Problems Chapter 10

Quantum M echanics
K. Konishi, G. Paffuti

I Problem 1

Apply a variational method with hydrogenoid wave functions to the computation of the ground state energy of the helium. Use Temple's method to
give an estimate of the error.
® Solution

The variational wave function is (see aso the text)

1
Yix1, X21 = @il olral;  ofr] = —— 232 e®r. (1.1)

Vo

We use atomic units. Z; is the variational parameter and plays the role of an effective charge.

The Hamiltonian of the systemis

2 p3 z z 1
Hzp—l+p—2————+75|'b+H12. (1.2)
2 2 rq ro | X1 =Xz |
In the text it has been shown that
5 2
<w|H|w>=—[Z——]. (1.3)
16
which has aminimum at
5
Z1=72 - —. (1.4)
16
The Temple estimate for the error is
s§-+vo =sEs<é&+vo, (1.5)

where & isthe exact value and o is the variance of the variational calculation
o= (HU|Hy) -E = (Hou|Hu)+2(Hy|Hav) + (Hou|Hzu) -E. (1.6)

In polar coordinates we have easily
1 1

Hoy = {7z§+<zlfz> [—+—]]w; Py = ——— . (1.7)
ra ra

From (1) it follows easily

1 1 )
U — 1Y) =20 (Y| — ¥y =223,
I 2

ra
substitution in previous equation gives
(Fou|tou) =23 (622-822+373). (1.8)
The second termin (6) is, using again (7) and symmetry
) 1 1 5,
(Hod [ Hed) = -Z5 (Y H12|A1/>+2(2172)Jl//——d/ = -=ZL+ 2 (L -2Z) 1.
[ X1-X2| T 8

Use has been made of the integral computed in the text
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5
<W\H12|21/>:gzl- (1.9)

The integral | can be computed using multipole expansion (or using Fourier transform):

royf
[—] P, [Cos (¥)]; (1.10)
Only the term with ¢ = 0 contributes

I = (4m?

“ 2 s 2 1 2 “ 2 s 2 l 1 2 3 2
Jdrlrlf dror3 = (plra] olra]) +Jdr1r1 drord — = (olril olra])?| = — Z.
0 0 r% 0 0 rp ro 4

The third integral in (6) can be written, rescaling coordinateswithr —» x / Z;:

z 1
CHe Y [ H2y) = —Jd3xl ABxy, ——— e X1 e2%e,
n? | X1 - Xz |2

Taking the z axis aong the direction of x;, the integrand depend only on 6, the angle between x; and x». Integrating on the rest of angles give a facto
4z for the solid angle of x;and afactor 2r for the azimuthal angle of x,, then
z 1

2

2
! BNZJdrlridrgrﬁd (Cos [6]) @2zl o _ 72
2 r2+r3-2ryr,Cos (o] 3

(He Y | Hzy) =

Tt

The integral in 6 is elementary. The radia integral can be computed integrating by part. The whole integral an also been computed using Fourier
transform, with the three dimensional transforms:

8 1 2 2

Summing the various contribution we get, inserting the value for Z; and with Z=2

121 (5 - 16 7)2
o= — " -0.897, o =0.95.
98304

Asthefirst order valueis E~2.85 we see that Temple's estimate is quite poor.

Problem 2

Let us interpret the scale parameter o used in the variational computations of anharmonic oscillator as a variable frequency. Show that the choice
used in thetest isthe one suggested by the Bohr-Sommerfeld quantization conditions.

@® Solution

m  The choice of the scale

The Hamiltonian of the problem is

1 u
H:7p2+7x2+gx4. (2.1)
2 2 2

In the text and in the numerical applications we introduced a scale parameter o with the change of variables x— x/a:

1
He = —a?p? + X2 +

X2, (2.2)
2 2 a? 2ot

Clearly the spectrum do not depend on a change of variables, or, equivalently, dE[e]/da = 0, the eigenvalues are stationary with respect to «
variations. Thisis true in the exact problem. If the problem is solved with within afinite - size basis Hilbert space, the stationarity with respect to «
becomes a constraint which select the "best" approximation.

In the text we try to make this choice of « nearly independent on the particular eigenvalue to be studied, by minimizing the mean value of H on the
highest state in the basis. The idea is that lower eigenvalues for systems like an anharmonic oscillator are more stable, than a stabilization of high
eigenvalues automatically should work for the lower ones.

Let f ¢ [x]theusua harmonic oscillator basis with w=1:



Problems_chap10.nb | 3

1 1
frlx] = — ————— Hoa[X] Bxp[-x"2/2]; k =1, 2, ... (2.3)

2%1 (k -1yt

The scale parameter « isintroduced by taking as a basis the functions

Frix] =Va frlax]. (2.4)
A change of scale show that matrix elements of the Hamiltonian (1) in this basis are equal to matrix element of the modified Hamiltonian in the basis
fki

Jdlx Fi [x] HIX] Fj [X] = OtJlefk[OtX} Hix] fj [ax] :Jd]yfk[)” H[z } filyl = Jdlyfk[Y] Holy 15 1y]. (2.5)
The wave functions of an harmonic oscillator depend on x through the combination
&2 - mwx?
then the functions Fy can be viewed as the harmonic oscillator functions for an oscillator with w = o2.
In this interpretation the best « is the best frequency to choose for the basis functions. The problem of optimization for « can be stated in the

aternative way: which is the best oscillator which approximate the system? If we found this oscillator we expect that the zero order approach to the
problem is optimal.

m  The equation for «

From known matrix elements for x and p it istrivial to compute the mean value of the Hamiltonian for the n-th state of the « oscillator.

From
h 2n+1
<n|x* | n>= — :
nmy 2
2
h 3
<n|x* | n>= | —| —(2n*+2n+1); (2.6)
m 4
2n+1
<n\p2\n>=hmw :
2
we have (wewrite w = o? )
2n+1 ) 3 1
Elw] =N | H | n) = w+ —|+=-9g—(2n*+2n+1). (2.7)
w 8 2
Stationarity with respect to w, i.e. imposing E/ w =0, we get
W2n+l)w-0®(2n+1) +3g(1+2n+2n%) = 0. (2.8)

With w — o?thisisthe equation used in the text and in the numerical notebooks.

m Bohr Sommerfeld conditions

For large n we see that to cancel the quadratic termin (8) w must grow with n. The leading term in n becomes
~w®2n+ 6gn?=0 = w ~ (3gn)*3
Substitution in (7) gives at the leading order inn

3
E. _ <3g>1/3 n4/3 -~ 1. 0891/3 n4/3, (2 g)
4

To (9) contribute the kinetic term and the anharmonic term, in agreement with the expectation that for high energies the x*term is the leading term in
potential energy.

At large n we expect that old quantum theory is at work. The Bohr Sommerfeld quantization condition

a
ZJlew/ZE—/,tZXZ—gX‘l = 27N,
a

with +a the classical inversion points, should give a good approximation to the eigenvalues of (1). For large n we can neglect the x%term, the
inversion points are approximated by
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o gy /4
ca- [7] ,
g
and the Bohr Sommerfeld condition reads, with x = az:
2 E 174 1
27n =2 —] x/ZEJdIZ\/lfz“ = VA g /A EYAK,
g -1
Vo T[1/4]
K= —————— =1.748
417 /4]
Theresulting energies are
2 143
E . 27/3 7] g3 n%3 = 1.09 g/ n?/3, (2.10)
K

Confronting this result with (9) we see that our choice for w (i.e. for @) gives an amost correct result for higher n, this means that our effective
oscillator, by itself, fit the levels. In terms of the Hamiltonian matrix the diagonal elements of the H, Hamiltonian give amost the whole eigenvalue,

the mixing with other statesis small, this means that our approximation is a good one.

Problem 3

Compute the corrections m/M to the helium atom Hamiltonian by an explicit coordinate transformation in the Schrédinger equation.

® Solution
The Hamiltonian of the problemiis:
1 1 1 Ze? Ze? e?

H= —af + —ai+ —a\ - - + (3.1)
2m 2m 2M l €1-&nl | &-&l & -6

£ = (¢, 1, Q) arethe coordinates of the electron (1,2) and of the nucleusin agiven inertial frame. g are the momentain the inertial frame.

We change coordinates choosing as independent degrees of freedom the coordinates of center of mass of the system and the relative coordinate of the
electrons with respect to the nucleus:

1
2m+M

X =

(M§N+ m§1+m§2); X1 = & -&y: Xz2= & -§&y- (3.2)

The interaction depend only on x coordinatesas §; - £,= X1- X2 .

Let us consider the change of variables for one axis, thefirst asan example (index here refer to electrons, i,j = 1,2)

6] oX o 2 0Xj 9 m 0 )
_—= — — + _— = — + )
o0& a& oX ia 0&i OXj 2m+MoX  OXj
(3.3)
e} oX 9 2 OXj o M e} e} e}
_—= — — + _ = —_—— - —
O&EN &N OX i1 96N OX; 2m+MoX Oxi OX2
In the Schrodinger representation q=-i 2 / £. Defining the corresponding momentain the C.M. frame:
h o h o
P=—-—, p=-— (3.4)
10X 1 OXj
Therelations (3) imply
m M
q; = P+p; On = P - (P +P2)- (3.5)
2m+M 2m+M
The two termsin kinetic energy become
) 1 M 5 1 1 )
— 0Oy = = pPe - P.(py+Py) + — (P +P2)°
2M 2 2 m+M)2 2m+M 2
1 1 1 1 (3.0)
m
S R T P2+ —pf+ —p} P (py+Py).
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And summing the two contribution

1 1 1 mM
Exin = P2, (pi + pg) + =Py P2 U = = reduced massof the electron. (3.7)
2m+M 2 u M m+ M
The total Hamiltonian takes the form
1 1 1
H= P2+ |— (p? + p2) + Ul + —p, -p2. (3.8)
2m+ M 2 1 (P1 + P2) Mt

The first term is the kinetic energy due to the movement of the center of mass of the atom. The second term is the one usually considered to compute
energy levels: it is equivalent to a system with an infinite mass nucleus where electron mass has been substituted by the reduced mass. The last term is
called mass correction, or polarization term.

Problem 4
Perform the change of variables for Hylleraas coordinatesin helium
S =Trg +Ff; t =rg-ro; U =riy; O<t =U=<S <® (4.1)

Write the Schrédinger equation for a rotational invariant state in these coordinates.

® Solution

If (r, 6, ¢) the angular coordinates for each electron and y is the angle between the directions between the two vectors x; and X :
ri, =ri+r3-2ryryCos[y];  Cos[y] = Cos[e1] Cos (6] +Sin[61] Sin(6;] Cos [z - ¢1].

From (1) and thisrelation one get easily the relations

, s 2412 s2 12
rg+rg = ; 2111, = ;
2 2

1 1 ri+ro 4s 1 1 rp-riq 4t
_— — = = ; — - — = = - ) (4.2)
r{ rp rafro s?2-t2 r{ rp rifo s2-t2

uz -t?2 s2_y?
1-Cos[y] = 2 . 1+Cos[y] = 2 .

s2_t2 s2_t2

A function with spherical symmetry can depend only on s, t, u variables. Let us see how the usua derivatives are written on ¢/[st,u]. x and y are the
coordinates of electron 1 and 2 respectively. A short computation gives

5} Xi i xi —yi
— Y = —0s¥ + — Ot ¥+ Ou¥;
ox! ri r 12
X 2 X - (X=-Y)
—— | — Os¥| = — Os¥ + Oss¥y + Ost ¥ + ————— Osu¥;
ox' \ra ri ririz
8 (xi 2 X - (X=Y)
— | — 0¥ = — Y + Ost¥ + Ottty + ——— OV
ox' \ra ra ririz
o (x -y 2 X+ (X-Y)
— Oy | = — Ou¥ + ———— (Osu¥ + Stu¥ ) + Ouu¥-
ox' 12 12 riri
Using
1 1 ) st +u?
X+ (X=y) = —(X+y) - (X=-Yy)+— (X-Yy)" = ;
2 2 2

one can compute easily the action of the laplacian operator for the first variable on y

4 2 st + u?
M Y = (Os¥ + O ) + —Oud + (Oss¥ + Oty +Ouud) + 20st Yy +2 ———— (Osu¥ + Otu¥ ) - (4.3)
s+t u u(s+t)

The operator with respect to y can be obtained by changing t—-t:

4 2 -st +u?
(Os¥ = Ot ) + — Oy + (Oss¥ + Oty +Ouu¥) - 20sth +2 —————— (Osu¥ - Gtu¥ ). (4.4)
s-t u u(s-t)

Dy Y =
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The kinetic part of the Schrodinger equation takes the form

1 2 4
— (Ax W+ Dy W) = (Ossth + Orr ¥+ Ouudh) + — Oud + (8Ost -t ouy) +
2 u s2_t2
(4.5)
2s 1 ) ) 2t 1 ) )
+ — (U -t?) Osu¥ + — (s*-u?) oy .
s?2-t2u s2-t2u

The Schrddinger equation takes the form (in atomic units)

2
EW:*(assl//*atthr@uuW)*aaud/* z(sasl/f*tatlm

s2 _t
2s 1 2t 1 4Zs 1
- — (U -t?) osuu + — (s?-u?) oy - U =y
s2_t2u s2_t2 u s2_t2 u
or
U (s?-t?) (Oss¥ + Ore U+ Ouuth) + 2 (% -t?) duy +
4u(sBsy -t oY) +2s (u27t2) syl +2t (szfuz) Byl + (4.6)
4Zusy - (szftz) v = -Eu (szftz) .
Problem 5

Write in terms of Hylleraas variables the mean energy of the Hamiltonian on a spherical symmetric state. Write the Schrédinger equation resulting
fromthe variational principle and compare with the result of previous problem.

@® Solution

We use the notation of the text and of the previous problem. The Hylleraas variables are defined by
S =Tr1 +rp; t =r1-ro; U= Tr13 O<t <=U=<S <® (5.1)
If (r, 8, ¢) the angular coordinates for each electron and y is the angle between the directions between the two vectors x,and X »:
riz =rf+r3-2riryCos[y];  Cos[y] = Cos[e1] Cos[z] +Sin(e1] Sin[z] CoS [z - v1].

From (1) and thisrelation one get easily the relations

2 .12 2 2
s+t sc -t
r2ir3 = : 21115 = :
2 2
1 1 r{+rp 4s 1 1 ro-rq 4t
o+ = = ; — - — = = - ) (5.2)
r{ ra ryra s2_t2 r{ rz rira s2_t2
u?-t? s?2_u?
1-Cos[y] =2 ; 1+Cos[y] = 2
s2-t2 s?2-t2

Wewant towriteinterm of s, t, u variables

(viHIw)
- - E (5.3)
(viv>

m The jacobian

First we compute the jacobian from cartesian to Hylleraas variables. Integrating on inessential angles:
d3x1d3xa= (4n) (27)r2r3drydrod (Cos[y]).

From previous relations

A simple computation gives
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11 0
o(r1, rz, Cos[y]) 2 1
=det | 3 3 0 = —
o(s, t, U " 2 g2_t2
* * -
Sz,tz
Then the volume element can be written (for spherical symmetric states) :
(s2-12)% 1
dBxyd¥x, = 872 - dsdt du = n%u (s®-t?) dsdt du. (5.4)
4 2 SZ _t2

As only even - even and odd - odd (in t) matrix elements can be computed (i.e. between symmetric and antisymmetric wave functions) we can limit
thet integration to theregiont > 0 and use the expression (4) with an additional factor 2 in front.

m The quadratic forms
The Hamiltonian, and the mass correction term (see text and problem 3) can be written in terms of the following quadratic forms
1 ) ) z z 1
M?J((vl@) v (V29)7) ; L:J[7+f_7];2; N:sz; K:J((Vlm) (Vae)); (5.5
2 ri r2 rl2

TheformsL and N are elementary. A part an overall coefficient (2 %)

L= Lwdsj:duj:dtMZus— (-1%))¥2;

00 S U
N :f dsfaluf dtu($ - t3)¥?;
0 0 0

The computation of M and K is a bit more laborious. Using the result of previous problem and indicating with x, y the coordinates of first and second
€lectron:

3 X1 X xi -y
—— Y = —0s¥ + —Ct ¥+ Ou¥
ox' ri r 12
3 yi yi x -yl
— 4% = —0s¥ - — ¥ - Our;
ay' ra ra M2

A bit of work, or alook at notebook NB-10.15, allow to write using these relations:

~ s u oY 0¥ O0Y oY
M:f dsfdufdt[s(uz—tz)[——+——]+
0 0 0 ds du  ds du

oY ¥ IY 0¥ oY ¥ oY 0¥ IV oY
t( —2[ )+ sz—tzu[ )]

_— e —

at du It du

ds ds Ot dt  0u du

K:fomdsfdufoudt[—ZS(uz—tz)[Z—z Z—\:]+u(sz+t2_2u2)[[z_:]2 _(Z_T]z]_ﬂ(sz_uz)(z_‘z Z—\f]—u(sz—@)[z_zr ];

m Variational principle

Variational principleimplies

- — E— =0 (5. 6)

1 6L 1 6N
— — = (4Zus - (s®-t?))u; — — =u(s*-t?)y
2 Sy 2 5y

1 oM

2 &Y
U (s?-t?) (Oss¥ + Ort ¥+ Ouu) + 2 (s (UP-t?) Osuy + t (s2-U?) Grud) + 2UsSAsy-2ut oy + (s®-t?) ouu +
(2USdsy - 2t UG Y) + (uzftz) Syl + (Sz—uz)auz// =
u (szftz) (Osst + Oreth+Ouuh) + 2 (s (uzftz)@suw +t (szfuz) Oruth) +4USOsty —4t Us Y +2 (szftz) By U

Substitution in (6) gives

u (Sz—tz) (Oss ¥ + Ott ¥ + Owu¥) + 2 (Sz_tz) Oud +
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4u (sésw —t oY) +2s (u27t2) ésuw +2t (szfuz) Stul +
4Zusy - (szftz) v = - Eu (szftz) .

The same result obtained in previous problem.

Problem 6

Write the effective Hamiltonian for the relativistic corrections in S states of helium. Compute the effect on the ground state using the simplest
variational wave function. (For the general atomic Hamiltonian see Complements of chapter 14).

@® Solution

The general form of the Hamiltonian for an atomis

m
H=H+ H+Us+UY +U2 + 0| —, —a?]. (6.1)
M
m and M are electron and nucleus mass. « is the fine structure constant. The various operators are:
P3 ze?
H):Z**Z*? (6.2)
a 2u a la
pa Ze?n?
le-z 2 _in s rall; (6.3)
2 18c2 .8 2 nfc?
ze?n? 1
U,_S:Z — La - Sa; (6.4)
a2 4ntc? rg
e? e? n? 1
U = - ) ————— (Pa-Pp+ Nab (Nab - Pa) Pp) - ) 7 5 [rap] + — ) Pa- Py (6.5)
° azb 2 c?ry (Pa | a) Po) aZl‘, n? ¢? Magb ?
U2 -5 S Loye2 ) - (] < (b2 - ()
= ———— (- (oa+20p) - (NabrP,y) + (Op +20a) - (Nap A Py) + (6.6)
° amd 4mtc?r?, :
e2n Oy -0p - 3 (03 - Nap) (Op - Nap) 8
Y - 0a-0p — 6% [Tap] (6.7)
2 4ntc? rgb 3

Nap iSthe unit vector from particle b to particle a o~ are Pauli matrices. The sums run on electrons.
We want to extract from this general form the effective Hamiltonian for S statesin helium.

1. Thefirst twotermsin U2’ have no first order contribution in S states as they transform respectively as a vector and a tracel ess symmetric tensor
(L=2). The Wigner-Eckart theorem implies that their mean value on S states is zero.
A similar result holds for U s asL|L=0) = 0.

Finally we note that

1 S(S+1) 7% si ngl et

3
7ca.cb:7——:{l .
2 4 3 triplet
The final form of the relativistic corrections can then be written as (we use atomic units):

V:V1+V2+V3+V4+V5 (68)
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o2

Vi = —E(p‘hp‘z‘):
o2 1
Vo= —— — (P - Py + N12 (N12 - Py) Py);
2 I
7 o? &9
v3:27<5{r1]+é[r21>;
Vi=csma?s(ri2]; Cs= (1, -5/3) for (singlet, triplet);
v 1
= —P1 Py
5 M 1 2

m  Ground state correction
Weuse
1 3/2 5
(X, X2) = @ (1) o (r2); o[r] = —Z77"Exp[-Zy1r); Zy = Z- —. (6.10)
x 16
These functions are the same as the ground state hydrogen functions with effective charge Z; . Using the identity valid for hydrogenic functions

p2
— Iy -
2

all matrix elements on the ground state are easily calculable, we have
5 2 54 2 53 1 2 -3
(V1) = 74701 Zi; (V3) = a“ ZiZ; (Ma) = ga Zy; (V2) =(Vs5) = 0.

It is interesting to compute the correction to ionization potential. The helium ion is an hydrogen-like atom with charge Z, the result is the same as
before with Z; substituted with Z and afactor 1/2 in front all terms (we have only one electron in the ion), it follows

1
5E; on = 75240(2. (6.11)

The result for Z = 1 agree with the known result for hydrogen (see chapter on perturbation theory).
The relativistic correction to ionization potentia is

6J = SEion - SE (6.12)

In the table below we list the various contributions for helium (Z = 2) in units of o?

ion \A \'3 V3 V4 Vs t ot
SE -10.1 0 9.6 0.6 0 0. 075
&J -2 10.1 0 -9.6 -0.6 0 -2.07

We see a strong cancellations which lower the total result. A more accurate computation is given in the notebooks. This cancellation is one of the
reason why the Lamb shift correction for helium isrelatively important.

Problem 7

Consider a generic interval [a,b] and a measure u[x]dx on this interval. Assume that all moments exist, i.e. x "are integrables. On the Hilbert space

L2[u;a,b] one can define a complete base of polynomials (Weierstrass theorem).

1. Show that the basis can be made orthogonal and that multiplication by the variable x on a polynomial of degree n can be expressed as alinear
combination of polynomials of degreesn+1, n, n-1.

2. Interpret thisrelation as a Hilbert space realization (matrix realization) of x operator and show that considering a finite dimensional
approximation of this representation one can prove Gauss summation formulas, i.e. the approximations of integrals by means of abscissas and
weights of the relative polynomial class.

@® Solution

m Construction of the basis

The first question is easily answered by the Gram-Schmidt orthogonalization procedure. We assume that ¢ has been normalized with (integration's
limit are always assumed a and b, the extremal points of the interval)
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Ju[x} dx =1

and we will use the notation

g - jdlx X1 f [x] gix].
The polynomial
folx] =1 (7.2)

is taken as the first element of the basis. Subsequent elements are constructed by induction, multiplying by x and subtracting the projection on
subspaces aready constructed:

filx] = G (xfo[x] - (xfo[x] |fo)folx])
n-2

fnlx] = G| xfnalx Z<xfn1|fk>fk[ ] (7.2)

G, isanormalization factor.
The recurrence relation follows from induction. It istrivialy true for n=1, x f ;isasecond order polynomial and can be written as
xfi1 =af, + bfy + cfg
for higher order follows from induction and use of (2) once observed that
Xfaa [ fi) = (Fna [ xFio)

The operator x, inthe sense of matrix element between basis vectors, is hermitian, than the recurrence relation has the form

Xfn =amifng + bnfn + an1fne (7.3)
In matrix form
fo fa . . . fn
fo bo ap 0
fq a; by az
0
an 0
fn . . . . an bn
0
m The Gauss formulas
Suppose we diagonalize x matrix, let | x; ) the eigenvectors. On these eigenvectorsf[x] | x; ) =f [X; ] | X; ) . Formally we have
J[ ] dx J 1foFx]foax = (fo | xi) (xi [FIx]|x)(x |fo) =

(7.4)
ZF[xi sij (folxi)(x |fo) ZFX. ] (fo 1 xin? = ) w Fxi]

The weights w; are the square of the first component of the eigenvectors | x; ). This formula as it stands, does not make much sense as x has a
continuous spectrum but, once truncated, eg.(4) are just Gauss formulas, which can be resumed as follows:

Given ameasure u[x] and an orthogonal set of polynomialsf x with respect this measure, than Gauss integration formulawith n points is
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JumFmdlx = ) W FIX) (7.5)

1. Thenpointsx; aretheroots of the polynomial of degree n (it can be shown that they lieall in the interval).
2. These points are the eigenvalues of the matrix nxn written above.
3. Theweights are the square of the first component of the eigenvectors of that matrix, let uscall M that nxn matrix.

The Gauss formulas are closely related to properties of tridiagonal matrices and these, in turn are those properties which have repeatedly used in
several problems from the beginning of our study, in essence the operator x connect only neighboring states. We have to prove that in fact the
truncation of Hilbert space giveriseto all listed properties.

We assume that matrix X has n distincts eigenvalues, also this can be proven. Let ¢ its eigenvectors and xits eigenvalues. In Schrédinger representa:
tion the eigenvectors are polynomial, being linear combination of basis functions, which were polynomials.

N.B. The index we are using for polynomials is its degree, than starts from zero. The matrix nxn taken above is constructed on the first n states,
i.e. on polynomials of degree 0,1, ... n-1, i.e. up to degree n-1

n-

oc[x] = » C fox] (7.6)

1
s=0

The matrix C is orthogonal, as we are working with real functions. On the eigenstates f swe have, as a matrix
n-1 K
Mok (x] = xioc(x);  i.e. ) My GR o= e (7.7)
j=0

The equation (7) is not an exact relation at operators level, but is only an approximate realization of operator X, in our subspace of dimension n. But
the correction is quite mild and of a special form. In fact, as multiplication by x at most raises by one the index of the basis vectors, therelation is
wrong at most by amissing factor f ,,, the next to last element of those considere din our base. Than as exact expression we have

X @k [X] = Xk ok [X] + aP) fq[x]. (7.8)

We stress again that this equation has a correction factor which is only f nor other polynomials. If we multiply eq(8) by X, anew f ,can appear, while
the term already present can giverise only to terms f ,, f ,_1, f 1,1 for the recurrence relation on x. If we write R, for a linear combination of basis
polynomialswith indexes a we have the following structure

X% ok [X] = XE Ok [X] + Rn-ss1 (7- 9)

Consider now the function 1, i.e. thefirst basis polynomial. Thisis part of our subspace than the exact relation exists

n-1
1= ) deox]s de= G (7.10)
k=0

The value of the coefficient comes from the orthonormality of the basis and from eq.(6). Multiplying equation (6) by x*and using (9) and linearity we
have for a generic polynomial G of degree M

n-1

n-1
Gix] =) amx™ = D di ) amxPoc(x] + ) Rami = ) Ok GXk] 0k [X] + Rn-ma (7.11)
s=0

=0

=~

In exactly the same way from (9) it follows
GIX] ok [X] = G[Xk] 0k [X] + Rn-m1 (7.12)

We have now the first important property. Take for G the polynomial f ,[x]. The remainder in (12) is ®; i.e. it is a combination of basis functions of
index greater or equal to one, its integral vanishes. The same is true for the left hand side of the equation as f , is orthogonal to the subspace of
polynomial of degree lessthan n, it follows, integrating

0 = G[xk] (folwk) = G[xk] =0 (7.13)

The coefficients are al nonzero: as it is to show every tridiagonal matrix with a; (see table) non zero cannot have eigenvectors with vanishing first
component, then our implication is correct. This means that f ,vanishes on the n points xy (assumed distinct) than these points are its roots: the
eigenvalues of the nxn matrix M are the root of the n-th polynomial. Thisis thefirst of the properties to be proven.

Now let come back to eg. (11). Assume that G is any basisvector f s exceptfo uptof,,i.e. 1 s n. Integrating we have (as usual the remainder
integrated vanishes):

n-

1
0= ) difsixi] Jum o] =

k=0

n-1
dszs[Xk} (7- 14)
k=0
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If wetakef o= 1 instead we have, for anormalized measure:

n-1
1- ) df-1 (7.15)
k=0

because the dy are the first row of an orthgonal matrix. Previous relations can proof the integration properties of Gauss formulas up to polynomials of

order n, in fact any such polynomia can be written as

n
G-cofo + ) csfsi JPHJGH]:CO
s=1

Thisisjust what follows from Gauss formula, with d2 = weand relations (14) and (15):

n-1 n-1 n n-1 5
D WG] = ) wkco + ycs ) dfsixk] = co
k=0 k=0 s=1 k=0

Consider now polynomials up to degree 2 n - 1. A basis for these polynomials canbe taken by f swiths n-1 and gs _f  f 5, i.€. we can write

n

>

G = asfs[x] + bs gs [X]

-1 -1
s=1 =1

»

Inparticular f; withj ncanbewrittenin thisway. Theintegral of gsvanishes, being a product of f ,by apolynomial of less degree, then:

JG[X] u[x] dx = ap

Let us consider now Gauss formula. The first sum give apas result, as we have aready seen,adding the second term:

>

-1 n-1 n-1
W Gix] = @+ ) Wk ) bsfnlxc] fsXk]
0 k=0 s=1

~

But xkare roots of f ,the added term vanishes and Gauss formulais verified up to polynomials of degree 2n-1.

In conclusion Gauss formulas are just what we expect from a truncation of (4) with some bonus: we have shown that it is exact for a class of
polynomial functions.



