)

1

2
 IDx Ψ + Dy ΨM = H¶ssΨ + ¶ttΨ + ¶uuΨL +

2

u
 ¶uΨ +

4

s2 - t2
 Hs ¶sΨ - t ¶tΨL +

+
2 s

s2 - t2
 
1

u
 Iu2 - t2M ¶suΨ +

2 t

s2 - t2
 
1

u
 Is2 - u2M ¶tuΨ .

The Schrödinger equation takes the form (in atomic units)

E Ψ = -H¶ssΨ + ¶ttΨ + ¶uuΨL -
2

u
 ¶uΨ -

4

s2 - t2
 Hs ¶sΨ - t ¶tΨL

-
2 s

s2 - t2
 
1

u
 Iu2 - t2M ¶suΨ +

2 t

s2 - t2
 
1

u
 Is2 - u2M ¶tuΨ -

4 Z s

s2 - t2
 Ψ +

1

u
 Ψ

or

(4.6)

u Is2 - t2M H¶ssΨ + ¶ttΨ + ¶uuΨL + 2 Is2 - t2M ¶uΨ +

4 u Hs ¶sΨ - t ¶tΨL + 2 s Iu2 - t2M ¶suΨ + 2 t Is2 - u2M ¶tuΨ +

4 Z u sΨ - Is2 - t2M Ψ = - E u Is2 - t2M Ψ.

Problem 5

Write in terms of Hylleraas variables the mean energy of the Hamiltonian on a spherical symmetric state. Write the Schrödinger equation resulting
from the variational principle and compare with the result of previous problem.

æ Solution

We use the notation of the text and of the previous problem. The Hylleraas variables are defined by

(5.1)s = r1 + r2 ; t = r1 - r2 ; u = r12; 0 £ t £ u £ s £ ¥

If (r, Θ, j) the angular coordinates for each electron and Γ is the angle between the directions between the two vectors x1and x2:

r12
2

= r1
2

+ r2
2

- 2 r1 r2 Cos@ΓD; Cos@ΓD = Cos@Θ1D Cos@Θ2D + Sin@Θ1D Sin@Θ2D Cos@j2 - j1D.
From (1) and this relation one get easily the relations

(5.2)

r1
2

+ r2
2

=
s2 + t2

2
; 2 r1 r2 =

s2 - t2

2
;

1

r1
+

1

r2
=
r1 + r2

r1 r2
=

4 s

s2 - t2
;

1

r1
-

1

r2
=
r2 - r1

r1 r2
= -

4 t

s2 - t2
;

1 - Cos@ΓD = 2
u2 - t2

s2 - t2
; 1 + Cos@ΓD = 2

s2 - u2

s2 - t2
.

We want to write in term of s, t, u variables

(5.3)

ZΨ È  H È  Ψ \
ZΨ È  Ψ \ = E.

à The jacobian

First we compute the jacobian from cartesian to Hylleraas variables. Integrating on inessential angles:

d3 x1 d3 x2 = H4 ΠL H2 ΠL r1
2
 r2
2 dr1 dr2 d HCos@ΓDL.

From previous relations

r1
2
 r2
2

=

Is2 - t2M2
4

; Cos@ΓD =
s2 + t2 - u2

s2 - t2
.

A simple computation gives 
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¶Hr1, r2, Cos@ΓDL
¶Hs, t, uL = det 

1

2

1

2
0

1

2

1

2
0

* * -
u

s2-t2

=
1

2
 

u

s2 - t2
.

Then the volume element can be written (for spherical symmetric states) :

(5.4)d3 x1 d3 x2 = 8 Π
2

Is2 - t2M2
4

 
1

2
 

u

s2 - t2
 ds dt du = Π

2 u Is2 - t2M ds dt du.

As only even - even and odd - odd (in t) matrix elements can be computed (i.e. between symmetric and antisymmetric wave functions) we can limit
the t integration to the region t > 0 and use the expression (4) with an additional factor 2 in front.

à The quadratic forms

The Hamiltonian, and the mass correction term (see text and problem 3) can be written in terms of the following quadratic forms

(5.5)M =
1

2
à JIÑ1YM2 + IÑ2YM2N ; L = à Z

r1
+

Z

r2
-

1

r12
 Y
2 ; N = à Y

2; K = à IIÑ1YM IÑ2YMM ;

The forms L and N are elementary. A part an overall coefficient I2 Π2)

L = à
0

¥

â s à
0

s

â u à
0

u

â t I 4 Z u s - Is2 - t2MM Y2 ;

N = à
0

¥

â s à
0

s

â u à
0

u

â t u Is2 - t2M Y2 ;

The computation of M and K is a bit more laborious. Using the result of previous problem and indicating with x, y the coordinates of first and second
electron:

¶

¶xi
 Ψ =

xi

r1
 ¶sΨ +

xi

r1
 ¶tΨ +

xi - yi

r12
 ¶uΨ ;

¶

¶yi
 Ψ =

yi

r2
 ¶sΨ -

yi

r2
 ¶tΨ -

xi - yi

r12
 ¶uΨ ;

A bit of work, or a look at notebook NB-10.15, allow to write using these relations:

M = à
0

¥

â s à
0

s

â u à
0

u

â t s Iu2 - t2M ¶ Y

¶s

¶ Y

¶u
+

¶ Y

¶s

¶ Y

¶u
+

t Is2 - u2M ¶ Y

¶ t

¶ Y

¶u
+

¶ Y

¶ t

¶ Y

¶u
+ Is2 - t2M u

¶ Y

¶s

¶ Y

¶s
+

¶ Y

¶ t

¶ Y

¶ t
+

¶ Y

¶u

¶ Y

¶u
;

K = à
0

¥

â s à
0

s

â u à
0

u

â t -2 s Iu2 - t2M ¶ Y

¶u

¶ Y

¶s
+ u Is2 + t2 - 2 u2M ¶ Y

¶s

2

-
¶ Y

¶ t

2

- 2 t Is2 - u2M ¶ Y

¶u

¶ Y

¶ t
- u Is2 - t2M ¶ Y

¶u

2

;

à Variational principle

Variational principle implies

(5.6)
∆M

∆Ψ
-

∆L

∆Ψ
- E

∆N

∆Ψ
= 0

In performing the variations one has to remember that M is a symmetric form. A short calculation gives

1

2
 
∆L

∆Ψ
= I4 Z u s - Is2 - t2MM Ψ;

1

2
 
∆N

∆Ψ
= u Is2 - t2M Ψ;

1

2
 
∆M

∆Ψ
=

u Is2 - t2M H¶ssΨ + ¶ttΨ + ¶uuΨL + 2 Is Iu2 - t2M ¶suΨ + t Is2 - u2M ¶tuΨM + 2 u s ¶sΨ - 2 u t ¶tΨ + Is2 - t2M ¶uΨ +

H2 u s ¶sΨ - 2 t u ¶tΨL + Iu2 - t2M ¶uΨ + Is2 - u2M ¶uΨ =

u Is2 - t2M H¶ssΨ + ¶ttΨ + ¶uuΨL + 2 Is Iu2 - t2M ¶suΨ + t Is2 - u2M ¶tuΨM + 4 u s ¶sΨ - 4 t u ¶tΨ + 2 Is2 - t2M ¶uΨ.

Substitution in (6) gives

(5.7)

u Is2 - t2M H¶ssΨ + ¶ttΨ + ¶uuΨL + 2 Is2 - t2M ¶uΨ +

+ + +
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(5.7)

u Is2 - t2M H¶ssΨ + ¶ttΨ + ¶uuΨL + 2 Is2 - t2M ¶uΨ +

4 u Hs ¶sΨ - t ¶tΨL + 2 s Iu2 - t2M ¶suΨ + 2 t Is2 - u2M ¶tuΨ +

4 Z u sΨ - Is2 - t2M Ψ = - E u Is2 - t2M Ψ.

The same result obtained in previous problem.

Problem 6

Write  the  effective  Hamiltonian  for  the  relativistic  corrections  in  S  states  of  helium.  Compute  the  effect  on  the  ground  state  using  the  simplest
variational wave function. (For the general atomic Hamiltonian see Complements of chapter 14).

æ Solution

The general form of the Hamiltonian for an atom is

(6.1)H = H0 + H1 + ULS + Uee
H1L

+ Uee
H2L

+ O 
m2

M2
,
m

M
 Α
2 .

m and M are electron and nucleus mass. Α is the fine structure constant. The various operators are:

(6.2)H0 = â
a

pa
2

2 Μ
- â

a

Ze2

ra
;

(6.3)H1 = -â
a

pa
4

8 c2 Μ3
+ Π

Z e2 Ñ2

2 m2 c2
 ∆

H3L@raD ;

(6.4)ULS = â
a

Z e2 Ñ2

4 m2 c2
 
1

ra
3

 La ×sa ;

(6.5)Uee
H1L

= -â
a<b

e2

2 m2 c2 rab
 Ipa ×pb + nab Inab ×paM pbM - â

a<b

Π
e2 Ñ2

m2 c2
 ∆

H3L@rabD +
1

M
 â
a<b

pa ×pb;

(6.6)Uee
H2L

= â
a<b

e2 Ñ

4 m2 c2 rab
2

 I-HΣa + 2 ΣbL × Inab ïpaM + HΣb + 2 ΣaL × Inab ïpbM +

(6.7)+ â
a<b

e2 Ñ

4 m2 c2
 

Σa × Σb - 3 HΣa ×nabL HΣb ×nabL
rab
3

- Σa × Σb

8 Π

3
 ∆

H3L@rabD

nab is the unit vector from particle b to particle a. Σ are Pauli matrices. The sums run on electrons.

We want to extract from this general form the effective Hamiltonian for S states in helium.

1. The first two terms in Uee
H2L have no first order contribution in S states as they transform respectively as a vector and a traceless symmetric tensor 

(L=2). The Wigner-Eckart theorem implies that their mean value on S states is zero.
2. A similar result holds for ULS as L|L=0\ = 0.

3. Finally we note that 

1

4
 Σa × Σb =

S HS + 1L
2

-
3

4
= : -

3

4
singlet

1

4
triplet

The final form of the relativistic corrections can then be written as (we use atomic units):

(6.8)V = V1 + V2 + V3 + V4 + V5
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(6.9)

V1 = -
Α2

8
 Ip14 + p2

4M;

V2 = -
Α2

2
 
1

r12
 Hp1 ×p2 + n12 Hn12 ×p1L p2L;

V3 = Z
Π Α2

2
 H∆@r1D + ∆@r2DL;

V4 = cS Π Α
2

∆@r12D; cS = H1, -5�3L for Hsinglet, tripletL;
V5 =

1

M
 p1 ×p2;

à Ground state correction

We use

(6.10)Ψ Hx1, x2L = j Hr1L j Hr2L; j@rD =
1

Π

 Z1
3�2

 Exp@-Z1 rD; Z1 = Z -
5

16
.

These functions are the same as the ground state hydrogen functions with effective charge Z1. Using the identity valid for hydrogenic functions

p2

2
 Èn\ = -

Z1
2

2 n2
+
Z1

r
 Èn\,

all matrix elements on the ground state are easily calculable, we have

XV1\ = -
5

4
 Α
2
 Z1
4; XV3\ = Α

2
 Z1
3
 Z; XV4\ =

1

8
Α
2
 Z1
3; XV2\ = XV5\ = 0.

It  is  interesting to compute the correction to ionization potential.  The helium ion is  an hydrogen-like atom with charge Z, the result  is  the same as
before with Z1substituted with Z and a factor 1/2 in front all terms (we have only one electron in the ion), it follows

(6.11)∆Eion = -
1

8
 Z4 Α

2.

The result for Z = 1 agree with the known result for hydrogen (see chapter on perturbation theory).

The relativistic correction to ionization potential is

(6.12)∆J = ∆Eion - ∆E.

In the table below we list the various contributions for helium (Z = 2) in units of Α2

ion V1 V2 V3 V4 V5 tot

∆E -10.1 0 9.6 0.6 0 0.075

∆J -2 10.1 0 -9.6 -0.6 0 -2.07

We see a strong cancellations which lower the total  result.  A more accurate computation is  given in the notebooks.  This cancellation is  one of the
reason why the Lamb shift correction for helium is relatively important.

Problem 7

Consider a generic interval [a,b] and a measure Μ[x]dx on this interval. Assume that all moments exist, i.e. xnare integrables. On the Hilbert space

L
2[Μ;a,b] one can define a complete base of polynomials (Weierstrass' theorem). 

1. Show that the basis can be made orthogonal and that multiplication by the variable x on a polynomial of degree n can be expressed as a linear 
combination of polynomials of degrees n+1, n , n-1.

2. Interpret this relation as a Hilbert space realization (matrix realization) of x operator and show that considering a finite dimensional 
approximation of this representation one can prove Gauss' summation formulas, i.e. the approximations of integrals by means of abscissas and 
weights of the relative polynomial class.

æ Solution

à Construction of the basis

The first  question is  easily answered by the Gram-Schmidt orthogonalization procedure. We assume that Μ  has been normalized with (integration's
limit are always assumed a and b, the extremal points of the interval)
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à Μ@xD dx = 1

and we will use the notation

Xf È g\ = à dx Μ@xD f@xD g@xD.
The polynomial

(7.1)f0@xD = 1

is  taken  as  the  first  element  of  the  basis.  Subsequent  elements  are  constructed  by  induction,  multiplying  by  x  and  subtracting  the  projection  on
subspaces already constructed:

f1@xD = C1 H x f0@xD - Xx f0@xD È f0\ f0@xDL

(7.2)fn@xD = Cn x fn-1@xD - â
k=0

n-2 Xx fn-1 È fk\ fk@xD .

Cn is a normalization factor. 

The recurrence relation follows from induction. It is trivially true for n=1, x f1is a second order polynomial and can be written as

x f1 = a f2 + b f1 + c f0

for higher order follows from induction and use of (2) once observed that

Xx fn-1 È fk\ = X fn-1 È x fk\
The operator x, inthe sense of matrix element between basis vectors, is hermitian, than the recurrence relation has the form

(7.3)x fn = an+1 fn+1 + bn fn + an-1 fn-1

In matrix form

f0 f1 . . . fn

f0 b0 a1 0 . . . .

f1 a1 b1 a2 . . . .

. 0 . . . . . .

. . . . . . . .

. . . . . . an 0

fn . . . . an bn .

. . . . 0 . .

à The Gauss formulas

Suppose we diagonalize x matrix, let È xi\ the eigenvectors. On these eigenvectors f[x] È xi\  = f@xiD È xi\ . Formally we have

(7.4)

à Μ@xD F@xD dx = à Μ@xD f0 F@xD f0 dx = Xf0 È xi\ Yxi É F@xD É xj] Yxj É f0] =

â
xi

F@xiD ∆ij Xf0 È xi\ Yxj É f0] = â
xi

F@xiD Xf0 È xi\2 º â wi F@xiD.
The weights wiare the square of the first  component of the eigenvectors È xi\.   This formula,  as it  stands,  does not make much sense as x has a

continuous spectrum but, once truncated, eq.(4) are just Gauss formulas, which can be resumed as follows:

Given a measure Μ[x] and an orthogonal set of polynomials fk with respect this measure, than Gauss integration formula with n points  is
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(7.5)à Μ@xD F@xD dx = â
i=0

n-1

wi F@xiD
1. The n points xi are the roots of the polynomial of degree n (it can be shown that they lie all in the interval).

2. These points are the eigenvalues of the matrix n�n written above.

3. The weights are the square of the first component of the eigenvectors of that matrix, let us call M that n�n matrix.

The  Gauss  formulas  are  closely  related  to  properties  of  tridiagonal  matrices  and  these,  in  turn  are  those  properties  which  have  repeatedly  used  in
several  problems  from  the  beginning  of  our  study,  in  essence  the  operator  x  connect  only  neighboring  states.  We  have  to  prove  that  in  fact  the
truncation of Hilbert space give rise to all  listed properties.

We assume that matrix X has n distincts eigenvalues, also this can be proven. Let jk its eigenvectors and xkits eigenvalues. In Schrödinger  representa-

tion the eigenvectors are polynomial, being linear combination of basis functions, which were polynomials. 

N.B. The index we are using for polynomials is its degree, than starts from zero. The matrix n�n taken above is constructed on the first n states,
i.e. on polynomials of degree 0,1, ... n-1, i.e. up to degree n-1

(7.6)jk@xD = â
s=0

n-1

Cs
HkL

 fs@xD
The matrix C is orthogonal, as we are working with real functions. On the eigenstates fswe have, as a matrix

(7.7)M jk@xD = xk jk@xD; i.e. â
j=0

n-1

Msj Cj
HkL

= xk Cs
HkL

The equation (7) is not an exact relation at operators level, but is only an approximate realization of operator x, in our subspace of dimension n. But
the correction is quite mild and of a special form. In fact, as multiplication by x at most raises by one the index of the basis vectors,  the relation is
wrong at most by a missing factor fn, the next to last element of those considere din our base. Than as exact expression we have 

(7.8)x jk@xD = xk jk@xD + Α
H1L

 fn@xD.
We stress again that this equation has a correction factor which is only fnnor other polynomials. If we multiply eq(8) by x, a new fncan appear, while

the term already present can give rise only to terms fn, fn-1, fn+1  for the recurrence relation on x. If we write Ra for a linear combination of basis

polynomials with indexes ³  a   we have the following structure

(7.9)xs jk@xD = xk
s

jk@xD + Rn-s+1

Consider now the function 1, i.e. the first basis polynomial. This is part of our subspace than the exact relation exists

(7.10)1 = â
k=0

n-1

dk jk@xD ; dk = C0
HkL.

The value of the coefficient comes from the orthonormality of the basis and from eq.(6).  Multiplying equation (6) by xsand using (9) and linearity we

have for a generic polynomial G of degree M

(7.11)G@xD = â
m
am  xm = â

k=0

n-1

dk â
m
am  xk

m
 jk@xD + â Rn-m+1 = â

s=0

n-1

dk G@xkD jk@xD + Rn-M+1

In exactly the same way from (9) it follows

(7.12)G@xD jk@xD = G@xkD jk@xD + Rn-M+1

We have now the first important property. Take for G the polynomial fn[x]. The remainder in (12) is R1  i.e. it is a combination of basis functions of

index  greater  or  equal  to  one,  its  integral  vanishes.  The  same  is  true  for  the  left  hand  side  of  the  equation  as  fn  is  orthogonal  to  the  subspace  of

polynomial of degree less than n, it follows, integrating

(7.13)0 = G@xkD Xf0 È jk\ Þ G@xkD = 0

The coefficients are all nonzero: as it is to show every tridiagonal matrix with ai(see table) non zero cannot have eigenvectors with vanishing first

component,  then  our  implication  is  correct.  This  means  that  fnvanishes  on  the  n  points  xk (assumed  distinct)  than  these  points  are  its  roots:  the

eigenvalues of the n�n matrix M are the root of the n-th polynomial. This is the first of the properties to be proven.

Now let come back to eq. (11). Assume that G is any basis vector fs except f0  up to fn, i.e.  1 ²  s ²  n. Integrating we have (as usual the remainder

integrated vanishes):

(7.14)0 = â
k=0

n-1

dk fs@xkD à Μ@xD jk@xD = â
k=0

n-1

dk
2
 fs@xkD

If we take f0= 1 instead we have, for a normalized measure:
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If we take f0= 1 instead we have, for a normalized measure:

(7.15)1 = â
k=0

n-1

dk
2

= 1

because the dkare the first row of an orthgonal matrix. Previous relations can proof the integration properties of Gauss formulas up to polynomials of

order n, in fact any such polynomial can be written as

G = c0 f0 + â
s=1

n

cs fs; à Μ@xD G@xD = c0

This is just what follows from Gauss formula, with dk
2 = wkand relations (14) and (15):

â
k=0

n-1

wk G@xkD = â
k=0

n-1

wk c0 + â
s=1

n

cs â
k=0

n-1

dk
2
 fs@xkD = c0.

Consider now polynomials up to degree 2 n - 1. A basis for these polynomials canbe taken by fswith s² n-1 and gs =fn fs, i.e. we can write

G = â
s=1

n-1

as fs@xD + â
s=1

n-1

bs gs@xD
In particular fj with j ³  n canbe written in this way. The integral of gsvanishes, being a product of fnby a polynomial of less degree, then:

à G@xD Μ@xD dx = a0

Let us consider now Gauss formula. The first sum give a0as result, as we have already seen,adding the second term: 

â
k=0

n-1

wk G@xkD = a0 + â
k=0

n-1

wk â
s=1

n-1

bs fn@xkD fs@xkD
But xkare roots of fnthe added term vanishes and Gauss formula is verified up to polynomials of degree 2n-1.

In  conclusion  Gauss  formulas  are  just  what  we  expect  from  a  truncation  of  (4)  with  some  bonus:  we  have  shown  that  it  is  exact  for  a  class  of
polynomial functions. 
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