Problems Chapter 11

Quantum M echanics
K. Konishi, G. Paffuti

I Problem 1

Write the semiclassical quantization conditions for the case with two turning points using Cauchy's theorem. Assume that p[x] has only one cut,
between the two turning points, and no essential singularities in the complex plane.

® Solution

m  Definitions

Let e;and e, thetwo classical turning points, where E = V[x]. In genera

pix] = /2m(E-V[x]) (1.1)

and the function p[x] has a cut between the zeros of E-V[X]. If thisisthe only cut
PIx] = R[x] V (X -e1) (ez-X) (1.2
If there are not essential singularitiesin R, even at infinity, R[x] isarational function. Thiswill be assumed from now on.

To extend (2) to the complex plane we have to define the branch of the square root. We have two possibilities: or the positive determination corre-
sponds to upper edge of the cut or to the lower edge. In the two cases the action integral

€2
| =2J p[x] dx =96p[x]dlx
€

can be expressed as one of the two complex integral below

C C

+ + + + +

We choose the first aternative, i.e. p[X] positive on the upper edge of the cut, we leave to the reader the task of verifying that the conclusions below
can be obtained also with the other choice.

To understand clearly the conventions used it is convenient to introduce a complex variable z and to put

z-e1 =p1e'®  zZ-e =pe® (1.3)
The choice of the cut correspond to
e (2
VZ e; =+fo1 €'z Vz -e; =402 e (2) (1.4)
and taking p[x] as the analytic continuation of
qlz] =-iR[z] V (z-e1) (z - €p) (1.5)

coincides with p[x] on the upper edge of the cut, where 6;= 0 and 6,= 7. On the lower edge 6,= - 7 and

q(z] » R[x]+fp1 +/p2 e = - p[X]

It isimportant to keep track of phases along real axis. For x > e, we have ©,= 0 and ©,= 0 s0
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a1z] > Rix]~fpr [z €77 = —iRx]\[o1 ~[pz (1.6)

Forx <ej, 61=m, 6= or 61= -1, ©,=- & in both cases

q[z]—>R[x1\/H\/Ee”"’i§:H'lR[x]ﬁ\/g (1.7)
The fact that the two determinations coincide means in fact that the function has no cut for x < e;.
From amore simple point of view we are taking
e,-z = e Y (z-ey). (1.8)
m  Cauchy's theorem

Apart from the cut the integrand can have singularities (poles) due to R[z] or at infinity. We can exclude these singularities by drawing contoursin the
complex plane C. With the convention used for the cut contour wrap clockwise the singularities and the situation is shown below

{
-

The function is analytic in the domain excluded by the contours then Cauchy theorem states

| -2ri) Res[q(z]] - 2niRes.[q[z]] = O (1.9)
Res stands for the residue, the minus sign is due to the clockwise direction of theintegrals.
m Examples
o Rx=1
The simplest exampleis

PIx] = vV (x-e1) (e2-X) (1.10)

In this case the integral can be trivially done with the substitution

e +e e, -e e (g5 -e1)% (41
(L Srtee  e2-er zJ p[x]dx:;J Ji-e ae -
e 2 -1

2 2

(62 -e1)?

Tt
4
but let us check the result with the above general method.

The only singular point is at infinity. To compute the residue at infinity of g[z] let us make the change of variablesz = 1/, dz = - d§/§2

ac
- i—/(l-cen (1- cey
53

c?
By definition the residue is the coefficient of £ in the Taylor expansion of the function. Using

1 1

J1-cen (1-ce ~1- 5 e+ €2) C- o (er e1)? &% + 0 (0) (1.11)
we have
i 2
Res, q[z] = -— (e2 - e1)
and from (9)
€5 7T
I = ggp[x}dlx:ZJ p[X]dlx:Z<ez—e1)2 (1.12)
€

o' Note for the Mathematica users.
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In Mathematica 6.0 thisintegral can be computed with

Si nplify{lntegrate{zv (x-a) (b-x), {x, a, b}, GenerateConditions— False|, {O0<a<b}

In Mathematica 5.2 it is sufficient to write

Integrate{Z\/ (x-a) (b-x), {x, a, b}, Assunptions - {0<a<b}}

o R[x]=1/x
1
px] = =V (Xx-e€1) (e2-X) (1.13)

X

In this case we have asingularity at infinity and at x = 0. We are supposing0 < e;< e;.

At infinity, working as in the previous example

1
(-1) ¢ [*-91
g

—dc
§2

- i —[(1-ce) (1-cer)

and using the expansion (11)

Res..q[z] = -— (e1+ e1)
2
For z— 0 we have to remember the choice (7) for phases and write
i
q(z] - + —vVere; = Respq[z] = 1Veye;
z
Substituting in (9)

€2
I = 9Sp[x]dlx = ZJ p[x] dx = ﬂ(\/ez - Vep )2 (1.14)
ey

L et us note that correctly the integral vanishfor e;=e;.
o' Note for the Mathematica users.

In Mathematica 6.0 thisintegral can be computed with

Integrate{éx/ (x-a) (b-x), {x, a, b}, Assunptions > {O<a<b}]

2
In Mathematica 5.2 the computation gives the wrong result (\/ e, + Ve; ) .

Problem 2

Write the semiclassical quantization conditions for a harmonic oscillator. Generalize the results for a pure x Noscillator, with N even.

® Solution
m  Quantization

The Hamiltonian is given by

1 1
Hip, ] = — p®+ —mw®q?. (2.1)
2m 2

At fixed energy E

plg] = ++/2mE - nf o q? . (2.2)

We have an oscillatory motion, with two classical inversion points
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g1 = -A; g2 = A A= — .

The action integral is easily computed as

1

1 9 2E L
J = —Qplqldg = 7J \J2mE - nfw?qg? dq = —J\/lfxz dx
Tt Tw J-1

27 a1

The quantization conditions are

1
n+ —|.
2

J=n

The relation between E and J can betrivialy inverted in this case and we have for the spectrum

E=wJ= hAw|n+ —|.

2

Which is the exact result.
o Angle action variables

The angle variable ¢ is defined as the canonically conjugate variable of J. From (4) we have

Thevariable ¢ is cyclic and its equation of motion istrivialy solved:

do oH
_ =w; = e[t] = wt + 6.
dt

03
From the known solution of the equation of motion for p and g:

g= ASinfwt + &8]; p = MmwACos[wt + 5]

or by using Hamilton Jacobi equation, one has

VAN
q = — Sinfe]; p=+2mwd Cos[oy].
mw

Which isthe explicit canonical transformation between the couple (g, p) and (¢, J).

m Potential xN

Previous considerations can be easily extended to Hamiltonians of the form

1 1
Hip, ] = — p?+ —gq".
2m 2

With N even.

At fixed energy

Turning points are

2E
Q1,2 = + & a = [—J

The action integral is given by

1 1 ra 2
J = —ggpm dq = —J A 2mE - mgxN dx =
2 T J-a 7T

T

The constant C is given by

E
=

2 mE

(2.3)

(2.4)

(2.95)

(2.6)

(2.7)

(2.8)

(2.9)

(2.10)
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C=2 1-zN dz =

The quantization condition is always

1
- 7]_ (2.11)
We can invert the relation (10) to get

2N
Ne2 *

E = D Jne, 1/D =

1/N 2N
N
JT

Thisrelation has some interesting implications.

e The transformation from (q,p) to angle - action variablesis a canonical transformation. If we would start our quantum theory with an Hamiltonian
like (12) and proceed naively we go rapidly into troubles. The commutation relations

h

[J, o] = -
|

fix he spectrum of J, as ¢ isan angular variable. Asit iswell known from the theory of angular momentum the eigenvalues of Jare
J =han; n =20, £1, +2...

For a cyclic Hamiltonian the eigenvalues of Jfix the spectrum of H, in the present case

2N

E =D(n)"e (2.13)

This is the correct semiclassical spectrum, i.e. for large n, asit is apparent from (12) but it is not the true quantum spectrum. This is another evidence
that canonical classical transformation are not an invariance of Quantum Theory: cartesian coordinates are "special” and von Neumann representation
theorem assure the uniqueness of the Schrddinger representation up to unitary transformations in that case. Vice versa as the spectrum (13) is not the
guantum spectrum this means that canonical transformations are not realized by a unitary transformation.

o The semiclassical spectrum (12) predicts anon analytic behavior in g

2
E ~ g™
Thisisindeed true in the quantum spectrum.

Problem 3

Write the semiclassical quantization conditions for a central field. In particular find the hydrogen spectrum using the Bohr Sommerfeld quantization
conditions.

® Solution

m  The Hamiltonian
Let V[r] the central potential. To correctly identify canonical momentain radial problemsit is convenient to start from the Lagrangian of the system

L= —vZ - V[r]
2

Writing the line element in radial coordinates

2 2

ds? = dr? + r2de®+ r2sin(e1? do
one has directly the velocity in radial coordinates
.2 U .2
V2o % 128 sr2sine1?o’ £- = (fP 428 1r?sin(e1?d’) - Virg (3.1)
2

6 and ¢ are polar and azimuthal angles respectively. From (1) one has the canonical momenta

oL ) oL ) - oL ) o 5.
Pro= ——=uf; Po= — = Ur<e; py= — = ur=sinel” ¢
or 06 o)V}

Transforming variables from velocities to momenta and substituting in the general definition of Hamiltonian
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H=pqg-2
one gets
1 1
H= — |p? + —p2 + ng + VI[r]. (3.2)
2p r r2sin[oe]
g isacyclic variable, then pis aconstant of motion.
m Hamilton Jacobi equation and J variables
The Hamilton Jacobi equation for the Hamiltonian (2) is
8S\?> 1 (8S)? 1 8S)\?
—J + — | —]| +—|—| +2u (V[r] - E) = 0. (3.3)
or r2 (o6 TZSin[G]Z leJ0)

This equation can be separated, i.e. admits a solution in the form
S=85([r] + S5[0] + S,[e].

By substitution in (3) we see first of al that ¢ can appear only intheterm & ¢, then this term must be constant, let call it A,. The 6 dependence is

then confined in

ds,\?

do

1
+7sz

Sine]?

which must be aso constant, call it A . Finally for S, we have an ordinary differential equation. Summarizing we have:

olsez+ A s [

Sin[e)?

ds,

do

do

d 2 2
di] +E+2u(V[I‘]—E) = 0. (3.4)
r

The problem has been separated and we have three integration constants, A,, As, and E . The meaning of the first two constant is evident if we write
them explicitly, they are the z - component of angular momentum and the modulus of angular momentum:

A(/): Py = UrZSin[e]zd’ =Lz

We use this notation from now on.

The action integrals are

1
Jo= — QPodo = Lg;
27
1 1 ds, 1
Jo= — Dpedo = — () —do = —
27 2 de 27
(3.5)
1 1 ds, 1
Jy= —Qprdr =—¢ —dr = —
27 27 dr 27
1 (Jo +{J41)?
= —(Dar |2y (E-U) - ———
27 r2
m WKB quantization and hydrogen atom
o L,
The variable ¢ has no turning points then the quantization rule is simply
Jo=L, = mn (3.6)

oL

The variable 6 has two turning points, given by the solution of
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Sinfe]L?2 - L2 =0

This equation imply the obvious physical conditionL  L,. The quantization condition for J, are

1 1
Jo =L -, = A|lkk+ —| =L =ha|k+ im + —|; k'=0,1, ... (3.7)
2 2

The additional term 1/2 is peculiar of WKB quantization, it would be absent in old Bohr - Sommerfeld quantization.

o Jr

The quantization rule for J, finaly fix the spectrum. Asthere are in general two inversion points:

1

Jr = h|n+— (3.8)
Let us consider in particular the hydrogen spectrum, with
e2
Vir] = - —
r
Theradia action integral is
1 (2 e? L2
Jr = —J 2u B+ —| - —
JT Jry r r2
There aretwo inversion pointsfor E<0,e=| E|
1 e et 2-2L%eyu 1 e2u-+Je*12-21%ey
o L2 " L2 '
We have
e2 L2 1 A\/2€u ry
2U|E+ —| - — =+J2eu —N(r=rq1) (ra-1); Ji = 7J VA(r-rg) (rz-r) dr;
r r2 r T ry
Thistype of integral has aready been donein problem [1], we just report the result:
A 2€EN 2 U
J,:—i(\/rzfvrl) = -L+e? | —
2 7T 2¢
Then the WKB spectrum is given by
n? e4u n? e4u
2e = -2E = . 5 (3.9)
(n,+%+(k'+{m}+%)) (N + k" + fmfp + 1))

with
n=n+ki+ m =1 2
We see that exact hydrogen spectrum is reproduced.

Let us note that in old quantum theory both terms /2 in L and J, where missing and, quite arbitrarily, n, wastakenas 1, instead of O.

Problem 4

Solve the harmonic oscillator problemin the lowest order WKB approximation.

@® Solution

m Eigenvalues

The Schrodinger equation is
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The classical momentum at fixed energy is given by

pIX] =+2mM(E -V[x]) .

The classical turning points are given by the solutions of the equation E = V[x]. In this case

2E
X =+a = ¢+ e
mw?
In terms of awe can rewrite p[x] as
pix] = mw+/a®- x?.
The quantization condition states :
1 1 +a 1
— Qp[x] dx = — piX]dx =n+ — n=0 1,
2rh nh J-a 2
Inserting eg.(3)
1 mw +a muw +1 muw E
n+ — = —J Ja?- x?2 dx = —aZJ \N1-22 dz = —a? = —.
2 nh J-a nh -1 2hn hAw
The levels are given by
1
E,n = hw [n+ —]
2

m  Wave functions

In the text has been shown that the n-th bound state wave function in the lowest order WKB approximation is

C
UIX] = ———BEXp[-{ o[X1, X]|]; X < Xg;
2~/ {p[x]}|
C 7T
UIX] = 7005{0[&, X] - —|; X1< X < Xg;
fpIx] T 4
C
UIX] = ——— BXp[-{ o[X2, X]|]; X2 < X;
2~/ 1p[x]|

Where x1and x,are the classical turning points and o~ isthe classical action in unitsof #;, i.e.
1 X
o[x1, X] = *J p[x] dx
h Ix,
The consistency of the definition rely on the quantization condition (4):

1 rx
o[Xa, Xz]:*J p[x]dx =
h Jx,

1
n+7]
2

Cisanormalization constant, which can be fixed by neglecting exponential terms and using a mean value for the Cos - part:

X X2 dx 7.2 @ x  dx T
1 NCZJ i ax = & 005[077} - - =
X1 x1 PX] 4 2 Jx; mv[x] 2m?2

m

C=2 —

=

where T isthe classical period of motion.

Inthepresent casex;=- & Xpx=+aand T = 2n/w, i.e.

(4.1)

(4.2)

(4.3)

(4.4)

(4.5)

(4.6)

(4.7)

(4.8)
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C =

T

It is sufficient to compute the wave function for x > 0, as n = even-odd give rise to even-odd functions.

o 0<x<a

We have, using (7) and mw? a%/2=E:

= —o[-a, a] +0[0, X] =
2

s 1 2E x/a
d]X_fn+f+—J 1- 2% dz =
2 2 hw Jo
X
1- +—ArcSin[—}
2 a

n E |x X
UIX] = Cos{—Jr— - |1-— +ArcS|n{f]
PIxT] 2 hoja a? a
o a<X
Inthisregion
pIx] = mw~yx?- a?;

2E x/a 2E 1 | x X X
ola, x] :—J z2-1dz = — — |- ——1—ArcOosh{f}
hwJ1 a

hw 2 |a
and
1 C E |x X
UIX] = — Exp{f— - | —-1 - ArcCosh[f} ]
2 TpIx7] hw|a’ a? a
Asymptotically
E (x? mw x2 1
ola, X] — — |— - Log[x]| = — — - [n+f Log(x]
e he | g2 h 2
and
1 mw x2 nl mw x2
d/[x}~—Exp{f——}x z:x”Exp{f——}
VX h 2 h 2

Which is the correct asymptotic behavior for H, [x}Exp[f % Xz—z}

Hereis graph showing the approximation of the wave function for n=0 and n=10. We see the divergence at the turning points.

(4.9)

(4.10)
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Problem 5

Compute the spectrum for a potential x Nin the lowest order WKB approximation. N is even. Study the limit of large quantum numbers.

® Solution
m Change of variables

The Schrédinger equation is

n? d? 1 1
- — o+ —gxNy = Ey;  V[x] = —gxN (5.1)
2mg? 2 2

We change variables x = A z in such away that the coefficients in the left hand side of the equation become equal. A change of variable do not change
the spectrum.

n?2  d? 1
- — U+ g2y = Ey;
2 ma2 dzz 2
The coefficients are equal for
n? n? v
— =g x| —
mx? mg
A hasthe dimension of alength, as the reader can easily check.
With this choice the Schrddinger equation can be written as
1 d? 1
v —2Ny = E— X%y
2 d4z° 2 n?
With
m €
E—2 = — (5.2)
n? 2
we have the universal form
d2
2Ny = ey (5.3)
dz?
Energies can be recovered using (2). The energy scaleis given by
B2
&o = (5.4)
2 mx?

Let us note that the rescaling is a canonical transformation then action remain invariant. In particular



1 n?
= — [2m|e - —gaNZN| -
h 2mx2 2
1
= —Je-zN
A

then

p[x]
J dx :Jk[z]dlz
h

wherek[Z] is the wave number ineg.(3), k[z] =+/ e - zN .
m  WKB quantization

The turning pointsin (3) are (with N even)

The "wave number" is

and the quantization conditions

1 1
— (Qk[z]dz = [n+f

+a
N J K[z]dz = n
27 2 -a

The integral appearing in (7) can be expressed in terms of Euler Beta function. With N even:

+a +a N +1
J k[z] dz :J NaV - zN az :2a1*5J J1-yNay = 2at:
_a _a 0

2T{g+
We have from (7)
2 2N
3 17\an 3 17\2n
1 rlz 5™ 1 rlz+5l]™
a-|[nel]vr 2N en:[n+—\/? 2 N
2 F[lw—%] 2 F[la—%}
In particular for N =4
4/3 7143
€n = [n+£] 2/3 F[:]J
2 (3]

In the text the same expression is written in a slightly different but equivalent form,

7 4/3
VA3, 4 1143 ( 1“[4*}
n+— [—] = [n+— -8 — = €n
2 21 2 2 it
s F[Z}
The last equality follows from x T'[x] = T'[1+x], for x = 1/4.
Usud energy is
181 182 (mg)\ s
S g L [
2 m 2 2 m\p2

&o isthe characteristic energy of the problem.

NVC;F[1+

Problems_chapll.nb

Here we present a comparison between numerical computed e, and WKB resultsfor N =4 and N = 6 (see notebook [NB-11.1])

|11

(5.5)

(5. 6)

(5.7)

(5.8)

(5.9)

(5. 10)



12 | Problems_chapl1.nb

€n GX\KB oe /e €n E‘AKB o€ /e
0 1. 06036 0. 867145 0.182218 0 1.1448 0. 80083 0. 300464
1 3.79967 3.75192 0. 0125677 1 4. 3386 4.16123 0. 0408804
2 7. 4557 7.41399 0. 00559434 2 9. 07308 8. 95355 0. 0131744
3 11. 6447 11. 6115 0. 0028528 3 14. 9352 14. 8316 0. 00693598
4 16. 2618 16. 2336 0.00173482 4 21.7142 21.6224 0. 00422557
5 21. 2384 21. 2137 0. 00116391 5 29. 2996 29. 2166 0. 00283505
m Classical parameters and semiclassical limit
The classical motion is fixed by the turning points. It is a periodic motion with period
+a  dx +a  dx 22 ~+a dz
T = ZJ =2 mJ =2m— =
—a V[X] -a p[x] h Ja k(z]
1
m2 w1 dy mz Vo r(1+g]
4 ——a 2 ——— =4 —a 2 1
h O J1-yN h r{3+x)
By expressing aas afunction of E, with E = gy aN we have
bo) En j—N Tt I‘[l + 7]
T=2—|—- 101
So 160 T3 +xl
At the semiclassical level the following relation must hold :
Ok, 27
= —nh (5.11)
on T

Thisisacheck of (11) for the case N =4, g = 1.2. The continuous line is the left hand side of equation (11) computed with an interpolation, the points

are classical expression for 2 7i/T.

AE/On

Problem 6

Consider a particle of mass min a one dimensional potential V[x] = g §(x-a) + g §(x+a). Compute in the semiclassical approximation energy and
width of the metastabl e states. Compare the results with the solution of the Schrédinger equation with the Gamow Segert boundary conditions.

Solve the same problem for a "radial" barrier, i.e. defined in the semispace x > 0.

® Solution
m Onedimensional problem

The potential
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V[X] = g6 (x-a)+g5 (x +a) (6.1)

isthe limit case of the one shown in the figure below

—a a

Metastabl e states can occur, which decay through the § - barriers. The Hamiltonian of the systemis

2

H= — +g&(x-a)+g6 (x+a) (6.2)
2m
Using
1 mg
E=—1n%k?® B=— (6.3)
2m A2

stationary states are given by the solution of the Schrédinger equation
WOIX] o+ KZW[x] = 2B (6 (x-a)+ & (x+a)) ¥[x] = 28 (5 (x-a)y[al + & (x+a) y[-a)). (6.4)

Y[x] is continuous at x= + a while its derivative has a discontinuity fixed by equation (4). Integrating in a small interval e around a singularity and
taking the limit e-0 we have the jumps:

Ay [al = 2By¢[al; Ay [-al = 2By[-al; where Ay [z] = Li my’[x] - Li my/[x] (6.5)

X->zZ" X-=Z~
m  WKB approximation

We have awell of width 2 a. The semiclassical quantization conditions are the same as those of afree particlein awell

1 1 +a 2a
—— Qp[Xx]dx = — pdx = — =n; n=1, 2, ...;
271h nh J-a h (6.6)
Tt P n
p=h—n k = — = —.
2a h 2a
e¢ Note. In general the quantization conditions are of the form

1 u

——— QP[X] dXx = ng+ —
2an 2in g

The sum is on he turning points and i = 1 for turning points with continuous derivative, while u=2 for turning points with discontinuous derivative, as
inthiscase. Asnp=0,1,... we have ng+ 2 u/ld = no+1=123....

The corresponding energies are

n?2 n? 2
En= — (6.7)
2m 4a?
The width of these statesis given by
h
r=2-P, (6.8)
T

where Pisthe probability of crossing as - barrier and
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4a 4am 8a’m
T= —= = , (6.9)
v p nrh

isthe classical period of motion. P can be estimated using tunnel effect. Consider for example the right barrier. The approximate solutions for  are
X<a: ¥ = e'* + e kX xsa: yr= TelkX, (6.10)
Continuity of ¢ and the constraint (5) give
dulal = yrlal; Ygrlal -yilal = 2Byrlal. (6.11)
Inserting (10) and solving for 7~ one easily find
ik k2

- = : P - {7“}2: (6.12)
J'lk*B k2+[32

In this approximation we are neglecting multiple reflections, i.e. we assume P < 1, or 8 > k. In this approximation

k2
P=—
B2
Inserting this value and the expression for T in (8)
n? and
r = — . (6.13)
2m 8 a4 BZ
Thisformulaisno morevalid for 8 ~ k.
m  Gamow Siegert boundary conditions
In one dimension a divergent wave means
¥~ Explik |x}] (6.14)

In fact, the phase grows for both limitsx — + co. Thiswill be the form of the solution for | % a, as the potential is zero.

For -a< x < athere two linearly independent solutions, Cos[kx], Sin[kx], respectively for even and odd states. Then the solution will be:

ol Even states

x<-a: y=AekXl; _a<x<a: Cos[kx]; a< x: AelkIXl;
¢ Odd states

X<-a: y=-Ae'®Xl; _a<x<a: Sin[kx]; a<x: Ae'*xl;

We can limit ourselves to the point x=a and impose there the constraint (5) :

o( Even states

Cos[ka] = Ae'k® ikAe'k? + kSin[ka] = 2p3Cos[kal;
o Odd states

Sinfka] = Ae'k? ikAe'*? - kCos[ka] = 23Sin[ka];
Eliminating A

(ik -2 3) Cos [ka] + kSin[ka] = 0 evenstates

6. 15
(ik -2 3) Sin[ka] - kCos[ka] = 0 odd st ates ( )

The solutions of these equation are complex k, which give rise to a complex energy
n? T
E=  —k?®=Eg-1—.
2m 2
o Large g limit

To have afinite solution as 8 grows ka must be approximately an odd/even multiple of 7/2 for even/odd states, to compensate the growth in 8. Let us
pose
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T Ciy Co
evenstates: k = — (2s+1) + + oL

2a a2 ad 2

T dq d,
oddstates: k = — (2s) + +

2a a2 g a3 2

Inserting n the previous equation and expanding in 1/3 onefind

2

JT
C1=- (2s+1); co = (23+1)7i—(25+1)2;
16

o |

2 72

7T Vs T 7 )
= — (2s); dzzsf—isz—:7<25) - 1— (29)
4 4 4 8 16

s
4
s
dlzsf
2

¢ Note: Asn startsfrom 1 even statesare n=1,3,5 ... while for odd statesn = 2,4,..

Both expression can be written as a correction of the form

s n 7T 1 s 2 ) 1 3
K=~ —n=+ (-1)" —n +|=n-1—n +0(B7)
2a 4 aZp 8 16 asd 32
For the energy one deduces :
n? n? n2 n2 n n2 n2 3 n?2n2 1 ndr8
E= —k?=_— + (-1) + | — N p— + 0(B?)
2m 2m| 4a2 483 16 a* 32 16 a*p?
At lowest order
T 1?2 n? x2 a2 1 ndr8
E = ER, 1 — =~ — — 1

2 2m 43a?2 lﬁga“gz
in agreement with (13).
m Theradial problem
In this case the space is bounded to x > 0 and the effective Schrodinger equation is
UIx] + KPyix] = 286 (x-a) wix] = 286 (x-a) y[al.
It can represent the wave equation for the S - wave reduced function in aradial problem.

o WKB

For energies the only difference with respect previous problem is that the well has width ainstead of 2 a, then energies are

#2 n2 52
En= — .
2m a2
For the width I we have now
h
r=—"
T

as only one barrier is present. The period is given by

The computation the probability of tunneling P is the same as before:

ik k2 k2
T = — P = j712-= N—
ik -8 K2 4 2 2
The resulting WKB approximation for T is
n? n8nd
= — .
2m a4 BZ

o Gamow Siegert boundary conditions

In this case only solutions vanishing at x = 0 are acceptable and matching conditions at x = O reduce to

|15

(6. 16)

(6.17)

(6.18)

(6.19)

(6. 20)
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Sinfkal = Ae'k?  ikAe'*? - kCos[ka] = 2B8Sin[ka];
Eliminating A
(ik -2 pB) Sin[ka] - kCos[ka] = 0 . (6.21)
As expected thisis the condition for odd states in the previous problem.

The large B limit can be studied by writing

Tt dl d2
k = —n + + + .
a a2p  adp?
Inserting in previous eguation one finds
Tt nt n2 n2
di=n—; do= — -1
2 4
Finally for k and E
7T a1 nr n2 2 1
k= —-n+n-— | — -1 +O<B’3);
a 2 azp 4 4 ad p?
T n? n2 n2 n2 n2 3 nZn? 1 nd 3
E=FEr-i- = — + - - 1= + 0 (872
2 2m a2 a® 3 4 g4 p2 2 a4 p2

which at lowest order coincides with WKB resuilt.

Problem 7

Compute the spectrum of an anharmonic oscillator 1/2( A, x2+ 24 x*) in the lowest order WKB approximation. 2, is positive. Compare the results
tothat of perturbation theory.

® Solution

m Change of variables

The Schrédinger equation is
1
—— — v — (X% x*) v = Eys (7.1)

The eigenvalues will depend on X, x4and m. A simple change of variables show that the effective parameter is only one and that eq.(1) depends
actually only on this parameter. Take

X = (Jxim Yz 4 =Signag] =+ 1. (7.2)

Substituting in (1) we get

1 (2] 1/2[ , & , 4) A4
— -h* —+puzc+9z* |y =Ey; 9= ——-—.
2em dz’ Vizei®m
Then we have
{AZ} 1/2 3
Elm X2, A4 = E(1, 1 9] (7.3)
m

This means that, for a given sign of the quadratic term, the only real parameter is g. In this problem we consider 2,> 0 then our reference equation is

(we call again x the space variable)

2
7£h2d 1 1

. p 2 4
v =Ey; H= —+ —x°+ —gx". (7.4)
2 2

o Note

The new change of variables x = #1/2y can reabsorbs also the factor 7 :
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1 d?

y? o+

+

1
- (gh) y* |y = —y (7.5)
2 dy2 2 h

N | =

This shows that in fact a weak coupling expansion in g is equivalent to an # expansion in this model, if energies are measured in units of 7. As we
want to keep separate g and 7 variables in this problem to show a particular limit with g fixed and % n fixed, n is the quantum number, we do not use
here thislast coordinate transformation. Thisisimplicitly used in most of the numerical notebooks when "natural units’, m=1,7% =1, w =1 are used.

m  WKB quantization

The classica momentum in equation (4) is

pIx] = \/2E - x? - gx* (7.6)

It is convenient to rewrite this expression by extracting the turning points.

With
2 71+«/1+8gE' o 1++1+8gE (7.7)
2g 29
we have

pix] = /g +/(a®-x%) (b2 +x?) (7.8)

The turning points are clearly

X = +a (7.9)
The WKB quantization condition is
1 1 1 [+
n+7]:7 p[x] dx = — p[(x] dx = J[E]. (7.10)
2 2nh mh J-a

Inserting the expression of p[x] and using the symmetry x - - X, we have

JIE] - wg_fJ (a2 -x?) (b2 +x?) ax (7.11)
h Jo

T

The integral can be expressed through complete elliptic integrals. Their definition is
/2 - 2 /2 dop
fE(mM = J NV1-mSinfe] de; fKm = J . (7.12)
° ° 1- mSin [w]2

For m we follow the notation used in Mathematica , some authors use nfwhere we write m. In terms of these integrals

a a? + b? a? a2
[V (@) (o7 o) ax - b2k | - (p?-a2)rE[ "] (7.13)
0 3 a2 + b? a? + b?
It is possible to give different forms at the result using identities among elliptic integrals.
For the action integral we have
2+/g aZ+b? a? a2
JIE] = Vo vatebt bsz[ } - (bzfaz)fE[ } . (7.14)
mh 3 a+b? a? +b?

Hereisaplot of # Jwithg=1:
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JEI

Inverting the relation (10) we get the spectrum.
m Limits

It isinteresting to investigate small and large g values. This can be done by a series expansion in g or 1/g. By using Mathematica or consulting a book
on Elliptic functions.

o Smallg
For small g
1 3 35 1155 E*g® 45045FE° g*
JIE, gl — — |E- —gE® + —g?E® - + A (7.15)
9-0 p 4 16 128 1024
At lowest order
1
Eop =e = hd = h n+7] (7.16)
2

the correct result for an unperturbed oscillator of unit frequency.
Using a power expansion
_ k
E-E + Zk g¥ Ex
the seriesis easily inverted with the result
3ge? 179%€® 3759%e* 10689¢g*ed

Ews = €+ - + - + 0 <95>
4 16 128 1024

Consider now the first ordersin usual perturbative expansion, see notebook [NB-9.1] in chapter 9.

1 3
n+—]+—g<1+2n+2n2)h2—
8

E = h
pert
2

1 3
— 9% (21+59n+51n*+34n°) n° + g (111 +347n+472n%+250n% + 125 n*) n* -
128

32
g* (30 885+ 111697 n +160470n2 + 142610 n% + 53445n% + 21378 n5> n®

2048
Let us note that in agreement with eq.(5) the quantity E/# depends only on the product (7 g).

Itiseasily seen that the two expansions do not agree in general, remember that e = 7 (n+1/2). As an instance for the ground state

1 3 1 39
Epert:*f’lJr*gthr...; Ewg = — A+
2 8 2 16

But if we take the limit #—0 , n»oo, with n 7 finite, i.e. we take only the leading order in 72 n in both expansions they coincide:

n o+ ...

3g (nm? 17g% (nn)® * 10689g* (nn)®

4 16 128 1024

375¢® (an)
.

Ews = An+ + ... :Eperl

This confirms what stressed in the text : the semiclassical quantization formulais accurate in the double limit 250, n—co, with (n#) finite.
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To avoid misunderstanding let us repeat the conclusions in another form:

1. Thesemiclassical approximation for E/#i isalways formally correct as# — 0. In the particular case of an anharmonic oscillator this limit
coincides with g—0, but the validity of WKB approximation is general.
2. Ewks / h canbeconsidered as afunction of g and #n, in fact only the combination 7(n+1/2) entersin the quantization conditions. This expansion

iscorrect as# nisfixed as# goesto zero, and this independently of the value of g, i.e. also for large g, asfar as g is kept fixed.

3. Inthe perturbative expansion of anharmonic oscillator - like potentials, especially if one uses "natural units', the expansion parameter is g 7, this
means to take the limit g— oo, 7—0. While the leading termsin n are under control by the previous observation, the subleading termsin 1/n are
not covered at leading order WKB, because g is not kept fixed in this limit.

4. If next to leading correctionsin WKB are performed clearly we can recover subleading terms.

In conclusion for several regimes WKB expansion is more general than perturbative expansion For equal order of expansion results in of WKB and
perturbation theory coincide, even if making a WKB expansion can be much more difficult than perform a perturbative expansion.

o Largeg
For largeg
1/4
i
J [E, g] —— E3/4 = E ~ n4/3 g1/3 (7 17)
g-o 342
37y

Thisisimportant asit indicates a cut in the complex g plane. The result implies also a growth with n faster than in the harmonic oscillator case, where
E, ~n.

m Classical period

The classical period isgiven by (herem =1)

dx 4 a dx
T - -
95P[X] \/Q_L \/(azfxz) (b2 + x2)

Also thisintegral can be expressed through elliptic integrals with the result

4 1 . [ a2 ]
TE] = — K . 7.18
NCR /a2+b2 a2 + b2 ( )
The asymptotic limits are
1\ 1/4

1 3 1 (5) v

— T[E]— 1 - —gE —T[E] —> ———— EY4.

27 9-0 2

2o T gy

The reader can verify that these limits satisfy the general requirement ( correspondence principle)

Problem 8

Consider a generic even potential V[x] with two degenerate absolute minima. Show that for small tunneling amplitudes the splitting between ground
state and first excited state can be obtained by a variational technique based on the two semiclassical solutions built on the two minima.

@® Solution

A prototype of this problem is the double well anharmonic oscillator, with a potential of the form

Vix] = -ax? + bx* a, b > 0.
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VI[x]

10}

05

-10f

-15C

The following considerations are valid for ageneric potential with thiskind of shape.
We will use a particular feature of variational calculations: to obtain first order correct results in energy it is sufficient to know the states only at zero
order, thisisthe essential feature of stationary points.

We assume that neglecting tunneling effects the system has two degenerate levels, pictorially depicted in the above figure. Let us consider a
(semiclassical) solution ¢¢[X] describing a bound state. This state by definition goes exponentially to zero as x— oo. If we denote by K the penetration

barrier integral the value of ¢, at x=0 will be of the order of K!/2 as semiclassical wave functions decrease exponentially in the forbidden region and
x=0isat half way in the barrier.
The same construction holds for left well, by symmetry. Consider now afunction ¢;which coincides with ¢ for x>0 and is prolonged with continuity
inthe x < O region, in an exponential decreasing way. This can be done in infinite ways of course. Do the same for the left well. Then we have
01[x] = wolx]i x >0 ei[x] = 0 (VK forx < 0;
(8.1)
021x] = 9c[-X]; X < 0; 0z[x] = 0 (VK| forx > 0;
It is simpler to assume that the two functions are prolonged in the same way, even if this is not essential. We assume for simplicity that o are
normalized in a semi-space (this can always be done, at the end we will write formulas for arbitrary normalization):

Jwﬁm =1 (8.2)
0
By construction the two functions satisfy Schrédinger equation in the two respective semi-spaces:
0 x>0 0 x <0
H - = ;o (H- = .
( Eo) 01 O(\/?) X <0 ( Eo) 02 [O(\/?) x>0 (8.3)

We can take these two functions as a basis for a variational computation. We know that the minimum corresponds to eigenstates of the system
Hjcj = ENjg
Where H and N are respectively the Hamiltonian matrix and the scalar product matrix. Let us compute these matrices. By symmetry:
Nip = J 0101 dx = Nz = J w2 02 dx =1 + 0 (K)

The 1 comes form normalization of ¢, the order K comes from splitting the integral in

o © 0 @ 0
lewldlx :lewldlx +J<01(01dlx :chwcdlx +Jw1w1dlx =1+ 0(K)
o 0 —o 0 —o

Off diagonal elements can be estimated in the same way. In a semispace only one of the two functionsis depressed then

Niz = Npy = 0(\/?) (8.4)

The same trick can be used for the Hamiltonian matrix

o o 0 0
Hia :J o1 Hepp dx = J o1 Hep dx + J 1 Hep dx = J 01 Bo 1 dX + J o1 Hppdx =
_ o 0 e

® 0

0
Eonle (H- Eo) g1dx = ENyg + 0 (K)
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The off diagonal term is a bit more difficult

o w 0
M = J @2 Hpy dx = J @2 Hpp dx + J ©2 Hoy dx
o 0 o

In the first term we can use Schrodinger equation, while in the second this is not possible as 1 satisfy this equation only for x > 0. We can make an

integration by part, in such away H will act on ¢, which satisfy the equation for x < 0. We neglect terms at infinity:
0

0 0
sz +J 03 @1 dXx =
0

02001 04 (0] - 05 (0] 01 (0] + J 0% 0 dx

d2

dx

0
o1 dX = (02 01) - j o 91 dX = ©2[0] 01 [0] - 05 01

-

Asy =¢c [-X] wehave gy [0]=¢p; [0]and ¢5 [0]=- ¢, [0]. Then with the help of Schrédinger equationin x <0

n? n?
Hp1 = Npy Ep - Py (20c[0] 0z [0]) = Na1 Eo - Ewc[omg[m = NaEp+ 6 (8.5)
m

Collecting our matrix elements and writing explicitly K factors (o are Pauli matrices)
H=EN +aK+dbo1; N=1+biVKop+ byKoz
We have to solve
det (H- NE) = 0 = det (N'H- E) = 0.
We have
NT =1 -b1VKor +0(K; NH=E+N'So, = B + 601 (L+ 0 (K))

It isimportant that all corrections cancel exactly in the leading term, as the Egpart of H was proportional to N, while al corrections just modify 6 by

higher order terms. The eigenvalues of N2 Hare well known:

ﬁZ
E-F+6=E7% — 0] ¢0] (8.6)
m

Ey + ¢ isthe eigenvalue of the symmetric state, as for a decreasing function ¢ [0] ¢ [0]> O this corresponds to the ground state, asit must be. The

energy splitting between symmetric and antisymmetric statesis

hZ
AE = 2 — ¢c [0] ¢ [0] (8.7)
m
For not normalized functions obviously :
n? ®
AE:Z—wc[O]wé[O}/Jwgle (8.8)
m 0

The result coincides with semiclassical result, in the semiclassical limit, but is more accurate, as it do not depend on connection formulas. As far as

ocisaccurate the only errorsin (8) are due to higher powersin K.

¢ NOTE: This derivation make particularly clear why we can calculate the splitting. In whatever scheme, perturbative, semiclassica etc., the single
levels will have some unknown corrections, higher order in the coupling, higher order in 7 etc.. As the potential is symmetric in the difference AE
all these corrections cancel exactly, what is |€ft is the non perturbative corrections, due to tunneling. In eq.(8) it is apparent that the accuracy of the
calculation depends on the accuracy of the wave function in the asymptotic region, as x=0 is far form the local minimum of the potential. Thisis
the only point in which the calculation must be accurate.

m Lowest order WKB

For classically normalized solutions the exponential tail of the wave function s, in the semiclassical approximation
C

1 X
oc[X] = 7Exp[—f [pIx] | dx (8.9)
2/ 1pIxT1 h Ja

where a>0 isthe turning point, p[x] the momentum, C the normalization constant. For symmetric potentials
p' [0] « V' [0] =0

then
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n? n G 1 p[0] 2 0 nc? 1
2 (0] 0101 =2 — — —— —— Bxp[— | {pIx]idx| = — Ex [fj Ipix]} dx
m m 4 p[0] & h Ja 2m h J-a
nc? 1 nc?
AE = —Exp[——J {p[delx} - K (8.10)
2m h J-a 2m
With the lowest order normalization
m
C=2_[—
JT
h2 hw
ME= — K= —K (8.11)
T s

where w isthe classical oscillation in the well. In this formulathe only error isin the determination of C.

Problem 9

Compute in the lowest order WKB approximation the energy splitting between the two lowest-lying statesin a double well.

® Solution
m  Change of variables

In previous problem it has been shown that by a change of variables

x = Y2 (Ip1m) Mz 4= Sign[a] =+ 1.
the Schrédinger equation
n? d? 1
—— — U+ — (ex®+ ux*) Y = Ey; (9.1)
2m gx? 2
can be transformed in a standard one
1 d2 5 1 p2 1 1
_— + —x2 4+ —gx* Yy =Ey; H= —+u—x®+ —gx* (9.2)
2 gx* 2 2 2 2 2
whereu =-1and
B VR
g=———— E[Qh m 2, 4] =nh E[1, 1, u, 9]
m

Vit m

In the following we will use the standard form (2). In the present case, a double well potential, z = - 1. At variance with respect previous problem we
absorb 7 in the change of variables as we will not be interested in the large n limit (n is the quantum number). The potential is

1 1
Vix] = -—x% + —gx*

A plot of the potential is:
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VI[x]

10}

05

m  Condition for tunneling
The inversions points are given by the solution of the equation
2E-x® -gx*=0

and are x =+ a, + bwhere

o TTNIYBERO o, TeVIvBES (9.3)
29 29

Points + a arethere only for E < 0. For E > 0 there are only two turning points, + b. The classical momentum can be written as

pix] = \Jg o/ (x*-a%) (b7 - x?) (9.4

We are interested in the case in which two energy levels are negative, these will correspond to the spitting of two approximately degenerate eigen-
states describing a particle in the left or right well respectively. The tunnel effect remove the degeneracy.

At the semiclassical level the energy of the bound states in each of the two well are given by the quantization condition (7 = 1)

a

1 b 1
J(E] = —Jp[x]dlx =N+ —
7 Ja 2

To have a tunneling between states confined in the two wells at least one level in each of the well must be present, with negative energy. The limit
caseisE=0. For E=0, wehavea=0, b= 1/g and the action integral becomes

1 b 1/\Ja
J[O}——Jp[x]dlx—\/gjo/ X
JU Ja

To have abound state the following condition must hold

1

1 1 1
—-x?2dx = —J N1-2z%2dz =
Vg o

g 3g

1 1 2
> — => g< — ~0.21
3g 2 3

J[0] >

1
- =
2

m The tunneling

In the text it has been shown how at a semiclassical level the tunnel effect can provide an exponentially small splitting between the first two bound
states of the system. An alternative proof was given in previous problem. Theresult is

nc? 1 e
AE = —Exp[——J Ipx] | dx (9.5)
2m h J-a

where C isanormalization for semiclassical state, in lowest order, with T the classical period of motion:

c=2_]- (9.6)

It follows

1 2n
AE = Exp{—fj {p[x]}dlx} = ?K. (9.7)
-a




24 | Problems_chapl1.nb

K isthe penetration barrier factor.
m Evaluation of the integrals

We see that all physica interesting quantities are given by integrals of p[x] i.e. of square roots of quartic polynomials. All this integrals can be
expressed trough elliptic integrals. Therelevant integrals are:

b b b? - a2 b? - a?
x?- a%) (b?>-x2) dx = — | (a®+b?) EllipticE - 2a’E lipticK
L0 o) ax < (et ewt) Enpuce[ = =] pti ok ———]
aJ 2 2 2 b 2 2 a? 2 2 a’
ac - x"2) (b°-x dx = — |(a“+b*)EllipticE|—| - (b - a%) EllipticK|l—
[V o) ax - [ ent)Enipice[ "] - o - e mnipiek” ]
b 1 1 b2 - a2
J dlx:—EIIipticK{ - }
"o (6 - @) (o -x?) ° b
And we have respectively :
J =
b b b27 2 b27 2
EJ\/(xz—az) (b% - x?) dx - Ve b (a +b2) Bl i pti cE| 2 | - 2a?E1ipticK| ? I (9:9)
T Ja T 3 b2 b2
2 b 1 2 1 o b?-a?
T:—J dlx:—fElllptch{ . ]; (9.9)
Vo e pr o) Ve P ;
K = Exp[-2D];
b a2 a? (9.10)

D = ﬁf\ﬂahwz) (b? -x?) dx = ﬁg

From these expressions AE can be computed, and compared with numerical evaluation of eigenvalues. Thisis done in notebook [NB-11.2]. We report
here a plot: the lineisthe WKB result, points are numerical eigenvalues:

(a? +b2) Bl i pti cE|

| - (b? - a?) EIIipticK[b—z]

b2

o6E

0.20[
015[
0.10[

0.05

1 1 1 1 1 1 1 1 1 1
0.05 0.10 0.15

This subject is explored again in notebooks [NB-11.2] and in problems.

Note: the result is not accurate for g — 0, as the subleading term in the WKB phase is not under control in this approximation: a precise determination
of the constant C in eq.(6) require amore refined analysis, thiswill be done for the anharmonic oscillator in problem [11] and in notebook [NB-11.2].

Problem 10

Consider the Schrédinger equation for a potential V[X]. Let us suppose that V[x] is analytic, then the equation can be extended in the complex
domain. Set

- o[X]
yIx] = Bxp|i E
h
o[x] in general will have branch points for classical turning points. Let us suppose that there are only two of them. The monodromy requirement on

implies the constraint
1
7950[“ dx = 27n.
A

Show that this lead to leading order to the Bohr - Sommerfeld quantization conditions, and allows to compute higher order correctionsin 7 in the
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WKB quantization procedure.

@® Solution

The position

oo - epls 2L,

transforms the linear second order Schrodinger equation for ¢ in anonlinear first order equation for o”.

The only unknown quantity is o’ and in the mathematical literature the substitution (1) is usually written in the form

WIX] = Eprxf [X] dlx}

| 25

(10. 1)

The resulting equation is known as a Riccati equation. We will follow the more conventional notation used in physics and will adopt the form (1).

* NOTE Inthe following we will take the signs adapted to work in the classical allowed regions. Formulas in the classical forbidden region can be
obtained by analytic continuation but to avoid problems with signs and for didactic reasons at the end of the problem we give also expressions

adapted to computations in the forbidden regions.
As shown in the text by substitution of (1) in the Schrédinger equation

hz
-—— Y7 [X] + VIX] ¥[X] = Ey[X]
2m
one obtains
1 5 h
— o' [X]" -1 —0"[x] + V[x] = E
2m m
With

the classical momentum, at fixed energy,

o [x1% - 1 o”[x] = p[x]Z

One recognize that at leading order in 7, o[x] isthe classical action

oo[x] = iJ pix] dx.

To make an 71 expansion means to write

n

h

i

o[X] =
k=0

ok = Og + —Olfhz(jz + ..

Inserting this expansion in (4) one obtain at lowest order

Thisrecursion relation is easily solved order by order as o}, appears only in two termsin the sum, thefirst and the last.

1 1 n-1

Oi[X] =- ——of;  oplx] = - Ok Ok + Of1| Nz 2
2 op 205 \ka

Explicitly:

1 1

o1[X] =- ——o05 = o1=- —Log[p[x]];
2 oy

) T, 1p7x]  3pix)?

oz [x] =- op[X] + oy [X]) = — - =

(10.2)

(10. 3)

(10. 4)

(10. 5)

(10. 6)

(10.7)

(10. 8)

110 A\
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2
S O
2p[x1Y? dx?
1 1 d o5(x]
o3[X] =- —— (201[X] 05[X] + 05 [X]) = 05[X] =~ — —
2 op 2 dx plx]

With p[x] real al these quantities are real, this means that only even orders appears as phase factors in the expansion of (1).

Near aclassical inversion point p?[x] = (a-x) R[x], where for simplicity we assume that R[a] 0, i.e. ais a single zero. This imply that o’[x], the
square root of p2, has a cut starting from x=a. These kind of cuts propagate in higher order approximations. For xeR y[x] must be a single valued
function (i.e. must be afunction) this means that we are approximating a single value function with a non single valued sequence of functions.

Let us suppose that p?[x] has two zeros, x; and X5, than a cut is present between these two values. Approaching the cut from above or from below
must give the same value. The phase factor can be defined by usual analytic continuation along an arbitrary path.

Analitic continuation for the phase factor

The request of monodromy for ¢ imply that the difference between the values on both side of the cut must be a multiple of 27. By deforming the
contour if necessary thisimply

1 1
fggdlcr:fggc’[x]dlx:ZNn. (10.10)
We stress that this an exact constraint.

The location of the turning points, and the value of the integral, depend on the energy, than (10) is a quantization condition for energy. If the seriesin
#i converges to exact solution than eigenval ues must satisfy this relation.

At first order (10) reduces to Bohr Sommerfeld condition

1 1 2 X2
—ggﬁé[ﬂdlx = —ggpo[X}le = —J p(x]dx = 2nn.
h el 7 Jx

Next order is abit special. For a parametrization

we have from (9)

1 d 1 1 1 R[z]
o1[z] =- - —Log[p] =- — + +
2 dz 4 (z-X1 Z-Xp R[z]

Last term is regular, then it does not contribute to the contour integral. The first two terms have poles, not branching point singularities, and their
contribution, using Cauchy theoremis

Then we have, up to thefirst order

1 1 1n 1
—@o’[x}dlx = —ggoé[x]dlx +——950’1[x]d1x = —ggog,[x]dlx -
h h h i
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and the quantization condition becomes

. (10. 11)

i.e. the WKB quantization condition.
o1is special asits derivative has polesinstead of cuts, all other terms do not have these type of singularities.

It is expected that, apart o1, al other odd terms in the expansion do not contribute to the phase and so do not participate to the quantization condition.
This is indeed true as they are all total derivative and their integral on a closed loop gives zero. This is most easily seen by separating modulus and
phasein (1)
S
yIx] = ABXp|i —|; A SeR
h
QOdd termsin the expansion of ¢~ contribute to A, even termsto S. Substituting in the Schrodinger equation and separating real and imaginary parts

— [A[Xx] S'[x]° - B2A"[X]) + V[X] = E

2m
A [X] 1d

S"[X] A[X] + 28 [x] A[x] = = -— —Log[S[X]]
AlX] 2 dx

A'IA is the derivative of the odd part of 0. Log [S’ ] once expanded in power series of # has a logarithmic branch cut, the one giving rise to o;while
other terms come from the Taylor expansion of the logarithm, and are usual functions, with at most brunch cuts between x;and x,. Now the analytic

continuation means exactly that the derivative along a closed circuit is zero, as the continuation is defined by an integral along a path, then all this
terms do not contribute to the quantization condition.

All subsequent even terms produce a correction to quantization condition. Let us consider for example the first correction, due to o, At second order

9

The integral involving o,can in principle be computed on complex domain, but it is often convenient to reduce it to a manageable form on red

we must impose

5 2

i

1 1
oo [X] + oz [X]]| = —g&p[x} - op[x]) = 2n n*g

h

numbers. In the following manipulationsit is convenient to write

pIx]% = QIx]

in order to easily identify square roots. Then

1 Q[x] 1 1 1 Qix)?

P IX] = — ;o PTIX] = - Q' [x] - —

2 Q[X]l/z 2 Q[X}l/z 2 Q[X]

From eq.(9)
1p7[x] 3px1® 1 QIx] Qx)?
oz [X] = — - = = — - —

We can extract atotal derivative using

and write

1 Q'[x] 5 d Q[x]

op[X] = — —mt — — ——
’ 48 Qx1%% 48 dx Q[x]%?

Last term do not contribute to the contour integral. First term can be transformed in a manageable way by noticing that

1 0
QIx1 %2 = 2m(E-Vix]) = = — QI V4 QIx] = -2mVx].
m oE
1 o V7 (z]
ggoé[x} dx = — — (Ddz
24 oF (2m(E-V(x]))"*

and the quantization condition finally becomes
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n 9 V' (z]
ggp[szlZ——— dz = 2nh
24 OE (2m(E-V[x]))

In terms of action integral (between the two turning points):

1
J+8) =n+ — (10.12)
2
where
1 x n 9 x V7 (z]
J=7Jp[x}dlx; 8 = - — — .
7T JIxy 24 1 OE Jx, (2m(E7V[x]))l/2
Thisformulawill be widely used in the numerical notebooks.
m The classical forbidden region
It is convenient to define
q[x] = +/2m(V[x] -E) (10.13)
and write the semiclassical expansion in the form of a Riccati equation
1 X
W:Exp{fjf[x]dlx]; f o fo+ Afy+ Afps ... (10. 14)
h
By substitution in the Schrddinger equation one obtains
f2 4 nf’ = g?[x]
At the lowest order we have the two solutions
fo=+q[x] (10.15)
Take for example the plus sign. The next equation is
1d X 1
2fofy +fp=0=f; =— — — Log[lq(x]|] = Exp[thl] S
2 dx [amx7
Let us stress explicitly that thisterm do not depend on the sign of g[x] chosen in the solution f o, i.e. it is equal for both solutions.
For second order
1 1 97[x] 3 qx]2
2f0f2+f§+f’1=02f2=-—(f§+f’1):fq 2= (10. 16)
2fo 4 qx1? 8 qx1®
and so on.
Problem 11

Compute the energy splitting between the two lowest-lying statesin a double well, inthelimitg - 0.

® Solution
m  Statement of the problem

A potential with a double degenerate minimum, like
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VI[x]

10}

05

77777 -05}

-10f

-15C

has a double degenerate ground state if tunneling is neglected. We know that in one dimension the ground state is unique and, for a reflection

invariant potential, we expect an even ground state and an odd first excited state. Tunneling provide the mechanism to realize this picture as the first

two states are the even and odd superposition of | +and | -jhe semiclassical states confined in the two wells. To compute the energy splitting we

have to solve Schrédinger equation taking account for tunneling. This can be done in severa ways, which will be reviewed below. In the text a

semiclassical approach has been used, in problem [9] has been presented a variational - like approximation. In both cases the result was

1 +a 2h hw

AE:§—EXp{——J jpIxjtdx|=6""K=-€-—K (11.1)
T h J-a T s

X = = aare the classical turning points indicated in the graph, K is the penetration barrier factor, T is the classical period of motion inside awell, w =
27T the corresponding frequency. We have explicitly written a prefactor ¢ ~ 1 to stress the fact that this formulais only "exponentially correct”, i.e.
the prefactor is ambiguous as it depends on the precise form of the WKB wave function in the classical forbidden region.

In this problem we want to compute exactly the splitting (1) in the particular case of an anharmonic oscillator (we use natural units)

Vix] = -—x* + g —x* (11.2)

X = tV,; v:l/«/z ;o V[v] = -1/8g¢. (11.3)

Vix] = —g (xzfvz)zz —g (x- V)2 (x+Vv)2 (11. 4)
2 2

o Smallgand# -0

Consider ageneric potential which can be written in the form

1
Vix] - —V[Jg x} (11.5)
g
Thisisclearly the case for an anharmonic oscillator :
1 1 1
——x? g —x* = — (-gx?+ g®xt).
2 2 29
Consider now the Schrédinger equation
n? d? 1
-— — ¢y + —V|.\/g x| ¥ = Ey 11.6
2m gx? g [ } ( )

With the change of variables, which do not affect the spectrum,

X = a2 mt/4z (11.7)
it becomes
1 d? 1 vm
777w+7v[x/z x}w:—szew; with A = g hnt/2 (11.8)
2 §z2 A ol
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This means

h
E(h, m g] = — E[1, 1, ghm?'/?] (11.9)
m

i.e. the only real expansion parameter is # g, the classical limit 7#-0 is closely related to the perturbative limit g —» 0. This is well known, for
example, in the usual anharmonic oscillator, where

1 3

1
Epert = B n+£ + gg(1+2n+2n2>h2—§gz (20+59n+51n?+34n%) n%+. ..

which hasindeed the form (9). This observation will be crucial to understand how to compute the prefactor £ in eg.(1) in the weak coupling limit.

m Connection formulas

The use of connection formulasis probably the simplest way to obtain the result (1) and is the method presented in the text. Let us briefly review it to
point out the critical points. One start from the asymptotic behavior at large x, X > b, and apply repeatedly the usual connection formulas

OOS[{S}Jri] o e''Sh Sin[{S}Jri]e Ee"s’
4 4 2

to reach the middle point x = 0.

Sisthe classica action in units of 7. Using the symbol w[ax] for this quantity with specified extrema (the notation used in the text) we have in all
details (we omit the prefactor 1/+/p asitisinessential in the following ):

Tt Tt
e WbXl 2 g n[w[x, b + 7} = 2Si n[w[a| b] -wla, X] + 7} =
4 4
Tt JT
2 [Si n[w[a, b] Cos [w[a, X] - Z] - Cos [w[a, b] Si n[w[a, X] - 4—” =

7 7T (11.10)
2 [Si n[wa, b) Cos[wa, x] - -] + Cos[wla, b] Cos[wla, x] + _” R

4 4
Sin[wia, b] e "*? + 2Cos[wia, b]e¥X? -

Sin[wia, b] e WOaIWOXI 2 Cos[wla, b] e W0 WOX]

For even/odd states the combination of the exponential must reduce to Cosh[w[0,x]] or Sinh[w[0,x]] then we have for the ground state and the excited
state respectively

A=Y

Cos [w[a, b]] K Cos [w[a, b]] o EQ—ZW[O,a] e (11.11)

Sin[w[a, b] 2

_ e—ZW[O,a] =

1
Sin[w[a, b] 2

N |-
N

The splitting will amount to a small non perturbative (in 7#2) correction to quantization formulas. At leading order K = 0 and, for the ground state in the
well w[ab] = #/2. In general w[ab] = 7/2 - 1 and we have, at first order in u from (11):

Cos[w[a, b]] 1
—=Sin[u]l = u = —K
Sin[w[a, b] 2
The second possibility giving u = - K/2. The quantization condition becomes, in the first case:
1 b s 1
wla, b] :7J\/2m(E7V) dx = — - —K (11.12)
h Ja 2 2
and expanding with E = Eg+ 6E ( Epis the unperturbed ground state) thefirst order correctionis

1 1 b 1 T 1 n nw
—(2m6E)—J7dX:6E—:——K¢6E1:—— - K
2 he [y mE V) 2n 2 T 25

Similarly for the odd combination

hw
5E2: + 7K
27
and we have
hw
ANE = E-E = —K (1113)
7T

whichistheresult (1) with & = 1. What ismissing in this derivation which produce the & factor?

1.  Weseethat the only thing we need to write the corrected version of quantization rulesis the behavior around x=0, the coefficientsin the
combination of the exponentials must match a Cosh[w] or a Sinh[w]. In usual WKB only the dominant term in the connection formulasis
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reliable, the subdominant oneis largely instable: in (10) the subdominant term has been used. The form of this term, an exponential, isfixed by
the asymptotic behavior, but the coefficient is not fixed.

2. A more subtle and dangerous error can comes from the quantization formulaitself. We know that this kind of procedure is accurate when n—co,
nin the principal quantum number, how we can safely apply this formula to the computation of the ground state energy? Asfar asformula (12)
is concerned thisisnot areal problem: every perturbative correction in 7 cancels in the difference between the two energy. More precisely, asit
has been stressed in problem [9], the WKB expansion is always true as 7i—0, so the leading term in this limit is always correct. The problem can
arises because in the asymptotic behavior, near x=0, the value of energy enters (via the determination of the exponents) and this can produce
troubles. In other words the problem is always in the accuracy of the asymptotic form of ¢: how we can be sure that even for the fundamental
state the form we have used is correct?

m  Asymptotic formulas

The answer to al these problem is to build a uniform expansion in 7, vaid up to the middle point x=0. In this way al subleading factors are under
control and ¢ can be computed. The key point from the mathematical point of view is again the classical theorem of Liouville quoted in the file
[WKBresults.nb]

Let
y’[x] + (RP[x] + Q[x, A1) y[x] =0 (11.14)

alinear second order differential equation depending on some parameter A. If Q is uniformly bounded al A —» oo then the asymptotic solutions (in )
of equation (14) are given by the solutions of the simpler equation

y’ [x] + ®P[x]y[x] =0 (11.15)
We can use this theorem in two different, even if almost equivalent, ways.
o Uniform approximation

In file [WKBresults.nb] it has been briefly discussed the technique of uniform approximation for a problem with two turning points. The original
Schrédinger equation in y[x] and anew Schrddinger equation in u[z]

a) Y’ [x] + K?[x] y[x] = O; b) u”[z] + 9*[z]u[z] = O; (11. 16)

are equivalent, i.e. they give raise to the same solutions, with

Uix] = ulz]/(z' [x])'? (11.17)
if zand x are related by
2 1
(z'[x]1)°q%[z] = K*[X] - — {z; X} (11.18)
2
where{z; x} denotes the Schwarzian derivative
z"” 3 (272
{z; X} = — - — | — (11.19)
z’ 2 \z

As g and k contain, implicitly, afactor 1/, we see that if the Schwarzian derivative is uniformly bounded, it plays the role of Q in eq.(16) and can be
neglected. For two points boundary problems

q’[z] =t - z? (11. 20)
and the mapping X - z isgiven by
Vit

X X2
zZ[x] -Vt :Jk[x]d}x; Tt J qlz] dz :J k[x] dx (11.21)
a 2 Nt X1

The general solutions of eq.(16) are parabolic cylinder functions. There is only one function which is normalizable for the whole z-range and, asit is
well known from the theory of harmonic oscillator it is

ufz] =H[z] Exp[-22 /2] (11. 22)
Infact, tin (20) playstherole of 2E in the usual oscillator and it must bet = 2 Eyo= 2n+1. Thisn is the one which appearsin (22).
We will use thiskind of uniform approximation to derive the energy splitting below, in acouple of different ways.

o Perturbative expansion

For potentials of the form 1/g V[/g X] the Schrédinger equation takes the form
-~ —w+ =V[\Ja x|y = Ev (11.23)

and we see immediately that the asymptotic regime is connected with the limit g—0, with /g x fixed. We note that in this limit the energy E plays
the role of a subleading term, this, in this language, explain why the splitting do not depend on the details of E[g], at |east at |eading order, but only on
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the form of the potential.

We will use this technique, introduced for anharmonic oscillator in the works of Brezin, Parisi, Zinn-Justin etc., seeref.[2, 3], to study in asystematic
way the anharmonic oscillator.

m  Connection formulas and uniform expansion

From asymptotic form of the parabolic cylinder functions, it is possible to derive a general connection formula connecting the left hand side and the
right and side of awell, see text and file [WKBresults.nb]. In the notation of eq.(10) (here we consider left well):

Exp[- wW[X, -b t/4 1

pl-wI ”ﬁw:Z”“ [zf) Dg[fﬁz}ﬁ

PIXT] o vz e o

2,172 J 1 Exp [+ w[-a, X]] Exp[- w[-a, X]]

- (7) r[mf} Cos(nd] — "+ Sinnd] ——— "~ = (11. 24)
7 J 2 IPIxT1 fpIx]1

2\M% ey 1 Exp[+w[-a, 0] + w[0, X]] _ Exp[- w[-a, 0] -w[0, x]]

- - PJ+7} Cos [71J] £ Sinnd)

7 J 2 I IR

Jisthe usua action integral. We stress that at the leading order it must be J = n+1/2, thiskill the exponential growing therm in Cog[x J] in previous
formula

Let us now make the same considerations as in the case of usual WKB. The wave function must be even/odd for ground state/excited state so we must
have Cosh[w[0,x] and Sinh[w[0,x]]. We consider ground state for definiteness, excited state differ just by a sign in the formulas. We have the
constraint

1/2

2 e\’ 1, Cos[rnJ]
° H rlas 2] =S S Expl-2 wi-a, 0] - K (11.25)
s J 27 Sin(nd]
WithJ=(n+1/2) - u
Cos [r1J]
—_— = T, (ll 26)
Sin[nJd)]
So at first order in the prefactor we can use J=n+1/2 and we have
2,\1/2 e n+1/2
H [ T (11.27)
7T n+1/2
o Ground state
For n =0, the ground state
2+e a1
rp =K o opu = - —K (11.28)
N e 2
which differ from (11) by afactor \/ 7t / e , than we have:
7T hw
AE = Eb-F = [—- —K (11.29)
e s

o Excited states

For enough deep wells we can have doubling also for excited states. For large n we can use Stirling formula

nt ~n"e"+/2nmn

to deduce for largen

e n+1/2
(7j nt-

n+1/2

1/2
2

2
7 7

1/2 1
e" — n"n"e"\/25n =2
n

and we recover the usual WKB result (11): x = K/2 and

hw
AE = Eb- B = —K (11. 30)

As expected usual WKB is aways accurate for n large.

In the general case
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g1y 172 n+

AE, - Eﬁddeﬁ"enzz(f] M] 21 (11.31)
2 e n'
The prefactor in (31) isaways close to one, itsrangeisfrom+/ st / e ~1.07 for the ground state to 1 for n—co.
o The anharmonic oscillator
The potential is
1 1
Vix] = -—x%2 + g —x* (11.32)
2 2
and, as has been shown at the beginning of the problem:
1 ) 5 1 1
VIx] = EQ(X*W (X+V)5+ —; V = (11.33)

With x = v + £ we see that awell has and effective potential, at lowest order
1 1 1 1
VIE] ~ —g&24v2+ — = —2&2 4+ —,
2 849 2 8¢

This correspond to harmonic oscillations with frequency

w:\/?;T:Z—ﬂ:ﬁﬂ (11. 34)
w

For the anharmonic oscillator it has been shown in problem [9] that

J - QJ;J<X27 a2) (bzfxz) dx = Tg%((a2+b2)E||ipticE[b2b’zaz _ 2a2E||iptiCK[b2t;2a2]);
P Jb ! d > L alip K[bz*az]
- X = — — iptic ; (11.35)
Vg 8 \/(xzf a?) (b? - x?) Vg b b?
a
K= Exp[-2D]; D = ﬁjJ(az_ xA2) (b2 -x?) dx =
0
] . y (11. 36)

le g

where the turning pointsaand b are:

(a2 +b2) Bl i pti cE|

E] - (b? - a?) EIIipticK[b—z}

2:1—1/1+8Eg' b2:1+«/1+8Eg. (11, 37)
29 29

To make a Taylor expansion in g we have to remember that in these formulas the zero of V[X] has not been settled, then we have E = -1/8g + €. With
this substitution a straightforward expansion gives

a

1 Lo ELOg 4\/?\/?
D= - c 72\/?eLog[2}+€ g[g]+ [ };
3V2 g 242 22 V2

3
T=ﬁr{+ gre
V2

€ 3ge? 35g%¢&°
+ e
V2 42 162

The leading order in T isin agreement with (34), and as such could be predicted without any computation. At leading order in WKB the quantization
condition J= n+1/2 correctly gives
1
€ =2 |n+ 7]
2

as appropriate for an oscillator with w = V2 . These values are correct up to order g then once inserted in the expression of D we obtain D with the
same precision. We note that the leading term in D do not depend on € and this has aready be anticipated. Inserting these values in D and computing
K = Exp[-2 D] we get
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7 7n £7£+n 1 7 7n 1 1
K=2i%ez 239 (g+2gn) 2" =2i"2 "z

and, withw =+ 2 from (31)
9 5n
2:i" 7 1 vz
= e 3¢
Vooron! gm%

Thisresult isvalid only for very small g, in the general case the result (31) ismorereliable.

NE

In particular for the ground state

(11. 38)

(11. 39)

For example of the accuracy of the approach we report here the result of a numerical computation for g = 0.005. For this coupling exist at least 20
"doublets’. The first column are numerical energies splitting, the second contains expression (31) and the last the naive WKB, i.e. expression (31)

without the prefactor

oE SEVWKBCor r ect ed SEVKB

1 4. 25583 x 10740 4.07352x10°%° 3. 96446 x 10740
2 4.61765x10°% 4.57579x10°% 4.50083 x10°%
3 2. 425151074 2.41769x 107 2.38921x10*
4 8.20819x 107 8.20042 x10°% 8. 12505 x 10732
5 2.01096 x 1072° 2.01114x107%° 1. 99599 x 10°%°
6 3.79724x 10?7 3.79992 x 10?7 3. 77567 x 10?7
7 5. 74526 x 1072° 5. 75176 x10°2° 5.71993 x10°2°
8 7.14823x10°% 7.15871x107%® 7.12373x10°%
9 7. 44728 x107%* 7.46037x 107 7.42774x1072%
10 6.58109x107*° 6.5945x10°1° 6.5684x107*°
11 4.97797 x10°Y 4.98954 x 1077 4.9715x 107
12 3.24292x107%° 3.25147x10° % 3.24066 x1071°
13 1.8262x1071° 1.83167x107*® 1.82603x107%
14 8. 90186 x 10712 8.93245x 10712 8. 90682 x 10712
15 3.75231x1071° 3.76727 x1071° 3. 75716 x 10710
16 1.36259%x10°° 1.36903x10°° 1.36558x10°°
17 4.23138x10°7 4.25583x 1077 4.24571x 1077
18 0. 0000110941 0. 0000111765 0. 0000111514
19 0. 00024015 0. 000242665 0. 000242147

20 0. 00410608 0. 00418105 0. 00417256

o A warning on the notations

Inthe literature, eg. in the articles of Zinn-Justin, the Schrodinger equation for this problem is usually written in the simpler form

To see the connection with our formulas we have to shift x, with x = £ - v, then our Schrédinger equation becomes

2

1 d? 1
-— Y+ 522 [1—\/72] Vo= Ey

2 dz?

(11. 40)
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E 1 d? 1 g
— = —— —— Y+ —2z% |1 [T 24z oy
2 2 dz2 2 2
which has the form (40) with
E
E,= —; g =242 2 (11. 41)
2
Inserting in (39) we have
2 1 1
AEg = —— —— e&
LIRS

which isthe form usually found in literature.
m  The perturbative asymptotic expansion
Let us consider the shifted form of the potential, we write always x instead of ¢&:

2

g g 1
Ve —x2ix+2v)? = Zx%|x+ |- :—XZ[VZ +xw/9)
2 2 g 2

2
, (11. 42)

This is exactly of the general form (6) and the asymptotic small g expansion can be performed by usual WKB methods. We have to remember that
formally x /g isheld fixed, in thisway g plays the role of A2in

-~ —w+ ~V[x\fa] = Ey. (11.43)

A crucial point isthat E do not contain g, so in the leading order can be neglected, and the expansion is similar to a zero energy WKB expansion. It is
convenient to write asin usual WKB

v = Exp[—f(f x 91]. (11.44)

This transformation transforms the linear second order Schrédinger equation in anonlinear first order equation, known as Riccati equation:

v
fr - f2+2—- =2E. (11. 45)

At the leading order

1
fo - — 2V, (11. 46)

as expected from the interpretation g ~ A2, Higher orders will be computed as power series in g, just like usual WKB. From now on we will use the
explicit form of V and write

fo:x[ﬁmﬁ). (11.47)

Let us note that for x /g fixed f gisof order 1/+/g . At the next order f ;will be of order /g and we have

f5_2f0f1=ﬁ+zxﬁ_zx[\/?+xﬁ)fl=25. (11.48)

E will have an expansion
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©

E=2+ZEkgk; w:\/? (11. 49)

k=1

We remember that in our notation w =/ 2 . Then

Vo
fi=2 ———— . (11.50)
V2 s xAg
Itisnot difficult to write arecursion relation for the f , but for the moment we limit ourselves to lowest order. In this approximation
x Ja C x2 x3
;//NExp[fj x[\/z +xq/g)+ ] - Bxp[-—2 - —fg ; (11.51)
V2 o+ xAg V2« xg 2 3

Cisaninessential constant which can betaken 1.

Let us now remember the general result obtained in problem [8]: if ¢ isthe semiclassical wave function relative to one of the well then
n? ©
AE = 2—wc[xO]me1/Jw§d1x, (11.52)
m Xo

Xo isthe symmetric point of the potential, in our shifted coordinates xo=-v =- 1/,/ 2 g . Substituting the expression (51) for ¢ we have

RS

e 3¢ (ﬁ—4g) 1 Jz

Yr-viyg' [-v]l= ——— = e 39,
V2 /g Vo

For the normalization integral we have to remember that we are performing an expansion in g and write

© 2 X2 x3 — \/?
| o[-z V2 -2 Vo] - | cee[-yz]ax- T
NETS
Substituting in (52), in natura units:

1
\/7+X\/E

AE = - T e s, (11.53)

which isthe previous result (39).
o Higher orders

The procedure can be iterated in a straightforward way. We refer to the literature [ 3] for the whole perturbative series, here we quote just the first few
orders:

7z
BETH 2
\E - 1 0974 e 3o 1. 719 ) 6299 g (11.54)
V' Vg 24~/2 2304

m  Uniform wave functions
o Perturbative based expansion

This method is just another way to put previous results. We give an account of this method as it is probably the simplest one and give an insight into
some deeper aspects of this problem.

To get rid of complicated numerical factors which would spoil the simplicity of the method let us shift the variables with the origin at the left well:

2

-1
— e x2 |1+ /gx W = Ey
2 2
then make the rescaling
g
X =af=2Y¢g e=2a2E=+/2E; A= —— (11. 55)
2+/2

In this notations the Schrodinger equation take the simpler form

2

7w”+§2[1fﬁ§) = eu (11. 56)
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The symmetric point of the potential (the local maximum) is at &, = 1/(2+/ 2 ), the inversion points for the left well are, at lowest order in A, at
X1 =+ /e . Atlowest order in A, the value for the parameter € (the double of the "energy" for this oscillator) is 2n+1, for the n-th state.

In the forbidden region the equation (56) will have a WKB solution of the form

2
Xt -¢€ (11.57)

G 3
— 7EXpUk[xﬂ; kx] -~
k[e] JKIE] “
The quasi degenerate states come in doublets of odd/even states. For even/odd states we must have respectively:
even: Y [&] = 0; odd: y[&] =0
Ask’oc V' which vanishes at the symmetric point, the previous conditions amount to

(o} Exp{—fgnk[x] 7 CzExp[Jgnk[x]} -0 = c%: Exp[—ZJgok[x]] = +K (11.58)
X1 1 X1

X1

This condition will be a quantization condition for energy and will give us also the non perturbative correction to energy levels. The only problem is
to find an accurate solution of the Schrodinger equation inside the well which can be matched with the asymptotic WKB solution (57) in the

intermediateregion x; < é << UV .
At lowest order in A
Y+ Y=y

The solution of this equation which vanish for £ - - co (outside the potential) is, apart amultiplicative constant:

Y - Du (_ﬁ 5) (11.59)

2 1 ¢ (11. 60)
— +

For large ¢ the classical action is easily found to be:

52

3 1
J K[X]dx= — = D oand A k[g] - Y2
Ve 2 4

1
-e-2elog[2] +26Log[—] +elLoge]
3

then

2

£ e e e e &2 e e
e zei22e182 + G

£ c e . c
ez e12z2ei &2

dws ~ &

Comparing with (60)

1 in (e-1) e e e 1 e e e A\ T
Cl=237e 2 2i3ieie's; CG=21e12'7¢7
1-¢
r[5]
and the quantization condition becomes:
T e+l e e i (e-1)
272 e2eze 2z =2xK (11.61)

1-e
r[5]

This equation can be solved by iteration. At lowest order K = 0 and I' must have apole, i.e. 1-e = - 2 n = € = 2n+1, the usua quantization condition.
To compute thefirst correction let uswrite e = 2n+1 + 6. Using the relation

1 Sin{nx] 1 1 o) 6

= - T[1+X]ﬁifoSIn[nﬂ+7T7}F[n+l+f

T[-X] 7T T[f(nJrgH s 2 2 2

2

I
=
>

|

we can write (the imaginary exponential gives afactor (-1)")
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(n 1 nat & 2 Y 1\"z 1
Al 2nt el (2ﬂ+1)[+2)n!7:iK > 6 =7 25 e ™z Iny = ~ K (11.62)
2 N 2 nt
In this system with our unitsAe =26 = \/ 2 AEthenAE=+/2 §and
2 1™ 1
ME - o el [n+ otk (11.63)
NEa 2 n!

This formula coincides with (31), we remember that the classical frequency in thissystemisw = V2 .
We stress some points.
1. Thesignin(62) iscorrect asit assign alower energy to the even state.

2. If oneiterates the procedure one obtains ¢ as apower seriesin K, i.e. awhole series of subleading correctionsin the penetration factor. This
effect isnot trivial to obtain with other methods. This approach has been used by E.B. Bogomolny in ref[4] to estimate the "multi instanton”
effectsin thismodel.

3. Theapproach can be generalized to compute higher order WKB corrections.

The last point is especially interesting in a basic course in Quantum Mechanics as it give an example of another way to compute eigenvalues, and
taking into account exponentially small effects, as we have seen. We give an idea of the method and leave to the interested reader the task of filling
the details.

First one has to write the subleading WKB term, thisis not a problem apart the fact that the initial point in the integral for action cannot be taken xas
the WKB is not uniform at turning points and divergencies arise in the integrals. This can be avoided by using another starting point, b > x;. A

possibility isto perform aA expansion and write the whole action as

£ 3 3
Jko[x] dx + \/TJ ky [x] dx + /\J ko [x] dXx
X1 b b

Ko is the zero order momentum, the other term represent higher order in the expansion of the square root in A and higher order in WKB, o, at this
order. If Fisaprimitive of oneintegral, the result is F[x] - F[b], F[b] isjust aredefinition of the constants C, and F[x] can be used for the matching.

To do the matching we have now to use a wave function correct to order A. This can be done with a method borrowed from uniform approximation
technique. We know that a model

is equivalent to the original model,

2 1
@en® (t - 2% - [6_ & [1-x g ] -5 (e
{z; ¢} being the Schwarz derivative

2

z" 3 (z”
@ e- - H
z’ 2 \z’

At leading order (A = 0), clearlyt =e and z = ¢. It easily found a polynomial solution at order A:

RSN Y

The value of t isinteresting: you can compute with usual perturbation theory e up to order A, with the result

g 19¢€e

18 36

§2 2¢

_ —

1
+ A ; t:e+7(1+362)/\
2

€= (2n+1)-2(1+3n+3n%) 1
Substituting in the previous relation one find t = 2 n + 1. Vice versa we know that the parameter t must be 2n+1 to assure overall integrable parabolic
cylinder functions, then this method provide a computation of the perturbative correction to energy! .

The rest of the calculation follow the same way as zero order: we have to write the asymptotic expansion in z of the solution, aways a parabolic
cylinder function, then express z as a function of x and keep terms up to order A. Finally we can compute the coefficients C;, » with the matching

conditions and insert them in the quantization condition (58).

o WKB expansion

The procedure described up to now is based on perturbation theory but it can be easily generalized to a full fledged WKB analysis. This will aso
dispense us from asymptotic matching conditions and make contact with connection formulas described above.
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The uniform approximation technique for ¢[x] tell usthat the two equations

ur[z] + (t 722)u[z} S0, yIx] + K2[X] w[X] = O: (11. 64)
have equivalent solutions
ufz[x]]
pxis (11. 65)
Vz'[X]
asfar as
1 z" 3 (27?2
@ X2 (t-22) = K2X] - = (zi X}; {25 X} = ) _[
2 7 2 | 2z

The Schwarz derivative is suppressed to order 7 and can be neglected in a zeroth order WKB analysis, thisis equivalent to zeroth order perturbation
theory in the previous analysis.
In this approximation, see notebook [NB-11.9.nb], in the classical allowed region

z z X 2 X2
z] = At -z2 dlz:ka dx; t :2J:7J k[x] dx. (11. 66)
Jf\/tiq[] Jf\/ti X1 ] JT Ixy .

X1 and x,are the classical turning points in the well, which correspond to z = +/t . Let us suppose that we are working in the left well of a double
well symmetric potential. Let Xothe symmetric point (the local maximum for the anharmonic oscillator) and z the corresponding value for z. In the

classically forbidden region eg.(66) reads
Z X
J \z? -t dlz:Jk[x}dlx;o; (11.67)
Vi X2

Using, with £ = z?/2,

er\/zzft = % z\z% -t +tLog[L] =
t

z+z%2-t

By iteration it is easily found the asymptotic behavior for large o

1 t
§:0+7[t7tLog{—}
4 8o

+ 0 (Log[o] /o) (11.68)

The solution of the equation for u[Zz], finite at z—-co
ufz] = D:[—xlz z}
2
Thisis accurate up to order # up to z = z, the corresponding solution for ¥/[x] is given by (65). We can prolong the solution in a even/odd way in the
region x > X and this will be a solution of the Schrodinger equation provided that even/odd prolongations have respectively zero derivative at
X = Xpand are continuous. z[x] is constructed by reflection in the right half space. At x = X from eq.(65)
K [xo] (k¥)" k2 Vvixe] K2

Z'[Xo] ~ ; Z’[Xo] 2" [Xo] ~ ; : p .
Z Zp Zy Zg Zy

at the symmetric point V' [xo]=0, thenz”" [Xo] ~ k /z“which goes rapidly to zero, so the prefactor with z’term in ¢ will not play any role in the
following, we can directly work with u[Z].
For large z we can use the asymptotic expansion for parabolic cylinder functions (60), now t plays the role of € and the variableis z:

LI 1
20 ae2 N | = zt/2
1t int 22 z

_i2 3 e 2

(11. 69)

[/2+

=
N

Ganma[ " |

To have a consistent WKB solution this expression must vanish at z = zyfor odd states or its first derivative must be zero for even states. The leading

term in the derivative come from the exponential, then, as in the previous perturbative case the constraint for even/odd statesis
1t 22
277 ez A/ zt/?

Ganma| %" |

1 . 122
= +237e 727 V% forz = zg
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Witht=2Jand using

1 1 1 1 1 1, Cos[rd] 1
= - :—Sin{ﬂJ+—]F[J+—}: r[3+{,

] r9) r-(ea)] 20" 2

el T - cOs[n J- - } + jSin[n J—f]] - Sind]-iCos[nd];
we have

Cos [1J 1 .
s ]r[mﬂﬁ =+ 272 (Sin(nd] - iCos[nd]) e 2 227 (11. 70)
Tt

This eguation has imaginary terms, this means that J, and by conseguence the energy, have imaginary contributions. For J = n+1/2, the leading order,
and the only result at zeroth order WK B, the imaginary term cancels, and for now we omit this term, and we look for real solutionsfor J:

Cos [r1J] 1 1
7F{J+f} Vi =+ 22 Sin(nd] e % 220
s 2

Substituting for zyits asymptotic value in term of the action, eq.(68) (o isthe action from x,to Xg):

22-2¢-= 20+£[2J—23L0g[2—‘]} =20+ [1+Log[4j}
2 J

80

we obtain at the leading order

J

Cos[nJd] 1 .
7F[J+f}\/n =+2V2Sind] e 297 20 =
T 2 40
! Jy?
+2z2Sinpd] e ?° | —
e
i.e
2\1?% e 9 1, Cos[nJ]
- —| rfavc] == se? = 5k (11.71)
7T J 2 Sin[nd]

which is exactly, as expected, the formula (25) obtained with connection formulas. Jis afunction of energy and we know from classical mechanics

dE 1 dJ 1 SE
— =w=>J=nNn+—+ —6E=n+— + —
dJ 2 dE 2 w

Expanding (71) for small SE we recover the general formula (31)

K AE - 26E (11.72)

m Connection with the path integral approach

The derivation of energy splitting through path integral and its connection with usual Schrédinger equation is very clearly exposed in the paper of
Coleman [1]. Here we show how our result can be translated in that language.

In the instanton approach the path integral is evaluated by a saddle point technique around classical "euclidean" solutions of the equation of motion.
The result is expressed in the form

w
AE = 2 — CExp[- 2 So] (11.73)
Tt
where
o€ wistheparameter inV ~ 1 / 2 w? x2 around aclassical minimum

ol S; istheclassica action, at zero energy, between the classical minimum and the symmetric point x

o Cisaconstant which can be determined by computing fluctuations around classical solutions or by the asymptotic form of the integral

Xo dx 1
J ————— =~ —Log[CVu xb| + O (xp) (11.74)
Xb w

V2V[X]

The logarithmic singularity at x,= 0 (a classical minimum of V) is due to the form of the potential 1 / 2 w? x2. The factors w have been introduced
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for convenience inside the logarithm, as due to integration outside. The dependence on w isthe same as that of an oscillator, as will be evident below.

The assumption behind the computation is a strict #—0 limit. In this limit the quantized energy E, computed inside a single well, usually goes to 0
then it is reasonable to consider as leading term the action at zero energy. The first correction in 7 will include the actual energy. We will consider the
ground state of the system, and its partner in the doublet created by tunneling.

We note that this limit is equivalent to weak coupling limit in all potentials of the form V[g x], as discussed above. We assume to be in this frame-
work, and this is also the approximation used in the paper of Coleman quoted above. In this approximation the energy of the ground state, without
tunneling effects, is

hw

E-
2

All we have to do to show the equivalence isto show that the first order expansion in E of our general expression (31)
1
2w 7w

—-K= | — —EXp[-2S[E]];
b e

172 (1

JU
se-meogme (1)1
e

Xo
S[E] :J V2V[X] -2E = o[x1, Xo; El,
X1

reproduces (73). Xpis the symmetric point of the potential and x; the classical inversion point.

The expansion in E is a bit delicate as S E] is not analytic as E-0, due to divergence of its first derivative. Let us choose afixed small value to break
theintegral, this factor will disappear at the end of the calculation. We can write

o[X1, Xo; E] = o[X1, Xp; E] + o[Xp, Xo; E]

The second integral can be easily expanded in E. At the first order and using the definition of the constant C in (73)

Xo dx E 1
o [Xp, Xo; E] = o[Xp, Xo; 0] - EJ ————— = O[Xp, Xo; 0] + 7Log[7wxb}
Xp A/2V[X} w C

For the first integral we can use the form of the potential at small x. The inversion classical pointisx;=V 2 E /w and

Xp 2E (*vu/V2E
O [X1, Xp; E]:J\/wzxz—ZE dx = — \Vz?-1 dz =
X1

w J1
:EE am—Log{ou\/—lJraz”; o = oo
v V2E

The large & expansion of the integral can be done by iteration, or by using Mathematica with the result, always at first order in E:

o 1 1
S [—1—2Log[2} +2Log{—}
2 4 a
and for o
x2 E 2E 1 E
o[X1, Xb; E] = 0 — - — Log[Xp] + — — [_1 _2Log[2] + Log[z 7}
2 W w 4 W

Thefirst term isjust the zero energy action from x1to x,. Summing with previous contribution the logarithmic divergence in xp, cancels and using the

explicit value for E, w/2, we have

1 1 1 1
o[Xp, Xo; E] = o[Xp, Xo; 0] + 7Log[7w1/2 - [71 -2Log[2] + Log[f}
2 C 4 w
Then
K= Exp[-20] = EXp[-2S9] C2Ve
and

T w w
AE= [~ " EXp[-2S[E]] = 2CEXp[-2S0] —
e JT N

Tt

which isthe instanton result (73).
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Problem 12
Compute in the limit g » O the imaginary part Im[E] for a potential
1 1
Vix] = —x>- —gx*; g=>0
2 2
® Solution
m Statement of the problem
The potentia has the form
1 1
Vix] = —x*- —gx*; g=>0. (12.1)
2 2
V[X]
20

15[

-05[

-10f

—15LC

The classical inversion pointsaand b are given by

1-4/1-8Eg 1++/1-8Eg (12.2)

a=.|—; b=
29 29

For small enough coupling the system can have metastable states, which decay by tunnel effect through the barrier. At the semiclassical level the
width is given by
2 2
r = £ —Exp|-—S[a, b] (12.3)
T jal

where T is the classical period of motion inside the well, S is the classical action and ¢ is a factor of order unit. Let us note the factor 2, which
classicaly is due to the frequency of hits against the barriers: 2/T as in one period the particle hits two barriers. In this notebook we will compute
exactly the prefactor &.

Thewidth I isrelated to the imaginary part of the eigenvalues with

T
E=E-1—; r = -2I1m[E]; (12.4)
2

and we will compute I in this form.

This problem has one important aspect. Starting from a positive coupled oscillator
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1 1
Vix] = —x%+ —ax?; (12.5)
2 2
we have seen in the study of large orders in perturbation theory, that the leading behavior of perturbation coefficientsis fixed by the imaginary part of
the eigenvalues of (5) at negative A, what we have to compute in this problem (some details will be given at the end of the problem).
In the text it has been shown that in the semiclassical approximation a general formula for Im[E] can be written. Let us briefly report the argument to
stress some particular points which will be important in the following.
The Schrédinger equation is:
hZ
-— Y [X] + VIX]¥[X] = Ey[Xx] (12.6)
2m
We assume that the potential is symmetric. Depending on the study of symmetric or antisymmetric states the equation (6) is equipped with the
boundary conditions

even: y'[0] =0; odd: ¢[0] = 0. (12.7)

If it is possible to impose the condition e 1.2 we know that eigenvalues are real. For large x the potential, in our case goes like - x*then at large

distances we have always an oscillatory regime (the region is a classical alowed region) and the solution cannot be normalized. There is the
possibility of looking for metastable states, using the Gamow - Siegert approach, i.e. we look for states which behave as divergent wavesas| xgrows,
this automatically imply imaginary eigenvalues, as diverging waves are complex and for E real the solutions of (6) arereal.

Multiplying (6) by ¢*and subtracting from it its complex conjugate one have
) n? n? d
218 IME] {4} = - — (" - YY) = - — — (WY - YT (12.8)
2m 2 m dx

We can integrate from 0 to x and use boundary conditions (7). In both cases we obtain

x o, 1 n?
2Im[E]J fUl®dx = - — — (U™ - b i) (12.9)
0 i2m
With ¢ =| B8xp[i 6] we have
x n? de
2Im[EJJ [y dx = - — 2 — (12.10)
0 2m dx

This is an important point : if the phase grows as x gets large then Im[E] is negative, otherwise it will be positive. In the Gamow Siegert approach
metastabl e states are identified with diverging waves, then ©'> 0 and Im[E] < 0. The other possibility will be explored at the end of the problem.

In aproblem like (1) we can choose b < x and approximate ¢ with WKB.
One write
E=E+1E ¢ =¢1+1id2; 41, d2€R (12.11)
Neglecting tunneling E;= 0, ¢»= 0. In usua case the continuation of ¢ in the forbidden region giverise to
C
2+/1pl

The presence of an imaginary part produce an exponential growing term, which we rewrite in the form

Exp[- o (a, x)]; o= {St/n, {p[X]} =+ 2m(V[x] -E)

C D
Exp[-o[a, b] +o[r, b]] + i

2+ 1pt Vipt

For r > b the usual connections formulawill give

o~

Exp[-olr, b]]

1 C 7T T
v - -~ e sinfwb, r]-—| +iD2Cos|wb, r]- | (12.12)
VipT | 2 4 4
The crucia choiceis
¢ Welook at diverging waves, then we require a solution Exp[i w[b,r] ]. Thisimply 4D = C Exp[-c[a,b]] and
C 7
Y~ i———Exp[-ofa, b]] Exp|[i (W[b, r - —)] (12.13)
2/1pf 4

Substituting in (9) and using w = p/# one has
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b, 1 n? A
21 m[E] J je1fdx = - — — e 2°R@PI 223w - Ce2o@b (12.14)
0 i2m 4m
¢ Welook at converging waves, then we require a solution Exp[-i w[b,r] ]. Thisimply 4D = -C Exp[-c[a,b]] and with the same manipulations we
have
1 n? h
2IME] =- — — e29@BI 22 (iw) =+ — Ce20@0] (12.15)

i2m 4m

We see that the sign of Im[E] depends on boundary conditions at infinity.
m The anharmonic oscillator
To fix the constant C we have to connect WKB approximation with an accurate solution for small x. Thisis easily done at weak coupling. For small g
1
a=+2E (1+Eg); b=—(1-Eg. (12.16)
V9
Then the second inversion point tends to infinity.
We make the matching in the intermediate region a < x <« b. Using
2 (-E+ V) =g (b?-x%) (x*- a?)

and the small g limiting forms for aand b, we can write, in this region:

X x/a b2
ola, x] = EJJ(xzf a?) (b? -x%) dx = Ea”zj (z2-1) |—-2%| az ~
h a h 1 a2
g 1 x/\2E E1 x/V2E
ra3/2 J <22,1) dz = 2 — — zx/22717Log[z+ z2-1 ~
h 1 h 2 1
2Eg
E 1 E(x2 1 2
- zszfLog[Zz]] = — —777L0g[ }
h 2 zzx/ﬁ h|2E 2 V2E
For the momentum, in the sameregion (a< x < b)
pIX] ~ +/g J(xz— a?) (b?-x%) ~ x
and finally
c (12 x2 E 2x 7"
TITSI e =Y R,
2 X 2h 2h V2 E
At lowest order in g, E/#1 = n + 1/2 and we have, for the n-th state
| 2x " X2, a1 c X2, 1
Unx] - (2E) — | Bxp[- e wo= —Exp[- ——|es. (12.17)
V2 V2E 2n F 2n
For x ~ 0 and small g the normalized wave function is given by (we have a harmonic oscillator with w = 1)
1/4 1 2 1/4 2
Un[x] =t ———— Exp[-x? /28] H[x]; dolx] =nt*Exp[-x* /2 1] (12.18)
V2™'n!
For the ground state we obtain, by matching (18) and (17)
2
G- —.
vV e T

We can insert this expression in (14). In the left hand side the integral is relevant only in the allowed region, and it is equal to half the normalization,
asit startsfrom O, then (weput2=1, m=1)

|m[E] _ 7& 2 e—Zo[a,b] - z ie—Zc[a,b].
4 er Ve 2r

Inour unitsw =1, then T = 2 7 and in general previous formula can be written
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To compute o[, b] the simplest thing is to write its exact expression in terms of elliptic integrals (for a proof see notebook [NB-11.3] )

b 1 a2 a2
= = — 2:b?)EllipticE|/1- —|-2aEllipticK[l-—
ola, b] L{p[x“dlx \/5313 (a® + b?) |p|c[ bz] a |p|c[ bz}
The small g expansion is (for the ground state)
1 1 1
o ~—-—-Llog[2] +7Log[g]]
39 4
and substituting in Im[E]
a1 2 1 2 1 2
IME] = - |- —ewed— = -— — ¢35 (12.19)
e 2n Voo Vo Va
and for '
4 1 2
r = e 3 (12.20)
N9
For large n, using the definition of Hermite polynomials
dn
Fhix] = (-1)"e — e = 2"x"
dx"
and the reader can easily show, using Stirling approximation, that
2 1 h 2hn
a5 —; ImME] > — Exp[-20] » —Exp[-20] = T - — Exp[-20]
s 2 T T

i.e. the usual WKB approximation.
m  Analytic continuation

Let us now discuss briefly the problem of analytic continuation in g of a usual harmonic oscillator:

r, 1,
VIX] = = X%+ —gx"; (12.21)
2 2

At large positive x the bounded solution has a behavior (from WKB or just by taking only leading terms in the equation)

vt - oo [2oxt | - e 2|

With the analytic continuation g — Exp[i 7] | ¢he wave function transformsin
X3

v~ Exp[—i?x/ﬂgr ]

This is a convergent wave, and as discussed above this boundary condition gives a positive imaginary part for E, i.e. in the analytic continuation of
the normalizable problem:

e . (12.22)

Problem 13

Compute exactly the reflection and the transmission coefficients for a potential V[X] = - F |X|.

@® Solution

m Scattering below the barrier

Positive and negative energies correspond respectively to scattering above and below the barrier. Let us consider first the second case, E <0, and put
E = - €. The Schrodinger equation is
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711/+—2(F{x}—e)w:0 (13.1)

with classical turning points

€
X =z+a=2 —
F
It is convenient to introduce the parameter
2mF )3
A = (13.2)
hZ
and rewrite eqg.(1) in the form
1 d?
— — Y -A(-x+a)y =0, x>0
)LZ dX2
(13.3)
1 d?
— — Y -2 (x+a)y = 0 X < 0
_7&2 dX2
The wave number (or the momentum) is given by
Ipi?
ki = - 28 |xFa| (13. 4)
hZ
In the classical allowed regions the behavior of  follows by semiclassical WKB approximation
1 X 1 2
Wix] ~ 7Exp[¢ ]'lJ px] dx ] ~ —  Explti—2%2ix7a}®? (13.5)
\/pIX] fxFapt 3
Right movers waves correspond to a growing phase, i.e. to a positive sign in the exponent (5) for positive x. Let us note that if weputr =| xhenin

both asymptotic regime the argument is written | -ra

We want to describe an incident wave scattered by the potential, this give rise to a transmitted wave and a reflected wave, then the solution we are
looking for has the asymptotic behavior

Exp[fj§/\3/2{x+a}3/2} Exp[+]i§A3/2{x+a}3/2]
A + B as X » -
{X*a}1/4 {X*ail/‘l
(13. 6)
Exp[zigﬁ/z{x—a}?’/z}
C as X - + o
X -ajl/e

Let us stress that in eq.(6) the incoming wave in the region x < 0 is the one with negative exponent, i.e. the one proportional to A. The phase grows
form large negative values as x < -ato 0 when x = - a. In the usual case the progressive wave is written Exp[i k x] but for x < 0 the phase is negative,
asin the present case.

The transmission and reflection coefficients are

{C? |B}?
T = ; R = ; (13.7)
{AF? [A}?
and must satisfy the unitarity constraint
T+R=1.

In the domains x < 0 and x > 0 the solutions are simply Airy functions. Airy functions satisfy

u’(z] -zu =20
then the general solution of (3) is
a) by Al [-Xx (x-a)] + boBi [-X (x-a)] ; x >0 13. 8
b) C1A [A(X+a)] +cC2Bi [A(x+a)] ; x <0 (13.8)

Let usrecall the asymptotic behavior of Airy functions, the reader can easily check it with Mathematica. Withr =| x¢r larger:
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2r3/2 . T 21r3/2
e 3 Si n[z 5 ]
Alfr] = ——; A[Ir]l= ——;
2\/7r1/4 \/Frl/“
(13.9)
2r3/2 s 2r3/2
. e s . COS[Z T3 ]
Bi[r] = ——; Bi[-r]= ———
N ria NEREL
It is then convenient to introduce the combinations
E.[x] = Bi [x] £1 A [X]
From (9) it follows
1 o 2r%/2
Ei[—r}:iEXp{tll —+ asr - o
NER L 4 3
The solution satisfying boundary conditionsis then of the form
E.[-A(x-a)]; X > 0;
AE (A (x+a)] + BE.[A (x+a)]; X <0 (13.10)
The notation is the same asin eg.(6) with C = 1, the reader has to remember the observation after eq.(6) to check the correspondence.
The coefficients A and B are fixed by continuity of ¢ and its derivative at the origin, x= 0.
AE [ra] + BE,[nra] = E,[xra]; AFE_[ra] + BE.[ra] = -FE.,[xra]; (13.11)
The solution can be written using Cramer's rule. The determinant of the coefficientsiswhat is usually called the Wronskian for two functions
Wf, g1 =fg" -f'g
and we have
det = WE, E.J = -2iWA, Bi] (13.12)

The Wronskian for the two solution of a linear differential equation is a constant, as can be easily checked, then can be easily computed or from
asymptotic expansion or from Taylor expansion around origin. For example asx— 0

1 1

Al [x] ~cC1-cCax; Bi[x]~/3 (c1+C2X); C1= 2372; C2 = A (13.13)
323 r(3] 33 r(3]
from which it follows W[AI, Bi] = 1/ and
1
det = -21 —
s
The solutions of (11) are then:
Tt
A=1in(E.E,),y; B=-1—-(EFE,.+EFE.),, (13.14)
2
By using (12) it is easy to check unitarity (we have C=1ineq.(6) ):
2 1 1B}?
IBI2 - JA}2 = — W = -1 > + = 1.
4 A2 A}?
From (14) we have (all functions are computed with argument A &):
2 2 (a2 -2 N C 2. 2 2 [ni ns L2
{A}:N(AI +BI)((AI)+(BI)>, {B}:N<A|A|+B|B|)_ (13.15)

o Asymptotic form for Aa > 1

From asymptotic expansions (9) we can give an asymptotic estimate, for large Aa, for these factors

2 4 0a)3/?

1 e 3 e 3
A2 - — (A2 - aa ———

Voa 4 7 4 5

4 (xa)3/
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vVaa 7 7T
with
8 (a 3/2
K - Exp[—¥} (13. 16)
3
we have
VK 1 1 1 K
A2 = + - [7+ — —) (1+0((a)??) (13.17)
4 JK K 2 16

The notation means that each term is the leading term of an asymptotic expansion which startswitha (1a) -3

isdominant for K < 1.
K isthe transmission factor for the barrier, indeed:

’2 correction. Clearly only the first term

-2 ra a 8()La)3/2
Exp[—J ax [pIx]| = Exp[—4)3/2J ax {x—aw - Exp[—i - K
h -a 0 3
The leading order of the transmission coefficient isin agreement with usual lowest order WKB result:
T ! ! K
vl (13.18)
Kk*T2" 16

o Asymptotic form for la < 1
This regime correspond to scattering for energiesjust below the barrier' stop. For small values of the argument we can use the expansion (13) to get:

4 1
[A}Z~ 7% (4c?) (4c3) = — [B}2 ~ 7% (2c1c)” = 5 (13. 19)

In particular we see that the reflection coefficient is different from 0, R=1/4.
m Lowest order WKB

Let us see which result is obtained by ablind application of lowest order connection formulas of WKB, which are, we remember:

s 1

Oos[{S} . 7} N [7005[;41 e 'St 4 Sinfu] e*‘s*]
4 2

or

s 7T 1
cOs[ist] o eIl Sin[{swr—]e Z e ISl
4 4 2
Starting with a progressive wave in the region x > aand going through the two turning points:

7T s i
Cos{S[a, X] + 7] + 1S n[S[a, X] + 7] 5 eSval | e-Sixal
4 4

Exp[S[-a, a] -S[-a, X]] + %Exp[fs[fa, al] + S[-a, x]] -~

1 s 1 s
—ZSin[S[x, -aj +7] . 7\/?@3[5{& -_a) +7}
VK 4 2 4
With ¢ =S[x, -a] + %wehavetheresult
U S L VK
ie™ + -ie'? | —- ——
VK4 VK4
Exp[i ¢] isthe progressive way so we have
2 2
1 VK 1 K 1 1 VK 1 K 1
A2z | —-——| = -+ — - = |B}®= + = —+ — &
VK 4 K 16 2 VK 4 K 16 2
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Thisresult is correct only at the leading order, as we can also check from the break of unitarity:

1 |B}?
+

A2 |A}?

This is a generd feature of WKB at lowest order : only lowest order terms, which come from dominant asymptotic terms, turn out to be correct,
subleading terms are affected by subdominant terms and are out of control in this approximation. We stress that the leading non exponential term in
(17) is correct instead.

m Scattering above the barrier
Almost nothing must be changed in the above solution, simply a — - a. Now a= E/F. What changes is the asymptotic behaviors. For small energies

Aa— 0 and we have again R = 1/4, T = 3/4. For higher energies one has to use (9) but now for negative values of the argument, i.e. in the oscillator
regime. We have to take next to leading terms in the expansion of Ai and Bi, withr=21 a

‘ SOOSHJrzr;/Z} SinHJrzr;/z} y 7005[%,%} r1/4SinH72r33/2}
" o . 487 r5h Vo ’
B Cos | § + 2] 5Si”[4ﬁ+2r33/2}. " ri/4cos |5 - 200 7Sin[g_2f3“}

- . : ~ .
\ororlsa 48 /7t r7/4 NES 48/ 1574

These formulas allow a computation of | B2, which vanish at leading order. For | A}? we need the next order in the expansion. For simplicity we

will write only reflection coefficient, and extract T from unitarity. The reader can check that this is actually true using for example Mathematica to
compute the expansions to next order:

1 F2 n? mt »2
= F,, T=1-R
16 (ra)® 32med 4 pd

R ~

where p is the momentum of the particle.

We note that in the classical limit, # - 0, R — 0, as expected. This coefficient cannot be computed by standard WKB transition formulas as there are
not turning points.

Problem 14

Compute exactly the reflection and the transmission coefficients for a potential V[X] = - % Bx2.

@ Solution

m The boundary conditions

We want to describe the scattering process for a particle coming from x = - co impinging on a parabolic barrier. We first consider the case of energies
below the barrier'stop. WithV = - 1/2 8 x? thismeans energiesE 0. With E = - e the Schrédinger equation is

d? 2m (1
— o+ — | —Bx2 |y =0. (14.1)
dx? 72 |2
To simplify some formal manipulations below we make the change of variables
mpy 41 e |m
X = AzZ; A= |— _ a= — | — . (14.2)
w7 no B
The equation (1) takes the form
d? 1,
— Y+ | —Z ol ¥y = 0. (14.3)
dz?
The effective wave number is
1
9?[z] = [722 -«
4

For large distances the WKB solutions have the form

z2

Exp nfq[znﬂz} ~ EXp[r jﬂ
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Positive exponents for z > 0 describe wave propagating to the right, i.e. scattered waves in our problems. For z < 0 the phase grows for negative
exponent, i.e. the incident wave has the form Expl[- i z2 /4]. Welook therefore to a solution with

41/~Exp[1124—2]; asz - o;

(14.4)
2?2 72
v~ A Exp [71—}+ BExp[jl—}; as z - - o
4 4
We repeat that the incident wave is the one proportional to A in previous formula. Transmission and reflection coefficients are:
1 {B}?
T = ; R = ; (14.5)
{A}? IAl
and must satisfy the unitarity constraint
T+R=1.

m The solution

Solutions of equation (3) are akind of parabolic cylinder function, a particular case of confluent hypergeometric functions. There are severa possible
definitions for the independent couple of solutions, in the following we use the notations of the book [1] and take as independent solutions

\MOK: Z], \MOG 72]

WI[e, z] has no definite parity transformation property, then, as eq.(3) is parity invariant, if W[e,z] is a solution, W[e,-Z] is another, independent
solution. The explicit form of W[e,Z] is not very illuminating

G -3 a1 2G -1 a 1
W, 2] = 234 | | = Hl—, = =22+ | —— xH[—, -, ~2%];
G 4 2 4 G 4 2 4
with
1 a 3 a
Gl:Abs[r 7+jf}; (%:Abs[r 7+jf};
2 4 2
H{m n, x] = Exp[-1x] HypergeonetriclFlim+1-in, 2m+ 2, 2iX];
These functions are real. Here is an example of their behavior for @ = 1 and positive x.
W[lrx] W[ll_x]

0.6

| WM Zj;‘
vvv AR Vs Van"

What mattersin this case is that through these basis functionsit is possible to define functions which have a"simple" asymptotic behavior

1
Ela, 2] = — Wa, 2] + ]1\/?\/\/[01, -z,

Vi (14. 6)

1
E*'[a, 2] = — Wa, z] - ﬂ\/?VV[a, -z1];
vk

with

For large and positive z
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| (1+0(1/2%) (14.7)

2 z2 1 s
Ela, 2] = — Exp[]i — - oalog(z] + —¢ + —
z 4 2 4

with

1

¢:Arg[1“ —+ ia

J

These functions are analytic in the whole complex plane then from (7) we have at once the solution satisfying the right boundary condition:

¥[z] = E[a, 2] (14.8)
This example is particularly instructive: the function is analytic so the solution is valid aso for z < 0. In this region its asymptotic expansion must
contain both a progressive and a reflected wave, in particular a part with negative exponent. This part cannot be obtained by the analytic continuation
of the asymptotic form (7), asits leading term is a function of z2, and do not change for z — - z. The conclusion, which has a general validity, is that

the asymptotic expansion of analytic continuation is not given by the analytic continuation of the asymptotic expansion. Thisis a particular case of the
so called Stokes phenomenon.

Our problem is to obtain the asymptotic form of E[«,z] for large negative z, in order to extract A and B coefficientsin (4).

Thisiseasily done passing through the basis functions W[«,Zz]. By inverting (6)

vk
Wa, z] = T (Ele, 2] + E' [0, 2]);
1
Wo, -z] = —— (Elo, 2] - E' [, 2]);
2ivk
From (6), using these relations:
1
Ela, -2] = — Wa, -2z] + iﬂW[a, z] =
vk
i 1 i 1
EE[a, z] |k - ol EE*[a, 7] [k+E =-i&%E[a, 2] + 11 + &@™% E'[a, Z].
2 2

From (4) we see that we have to look for a combination
Elo, -1z}] = AE"[a, {Z}] + B E[a, {z}]

then we have immediately

A= i1+ &2 ; B=-ie&™ (14.9)

The transmission and reflection coefficients follow

7ot ! R L < (14.10)
Az 1 e A2 1 et '

The unitarity constraint is obviously satisfied.
For energies much below the threshold, i.e. @ 5

T~ EXp[-2rma]; R~ 1- Exp[-27ral;
m Phases

It can be useful to compute relative phases between incoming and scattered and reflected waves. To this purpose we have first of al to define these
phases. A possibility isto write the asymptotic part of the wave function as

1

—— (Exp[iS[a, x]] + RExp[-1S[a, X]]); X - -

vp_l (14.11)
7 —— Exp[iS[b, X]]; X - +o

VP

Sistheclassical action in units of 7, aand b the two turning points. This formulais normalized with unit incident flux. Clearly
T =713 R= |r}?

Our solution, with unit incident flux, reads
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B
E'[a, {zt] + — Ela, {Z}]; Z > -
A

1
— E[a, {Z}]; Z > +o©

The phases are readily identified computing classical actions. In our case the two inversion pointsare z= + 2/ o and

z z2 22« 2\«
S[b, z]:J — -a dz :——f—ozLog[ZJHxLog[ ]+0(1/z)
2v/a \ 4 4 2 z
-1zt 22« 2o
S[a, z]:J = - —777aLog[2]+o<Log[ } +0(1/z) = -S[b, x].
2V 4 2 {1z}
By comparison with (7) we have
1 i a b 1 i
Ela, 2] - —Exp{jS[b, zZ] + — [¢> - aLog[f + — }: —Exp[]'LS[b, z] + 7(0}
dp 2 e 2 ﬂlp 2
1 i a 7T 1 i
E* [a, 2] > —Exp[ij[b, z] - — [d) - aLOg{f} +7J] = —Exp[jS[a, z] - 7(0}
NI 2 e 2 AP 2

By eliminating the extra phase ¢ and moving the origin for S[b,x] for reflected wave the solution (12) takes the form

1 B 1
—Exp[iS[a, z] + —e'Y — Exp[-1S[a, z]]; Z - -
VP AL
ig
Ela, {z}]; Z > +o
We have then
1 a 7T 7T 1
T = —Exp{n [@ - aLOg[f}+7J— — ] = — EXp[-16];
1A} e 2 1A}
| B} o 7 1B}
= p[n [d)—otLog[f +7N:*175XP[*]15],
A} e 2 A}
with
a 1

To this equation we can give an invariant form, asz « isjust theintegral of p/z below the barrier, let us call o thisintegral

o = ;Log[%] + Arg{r

I

] (14. 13)
JT

This solves completely the problem of phase shifts.
o Poles

Let us note that T has poles for

B
i > E=-1ih.,|—
m

The analytic continuation 8 — Exp[i xr] B8 transforms the barrier in awell and the poles become go to the bound states of this harmonic well.

2

1
a = [N+ —
2

1
n+7]

m Lowest order WKB

As stated above it is impossible to derive A and B coefficients by analytic continuation but it is possible to apply the usual formula for transmission
coefficient

-2
T - EXp[?me ax |

where the integral is performed between turning points. In z variables the turning pointsarez=+ 2 / o« and
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Reproducing the previous asymptotic result.
m Reflection above the barrier

The only changein formulas above is @ - -a. The transmission and reflection coefficient are then given by

1 1 {Bl2 87271(1
T = = ~ 1 - e?rY R = = ~ e2re, (14. 14)
{A}Z 1 + e—27r0( {A}Z 1 + e—Zna

In usua units

271 |E} m

which goesrapidly to zero in the classical limit, 7 — 0.

® References

1) M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions, Dover Publications Inc. (1965).

Problem 15

Show that the normalization condition C = 2+/m/ T for a semiclassical bound state in one dimension is valid also for low-lying quantum states if
the quantization condition holds.

® Solution
The following proof is due W.H. Furry [1].

Let us choose the origin of the coordinates x=0 as the minimum of the potential V[x]. Let (ab) the allowed classical region, a, b are the classical
inversion points, ad ¢ the normalized semiclassical solution.

Let us consider first the region x>0 and u[E,x] a normalizable solution with an arbitrary energy E (in general this solution is not bounded as x— - o)
——— — U[X] + V[X]u[x] = Eu[x]. (15.1)

The solution is chosen in such away that for E - Ep, U[E,X] - y[X], where Epis the bound state energy. Writing the eq.(1) for two energies E; and
E, and subtracting them after multiplication by u, and u; (the two solutions)

n? n? d
-— (U Uy - Uzuy) = -— — (U U3 - Uz2U7) = (B2 -Eq) upug.
2m 2m dx
Integration from O to co gives
n? w
— (U1 Uy - Upuy), o = (E2-Ep) J Uo Uq dX. (15.2)
2m 0

With E; = E; + 6E the comparison of first order in 6E gives (wewriteu; = u):

n? ou’  au =,
— — - —u =Ju dx. (15.3)
2ml 6E  BE 4o o
Analogously, with v[E, x] the solutionsin (-co, 0):
n? ov ov 0
——[V———V' :Jvzdlx. (15. 4)
2ml 6E  O6E Jyo .

If we sum these equations and take the limit E - Egthe right hand sideis just the normalization of ¢, thenitisequal to 1.
Let us compute the |eft hand side of egs( 3, 4).

Let us remember that x=0 is the minimum of V[x], then V' [0] = Oand for the classical momentum
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p[x] =+/2m(E-V[x])

we havep’ [0] = 0, then all derivatives of the momentum can be neglected in x=0. With p[0] = po we have easily the semiclassical approximation

foruandv:
C 1 0 b C 1 0 7
V[O}:ioos[*JPleff}; v'[0] = -—+/po Sln[—delef};
h Ja 4 h h Ja 4
\/ Po
C 1 b 7T C 1P 7
u[O}:ioos[fjpdlef}; u [0] = —+/Po Sln{fjpdlef];
h Jo 4 h h Jo 4

Jpo

Thesigninu’ [0] isdueto thefact that for u[x] theintegral of the phase factor goes from x to b.
In taking the derivative with respect to E the reader can check the C/ E cancel in egs( 3, 4) and we get

G 9po 2 0 C oop
= - —Sin[fjpdlx]f— — dx.
x=0 2hpy OE h Ja n2 Ja OE

72 au’ au G opy . (2 b 2 bop
—[u—f—u’ = —Sln[fjpdlx]+— — dx.
2m oE OE x-0 2hpo OE h Jo n2 Jo OE

72

ov’ ov
vV— - —V/
oE oE

Using these equalities the sum of theleft hand side of egs( 3, 4) in thelimit E — Eggives

m C  apo 2 b
2 — = —Sin[fjpdlx
n2 2hnpo OE A Ja

C? rbop
+ — | —dx. (15.5)
n2 Ja OE

Thefirst integral in (5) vanish if the quantization condition holds

2 b 1
¢:7J‘pd1x:2[[n+f
h Ja 2

b1 T m
2m=C | —dx =CGC-=sC=2_|— ,
aVv 2 T

| = Sin[¢] = 0.

Using p/ E=m/p=21v weget

where T isthe classical period of motion.

® References

1) W.H. Furry: Phys. Rev. 71, 360, (1947).

Problem 16

a) Study the transformation properties of

I1=qui dgi and Iz=295pi d g
i

under coordinate transformations and general canonical transformations.
b) Show that in a system with n degrees of freedom there exist at most n functionally independent integrals of motion.

¢) Show that in the hypothesis of Liouville theorem for integrable systems there are n tangent vectors tangent to the torus and construct them. Show
that the involution property of the integrals of motion implies the local existence of Ssuch that VS= p.

d) Consider a n-1 parameter family of trajectories in an integrable system. Show that envel opes of the family concides with caustics.

@® Solution
m a)

A canonical transformation (q,p) — (Q,P) can be defined by a generating function F[g,P] with

oF oF
pi = —; Q= — (16.1)
odi oP;

seeref.[1]. Then we have
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oF oF oF oF
ini da; :Zadqi = [@qui - dPi] - > ——dp *dF—ZQ dp,

dFd[iZQPi

Asaclosed integral of atotal differential vanishes we have

Zggpidlm :ZSBPide; (16.2)

i.e. | xisinvariant under general canonical transformations. The proof clearly does not work for | ; as the missing sum prevent the construction of the
differential dF.
A point transformation, i.e. a coordinate's transformation, is defined by

Fla, P] - _ij [q] P (16. 3)
]

+ P dQ.

In this case, from (1)
of; @fj T
Q = filal; dQ = )| —dg; =) Jij dg; p=) —P =(37,P (16.4)
i 90 j i Oai

Jis the jacobian matrix for coordinate transformations. As for any Jacobian matrix J7= J-1. dQ and P transform respectively as a controvariant
vector (ausual vector) and a covariant vector (agradient). For the differential form | »

>lpidg = ) (3T),, P (37),,dQ - D R (i34 dQ = ) R Aq.

i i j.s ij.s i
Then | , is invariant, as expected, while | ;is not invariant as the missing sum on the index i in the previous formula prevent the cancellation of
Jacobian matrices.
m b)
A system of k functions Fsin RN is functionally independent if the k differentials dFsare linearly independent, i.e. if the Jacobian matrix has rank k.
This definition comes form Dini theorem on implicit functions. The equation F; = 0 defines locally a surface in RN. If the rank of the Jacobian matrix
is k we can solve the system F; = 0 for k unknown quantities in terms of the other N-k unknown quantities. In our case N = 2n is the dimension of the
phase space of the system and k = n for integrable systems.
Let us now show that at most n such F can exist. We can perform a canonical transoformation which brings F;to a canonical momentum, let ¢;the
conjugate angular variable. As Fis an integral of motion dF;/dt = 0, then by Hamilton equations H cannot depends on ¢y, it is a cyclic variable.
Then our Hamiltonian has the form

H=H(y, p2, ... Ppny 92,..., On)

The existence of oneintegral has disposed of two variables. We can repeat this procedure at most n times, eliminating the n-couples (p,q).
m C)

Let Fi, i = 1..nthenintegral of motion for a system with n degrees of freedom. The 2n coordinates of phase space will be ordered as (p,q). The
symbol V whitout suffixes will denote the gradient in this space. The n equations

Fi(p, ) =1i; i =1.nm (16.5)
definea2 n - n=n dimensional manifold in phase space.

Consider the n vectorsin R2"

V, = (—Vq Fi, VpFi> (16.6)
Each vector V; is tangent to the surface F; = 1 ; asit is orthogonal to the gradient vector vF; = (v Fi, vqF; ). Asthe quantities F; areininvolution
V; istangent also to the other surfacesF; =1 ; , infact it is orthogonal to their gradient:

Vi - VF = (-vqF, %R) (Vo F, vqF) = R vqF - vqFRi vp F = (R, F} =0
Then there exist a set of n regular vectors tangent to the surface (5). Due to a theorem of Poincaré - Hoopf the only surface which admits n regular

tangent vectors has the topology of atorus, thisis the topological content of Liouville-Arnold theorem.

Now let us consider the implication of involution property on the integrability of the differential form p dq, i.e. on the existence of a function S such
that VS=p. Asiswell known anecessary property for local integrability isthat localy, i.e. in sufficiently small open sets:
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Sﬁpdq =0 (16.7)

Now let us consider the surface (5). The functional independence of the constraints alow to invert locally these equations and to express p coordi-
natesin termsof qand |:

pi =fifa, 11].
The condition for local validity of (7) is
of i @fj
= —. (16.8)
94q; oq;
Taking the derivative of constraints (5), written as F[f(q,!),q], we have
oF of, oF;
n =
OPa aq] OQj
This equation has the matrix form A B = - C, where
OF; of OF;
Nj = —— ij = — ij = —-
op; oq; oq;
The condition (8) meansB =BT i.e.
Alc - (AlC) = CTALT 5 CAT - ACT - 0.
Using the explicit expression for the matrices
oF; OF; oF; OF;
— - — — -0={F, F} -0
00a OPa  OPa OQq
The involution of the constraints is the integrability condition.
m d)
Let us consider afamily of trajectories for asystem with n degrees of freedom:
Xj = Xj (t, €2, €3, ..., Cn). (16.9)
The envelope of the family is given by definition by the equation
oxt ox? ox"
T ot
Jeo=det | o2 g, 77 oc, | = 0.
oxt ox? ox"
acn ocn e acn
Consider now an integrable system. A generic solution of equation of motion can be expressed throw angle variables as
OH[1 ]
0 = wit + 6, w = . (16.10)
ol

One of the constants &; can be reabsorbed by shifting time origin. For simplicity let us identify the other constants with our parametersc; .

The coordinates ¢ are global variables on the invariant torus, a caustic, corresponding to a singularity of the projection on configuration space, is
given by

0 Xj
Jpo=det | ——| = 0. (16.11)
le} o]
Within the above conventions
OX;j OX;j . OX;j OX;j OXi
— = — j 22, —=uw + Wk —-
Oc;j Oyj ot o1 o1 X%

Then the rows 2 ... n of the two determinants J,and J are identical. The first row of J. is the sum of a multiple of the first row of J,, and alinear
combinations of higher rows, which do not contribute to the determinant, then
Jeo = w1 dy; (16.12)



this gives an identification between caustics and envelopes.
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1) H. Goldstein: Classical Mechanics, Addison-Wesley Publishing Company (1965)

Problem 17
Performthe# — 0 limit in the Schrédinger equation with the substitution

v = AExp[his]

@® Solution

m a)

For an Hamiltonian of the form
adirect substitution of

in the Schrodinger equation gives

aS
— + H[VS, x] =
ot

with
oH
—; p = VS.
op

For ageneral Hamiltonian substitution of (1) in the Schrédinger equation gives
oA oS i h 2
ih— A - e’ISH[f v, x] Aei S,

ot ot i

Using commutation relation

and by aformal expansion in 7 we have:

e’;TSH[fv, x} erS = H[fv+vs, x]

i i 2

i
T
<

2
<
+

I

h i h 1 [

Inserting this expression in (4) and using the definition (3) for v

Selecting order 0 and order 1 in 7 we obtain again equation (2).

(17.1)

(17.2)

(17.3)

(17. 4)



