Problems Chapter 12

Quantum M echanics
K. Konishi, G. Paffuti

problemSolenoid

I Problem 1

A charged particle is constrained to move along a circle of radius R, in x y plane. The circle encloses a perfectly isolated cylindrical solenoid with
axisalong z, radiusa< R, and carrying a magnetic flux F.
1.  Findthe energy eigenstates.

2. Describe the time evolution for the flux varying with time.

® Solution

m  Static field

The kinematic is shown here:

Let ¢ be the azimuth angle along the circle. Without external fields the Hamiltonian is

1 2

H= —
2m
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i R d¢p

(1.1)

A magnetic flux F implies a non zero vector electromagnetic potential, which can be assumed directed along the circle, A,. The invariance for

rotations around z axis implies that A, isindependent from ¢ and finally Maxwell equations give, integrating along the circle:
GARw - F = A -

dy = , = = —.

2n1R

The coupling with electromagnetic field comes from the substitution p — p - e A/c, in our case

Introducing the parameter

alphaparameterring

eF
o = , (1.2)
2nhc
the Hamiltonian can be written as
n (1 o 2
H = _ — — (l. 3)
2mR2 (1 0o

If we require one-valued functions on the circle the normalized eigenfunctions and the corresponding eigenvalues are
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statesRingl
1 n2 27
Unlo] = —— Expling];  En- (n-w? J Vi Un RA® = k. (1.4)
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The normalization and the measure have been chosen in such away that | ¢ |2 has the dimension of a probability per unit length. Let us note that for

a = k+1/2 with keZ, the ground state is degenerate, both states k and k+1 have the same energy. The meaning of systems with different a will be
discussed in the next section.

We note that outside the solenoid there is no magnetic field, but energy spectrum, which is surely observable, has changed with respect to the free
particle case.

Other interesting quantities are the charge density p = e | y |2 and the density current j = p v. In presence of an electromagnetic fildv = 1/m (p - €
Alc) and we have

2 ; . h e? 2
p=elyls Jo=ie— (V) ¥ -d" V) - —A ¥
2m mc
In our case the current has only atangential component j and:
. h oy oy e? )
o=elyls | =1¢€ — -y —| - — A Y c. (1.5)
2mR | do o)V mc
It is easy to verify that the current conservation equation holds:
dp 1 9j
—+ ——=20 (1.6)
ot R o0¢p
In particular for stationary states (4)
ringcurrent
) eh e? , 1 en
jn=|—n- —A1 ¥n1“= — —— (N-a). (1.7)
mR mc 271 mRR

Let us note that for a¢ Z the ground state has a non zero mean current.
m Gauge invariance

Formally the vector field is a gauge transformation,

We have stressed that thisis not true as A = ¢ is not asingle valued function.
The situation is nevertheless more subtle than that. In the text has been pointed out that the real significance of vector field is to allow a parallel
transport of the phase of the wave function, i.e. to construct phase factor of the form

e B
UIA B] = Exp[j—J A, dx“} (1.8)
hc JA

The physical non trivial effects come from close integrals, which locally, via Stokes theorem, are related to electromagnetic fields: taking a small
contour, boundary of a space-time small surface o

9SAU qu ~ FHV GUV

Globally, asin the present case, the closed integral can be non trivial and produce physical effects even if the particle never "see" afield, in our case
the particle is always outside the solenoid. The crucial point is that these closed integrals always appears as exponential (phase factors) and the
physical effects are measured by

e
Exp i 795& dx* |
hc
In our case then the point is not the single valuedness of A but that of
e eF
Exp| i —SgauAdX“] - Expli 95(1@] - Expl[i2rnal (1.9)
hc 2nhc

This phaseisindeed trivia if a isinteger, then only fractional part of @ must be physically observable.

Thisisindeed the case and can be seen in two different ways.
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o Method 1
Consider the two Hamiltonianafor « differing by 1
72
2 mR2

H =

e

i 0
The transformation

v - EXplie]y = U
Is a unitary transformation from the space of periodic functions into itself. It is trivia to verify that indeed all scalar products are preserved. For
operators
1 0

- — -«
1 dp

1 0
- — -«
1 dp

For the Hamiltonian follows:
UHU?! = H'.
Then systems with « differing by 1 (and hence by an arbitrary integer by induction) are unitary equivalent, ig, it is always the same system seen with

different coordinates.
o Method 2

Here we put our attention on physical observables. Consider two different experiment, on with o and another one with o' = a+1. Given a state
described by ¢ in the first experiment there exist a state ¢' = Exp[i ]y in the second experiment which satisfy the same equation asy (thisisin fact
what gauge invariance means).

For ¢ and ¥' we have

2 2

oy n? ,
in— = v

ot 2 mR?

oY n?
ot 2 mR?

1 0
— — - (a+1)
i op

If we put ¥' = Expl[i ¢] ¥ the second equation transformsin the first one. Note that the transformation is well defined,i.e. single valued.

Now consider a matrix element of an arbitrary operator. If the operator does not contain derivativestrivially the phase cancel between initial and final
state. If it contains derivatives, gauge invariance imposes that the only observables quantities are those which depend on the combination p - e Alc,
i.e. the mechanical velocity of the particle, and we have to compute, for the new experiment (it is enough to consider mean values on arbitrary
functions):

1 06 1 0
de w*e’“’Ff——(aJrl)}e”w :de i F[f——a}w (1.10)
i 0 i O
Then the second experiment measures exactly the same things as the first one, eventually changing the name to the states.

The simplest example is the current (7). The second experiment would measure in his n-th state with energy C (n - o - 1) 2 acurrent j hoc (N-a-1).

The same result with same energy and current would be interpreted in the first experiment as a measure on the state n-1, it is just a question of labels
for states!

The argument sketched above roots on the deep paper of Wu and Yang [*]. This somewhat simplified version is inspired to a similar simplification
dueto Berry et al. [*].

m Time dependent magnetic flux

Let us consider now a time dependent magnetic flux, i.e. @ = a(t). A genera approach to study time evolution in the presence of a time dependent
field isto expand ¥ (t) in eigenfunctions parameter dependent (i.e. defined for each value of the parameter)

Ringadiabaticexpansionl

it
Z (o, 1) :Zn b (1) ¥nle; ] EXp[ngOEn[a] dt (1.11)

The time dependence is both explicit and implicit, through @. The explicit energy dependent phase is usually called dynamic phase and it is the only
surviving in adiabatic changes (usually). A possible additional phase generated in cyclic transformations by coefficient b, would be the Berry phase

of the system. The coefficient by, satisfy adifferential equation obtained substituting (11) in time dependent Schrodinger equation.
Our present problem is simplein that adiabatic states already contain the whole time dependence. In fact, the functions (4) do not depend on «, then

e}
ih—
ot

i

it t
Unlo] Exp{—gjo Enfod at || = Enlo (t)] ¥n o) EXp[’gJO Enfod at |,

and by construction for each a:



4 | Problems_chap12.nb

i rt i rt
HIa] 4 [o] EXp[’gJo Enfo] dt | = Enfa (1)) vn o] Exp{—gjo Ea o] dt

This means that combinations with b,, constant satisfy Schrodinger equation, i.e. the evolution is aways adiabatic, independently on the way
magnetic flux varies.
Let us now compute the variation of mean energy for the would be stationary states (with @ constant).

dE, n? da 2nh  da 1. dF

— = - nM-o) —=-——Jn—=-—]n—.
dt 2 mR2 dt e dt c dt

Equations (2) and (7) have been used. The current is constant, but confined to the ring. Expressing the flux as an integral trough a disk having the
circle as boundary

dE, 1 el=

—_ = —— jn—dS.
dt Cc Joisk Ot

Using Maxwell equationrot E = - 1/c B/ t and Stokes theorem to transform the integral in alineintegral aong the ring:

dE,
L ggjnads.
dt

We see that the variation of mean energy is due to work performed by the electric field induced by magnetic flux variation.

Varying o the spectrum changes and we can obtain dynamically an "adiabatic flow". Energies are proportional to (n - «) >then alevel degenerate for
a=0 splitsas @ increases, its energy lower if n> 0 whilerisesif n < 0. the two fluxes crossesat @ € Z + 1/2. Thisis clearly shown in figure below:

5L
aL -
3=~ Tt zaz=T"
2l =7 C=-=TC
T e =TT T T o=a-
1= T=-=1"
=== I \‘\\\\/‘/// I a

o A subtle point

Suppose that we have a particle in the ground state and the magnetic field switched off, i.e. @ = 0. Now we increase @ and end at time T with a=1.
The final system is gauge equivalent to the original one, i.e. we have performed a cyclic transformation, this does not means that nothing happened.
From (11) we see that at time T the system isin the state n=0 of the a=1 system.

1 h? )
bo= ——; En = ()5
/2 1R 2 mR?

This is the gauge transformed state of the excited state n=1 in the @=0 system, end in fact the energy, which is gauge invariant, has changed in the
transformation. In the intermediate states o was time dependent and from Maxwell equations an electric field

1 0 1 6 F A da

§=-——A)=-"— — —— = - — —;
c ot c ot 2xR e dt

was acting on the particle, so the intermediate stages were not simple gauge transformations. There is no reason that for cyclic transformation a state
of the system remains unchanged.

WuYang

1) T.T.Wuand C.N. Yang, Phys. Rev. D 12, 3845, (1975).

Berryl
2) M.V.Berry, R.G. Chambers, M.D. Large, C. Upstill and J.C. Walmsley: Eur. J. Phys. 1, 154, (1980).
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problemDefect2

Problem 2

A particle moves on a circle of radius R. A device on the circle adds a phase 27 @ when it is crossed. Sudy stationary state solutions and let a = af(t).

® Solution

m Static case

The kinematic is shown here :

Let ¢ the angle along the circle. The system can be described by:

ringDefectl
2

H = ; w2 = et?27% 0], (2.1)

72 [1 5}
2 mR2

The Hamiltonian is the one of afree particle but boundary conditions are different. Momentum and Hamiltonian are self-adjoint operators in the space
of periodic functions up to the phase 2z «. For the momentum:

1 0p

2 1 0 1 r27( 0 1
<flp,1g> :J f*[wafg[@]:ffJ — o] |glel + — (F7[2n]g[2n]) -f7[0] g[0]) =
0 1 0p i Jo o)V 1
1 r27( 0 .
ffJ — o] |gle] = (<glpIf>)
i Jo o

The eigenfunctions are easy to find: they are just usual periodic eigenfunctions with an additional (a ¢) phase shifting:

defecteigenstates

1 n2 2n
Unle] = ———EXp[ing - iae]; E, = (n-o)? J Ui Yn Rdo = &kn. (2.2)
V2 7R 2 mR2 0

The normalization and the measure have been chosen in such away that | ¢ |2 hasthe dimension of a probability per unit length.

The reader will notice the similarity between this result and the one obtained in problem (1). Let C[«] the space of continuous periodic functions up to
aphase 2ra. In problem (1) the set of functions was defined C[0] and the Hamiltonian was

" n? (1 0 )2
ol = - -«
2mR2 (1 d¢
Let U the unitary operator from C[0] to C[«] such that
unitaryTrasfgeneral
U: C[0] - Cla]; > EXpl-1iae] y. (2.3)
We have
unitarytrasfH
1 0 1 9 1 06
Ul— —-a|lUY= Exp[-iap] |- —-a| EXp[iae] = — —; UHg UL = H. (2.4)
i 9¢ 1 0o i do

The two system are in fact connected by a unitary transformation. For completeness we notice that in (4) the derivative operator on the right hand side
acts on C[a] while that on the left hand side on C[0].

m Periodic systems and spectral flow

Our Hamiltonian and the boundary conditions (1) are explicitly periodicin a. Let us now change adiabatically a, @ —»a+1. Thisis manifestly acyclic
transformation, we have not even to perform gauge transformations as in problem (1). The adiabatic eigenfunctions for the system are
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defectadiabaticSates

1 it
Enlo, t] = —Exp[inw—m[tJmExp[——JEn[aJdlt (2.5)
V2R h Jo

For adiabatic transformations these states describe the evolution of the system and we see that while @ - a + 1, the eigenstate of the Hamiltonian
evolve from n to n-1, apart from atrivial dynamic phase. Remember that the final system, a=1, is identical to the original one. Eigenvalues change,

and double degenerate states present at @ = 0 split as (n - o) 2 , energy rising or lowering depending on the sign of n. We have again degeneracy
whena e Z + 1/2, or ac Z.

5L
al ==
3k-7 7 TS z==TT
i T Tz==zT 7 T ===
2l =~ ===
\\:>i:// \\::<:
k=T ==
/\/\//\ . | . \\\\\\\‘L/\//\/\ . | . @
05 1.0 15

Thiskind of behavior is characteristic of periodic systems with periodic boundary conditions.
m General time evolution
Time evolution of astate wave function ¥ is described by
defectevolutionl
e}
ih—T = Hla] T (2.6)
ot

Remember that H depends on a through the boundary conditions. Let us consider the general expansion in terms of adiabatic states (5)

T - ) calt] dnlei o Exp[—;iLtEn[a] dt |

Hinle; o] = Enlal ¢nle; al

Do Cnlt] unler al el

Substituting in eq.(6) and projecting we obtain the general equation for c,'s coefficients:

defectckequation
d

Eck[t} = *ZSCs[t]EXp[J'l (Sk[t] - &s[t1)] <kla]

o]

ot

s[a] > (2.7)

As in this problem the adiabatic eigenstates depend explicitly on «, the coefficients ¢ in general vary with time and adiabatic evolution is not exact.
From eg(2) it follows

defectMatrixFks

o) 1 da da
<kla] | — |s[a] > = Fgs = " d—(lféks) + Oks —1'17rd—.
ot ~s dt t
0 (2.8)
i
<klop|s> = (1 - 6ks) + 7T ks
k-s

As follows from general arguments, see text, the diagonal contribution in eg.(7) amount to a phase factor and adiabatic theorem asserts that this
contribution is the only surviving in the adiabatic limit (the evolution follows the adiabatic state). In thislimit

defectckequationadiabaticlimit

d da
—Ck[t] = 1m—cCk, = Ck[t] = EXp[1ma] ck[0]. (2.9)
dt dt

This phase cannot be reabsorbed in aredefinition of base state, we should need to put

, , 1
U = e ——— BEXp[ing - 1ae];
271R
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but thisisinconsistent with the periodicity a— a+1 of both Hamiltonian and periodic conditions.

Let usin particular consider an adiabatic cyclic evolution,i.e.a » a + 1,inatimeT. A state evolve as

ChExp[ing - 1a@] > CnExp[ing - i (a +1) @] e oM i = b7y 4 e tonlT]

Apart from the dynamical phase and the usual spectral flow a new phase has appeared, =. This is the Berry phase for this transformation, i.e. the
additional phase acquired by the system under a cyclic transformation. We see that it does not depend on the details of the transformation, only on
initial and final values of the parameter a. The change in sign of ¢ is reminiscent of the change in sign for spinor after arotation of 2.

o N.B.
We said above that for each « the system is unitarily equivalent to the system of problem (1). In that case the evolution was aways adiabatic, why

here things are different? The unitary transformation which connects the two system is S= Exp[-i a ¢], which is time dependent for tim varying a.
Under atime dependent unitary transformation y— S(t) ¥ we know, see text, that the Hamiltonian change as

8S
H- SHS! +in—s?
ot

For the Hamiltonian Hy of problem (1) we have

da
Ho> SHS' +a— ¢
dt

The first term is the Hamiltonian of this problem, the second one is new, then the two Hamiltonian do not give rise to the same time evolution. At the
end of the problem the connection between the models will be used to derivein asimple way the eguation of motion for operators.

m Time evolution for operators

The question we want to clarify is the following: formally the Hamiltonian (1) is time independent and commutes with the momentum. On the other
hand it is clear, for example via spectral flow, that momentum and energy change as a vary, how is it this compatible with the equation of motion for
the operators?

To handle the problem let us consider two arbitrary states ®[t] and P[t] and compute matrix elements of momentum P, thisis in fact how the evolution
of this operator is defined. Using the base of states (2), denoted here with |n>, we have

[¥[t]> = Zkak[t] ‘k>; ’@[t] s = Zkbk[t] ‘k> .
In the following we put for shortness7 = m = R = 1. It isimmediate to verify that
<®[t]| P |P[t] > = Zkb;ak K - a).
Evolutions of coefficients ax and by are obtained substituting the expansions in the Schrédinger equation (6) (no summation on repeated indexes)

db;

D Fieds = ~iBkac 5o ) Facby - 1B

— +
dt
The anti-hermitian matrix (Fgs) is the one computed in (8), the difference with equation (7) is due to the fact that we included dynamic phase

phactorsin the coefficients. It follows
defectdpdt
d da
dT<<1>m ‘ P “P[t} > = - dTZkb;ak + st (k - @) (bsFekax - Fys by as). (2.10)
The second factor in the sum is antisymmetric in s and k so we can write the sum as
l * * *
5 D (K =00 = (s @) (b5 Faay - Fisbas) = - ) (k -s) Fus b as =
1 da do
—Zkis (k -s) Fxs by as :_st (k -s) K s Ebkas = m (stbkas - Zkbkak);

The second term exactly cancelsthefirst onein (18) and finally:

dpdtdefectl
d da da
— <®[t]| P |P[t]> = ’*Z bias = -— 278" [t, p=0]2[t, ¢=0]. (2.11)
dt dt ks dt
We used, with basis (2), the identity:
1
v[0] = ) acu[0] - B
N2

As an operator equation (a bit formally)
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dpdtdefect2

dP da
-~ 256 (). (2.12)
dt dt

The effect of phase variations on boundary conditions is trandated as a localized force proportional to the variation rate. More correctly P has in fact
an explicit time dependence on t, through «, and thisis the term we have just compute. The commutation with H is obviously zero and we have

dpP oP oP da

— = — +i[H P = — = -— 275 (). (2.13)
dt ot ot dt

Let us consider in particular the evolution with time of expectation values of P. For long times, if we take the mean over timeslonger than characteris-
tic frequencies, we expect rapid oscillating phases with zero mean , i.e.

ay a :Za*a =1.
stks K Ok K

From (11):

d

da
— < ®[t] ‘ P “I’[t]>

- — 27

dt dt

This is exactly the first term in (10) and would be the only one present for adiabatic evolution: we expect then that non adiabatic contributions are
rapidly oscillating and typically non analytic as afunction of . Thiswill be verified in a separate notebook devoted to the numerical analysis of this
problem.

v=-0.05
P
6.0} T
55} 4
Herewegivean example Thedashedline : <
isthe adiabatic (phase averaged) 50l _
evolution, thewavy linerepresent ' i
thetrueevolution. : 7
45} =
/‘/ | | | | t
5 10 15 20
From (12) evolution of the Hamiltonian follows
dH 1 da
— == =271 — (6 () P+ P& (p)). (2.14)
dt 2 dt
For the mean value on a state E[¥] = <¥|H|¥> we have
defectenergyvariation
dE[2] 1 da 1 , ) da .
=-—2n— — (2'[0]¥ [0] - ¥*[0]®[0]) = - —2xImz [0]€ [0]]. (2.15)
dt 2 dt i dt
This equation has a simple semiclassical interpretation. For semiclassical waves ¥ ~ Exp[i S| and | m[2*[¢] € [¢]] ~i S ¢. Theclassical
momentum isgivenby S/ ¢ so equation (15) reads
dE[z] do oS d P
= ——2ﬁj5((p)—: < Pg >
dt dt oy dt

as expected (the variation of momentum, i.e. the force, has been taken from(12) ).

m  Commutation relations

The last point we want to study is the following: this quite peculiar dynamics preserve commutation relations? What are the equation of motion for ¢?
First of al we remember the correct form of commutation relations for compact variablesis Weyl form:

weyldefectl

PW- WP =W W= Exp[io]. (2.16)
¢ isnot agood quantum variable, it is not self adjoint even in the periodic case. By inspection is evident that using base (2)

<®[t] | W[ P[t]> = Zk&_'b;asak,&1 = Zk bi.1 ak.
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Inserting a complete set of |k> for the left hand side of (16) we obtain, after ashort calculation:
defectshort
<O W [P[t] > = ) bias ((K-0) 6w 6i,sa- Sk1adis (S-0)) = ) bl as. (2.17)
The Weyl commutation relations are satisfied at all times, as it must be for a true quantum system.
The evolution equation for W are deduced as before. Using the known expressions for day/dt and dby/dt we have
provvdefectl
dit <@t ‘ W ‘ Pit] > = st (Fs.ks1 b ax - bi.g Fksas) + iZk bi.1 ak (B - Ex). (2.18)

The first term vanishes, see below, the second is just the commutator with the Hamiltonian, then, using the Weyl relations, we have the equation of
motion for W:

dw i
MR — (WP + PW. (2.19)
dt

Asusual these can be considered as the equation of motion in Heisenberg picture.

To show that the first term in (17) on can substitute directly the values for Fys or proceed in the following way. The matrix elements of W are W =
Sk, s+150 the two term of the sum can be written as

st bsFs ki1 ak = Zkl  Ps Fs mOmkia a = Zsk bs (FW g ax;
D biaFsas = ) bnomicaFsas = ) b (V) oy a

So in fact we have the commutator of F and W. The coefficients Fys are just matrix elements of ¢, which commutes with W, then the result follows.
m  Evolution from equivalence of models

We have already stated that this model is, at each time, unitary equivalent to the model studied in problem [ 1]. Denoting with p and P the momentum
in solenoid problem and in present problem we have shown that, see eq.(3),(4)

U: C[0] >Cla]; Uy = ey, Up-a) Ut =P
Consider now the time derivative of previous equation for P ( aways understood as matrix elements, the time dependence is in wave function of the
states, as usual in Schrodinger representation ). To the derivative there is a contribution coming from U
dP da da dp da da do

— = -1 —¢P+Pi—p+U|—-—|Ut= i —[p P] - —.
dt dt dt dt  dt dt dt

We used the fact that in the solenoid model p was a constant of motion. If naive commutation relaations would hold, [¢,P] =i and P would be a
constant. In fact, some care must be taken, as ¢ is not a well behaved operator on periodic or periodic up to a phase functions. It is essentially the
same computation given above with matrices Fyswe repeat here for completeness.

We can use matrix elements (8) to compute carefully the commutator. Inserting a complete set of states:

<klo|m><m|P|s> - <k|P|m><m|op|s> =

1

Tokm<mM|P|s> +1 —— 5 (S-a) - w6 <k |P|mMm> -1 ——— Skm (M=)
ZmW*kkfm Z -s

The terms proportional to & cancel. For the rest let us distinguish diagonal case from non diagonal case. For k=s both summation are void, so the term
vanish, for k s the Kronecker § canbe satisfied, because for example in the first sum if m=s, surely it will different from k. Then for off diagonal terms

sS-a k -

k-s k-s

For a generic matrix element

sta; bs <k‘ [, P] ‘s> = 7izk¢sa;bs :Jsta;bs +izka;bk.

Last term is simply the matrix element of identity operator. For awave function with coefficient ax in the expansion with basis (2)
1 27 1
¥I0) = ) acuk[0] = —— " ax, J do A" [0] B[] & (0) = — ), aibs,
vZr 0 257k
and finally we obtain the result

commutatotphiP

[p, PI =1 -1256 (9) (2.20)
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and for the evolution equation for P

which reproduces result (12).

problemWell1l

Problem 3

Afreeparticlemovesinabox, [Xx_, Xgr]. Theboundary conditionsare y [x. ] = ¢ [Xg] = 0. The boundaries can move.

1. Makeachange of variables which brings the problem to afixed boundary value problem.

2. Study asaparticular case arigid motion and explore the connection to Galilel transformations

3. Show that for an accelerate rigid motion the solution is unitarily equivalent to amotion in agravitational field (Equivalence Principle).
4. Forx_ = O fixed, reformulate the change of variables as a unitary scale transformation.

@® Solution

m A change of variables

Schrodinger equation with mouving boundaries in one dimension can be easily transformed in an equation with fixed boundaries using a trasforma-
tion of variables. Consider a particlein awell with left and right boundaries x,_ [t Jand xg [t ], mouving with velocitiesv| and vg. L = xgr - X isthe
instataneous with of the well. The change of variables

welltrasfvarl

(t,x) > (5, &) X =x+£L; t =5 0=¢=1 (3.1)

iswhat we need. In the new variable ¢ the boundaries are fixed. First of al from the inverse of (1)

1
= — (X=X0); T =t (3.2)
L
follow
welltrasfcoord
o o 0O ot O 1 0
—_— = — —+ — — = — —
ox Ox 0§ Ox dt L o¢
5] ot 6 0& o 5] L ve) o
— = — —+ — — = — 4+ |- — (X=X.)- —| — = (3.3)
ot ot ot ot o¢& ot L2 L | og
o L Vi fe]
= — — &+ — | —
ot L L] og

From now on, having explicitely exposed the role of time variable, we call again t the time.

Before to write down the Schrédinger equation we have to consider the normalization: the Jacobian for the transformation £ — x is time dependent. If
we have asolution y[t, £] normalized in the transformed interval the solution in the original variablesis

welltrasfpsipsi
1
P, x3 = —urt, &rt, x]1. (3.4)
VL

We have added a prefactor (time dependent) at the obvious change of variables. In a sense thisis a definition of  but is useful because in thisway we
assure the correct normalization for each timeif  is normalized:

L 2 1 1 2
[ e *- [ Las S, - L
L -1 L

Thereis aso agroup - theoretic reason for the prefactor, aswe shall see later.

The Schrddinger equation for ¥ is

in—¥--— ¥, Pixe) = Pixrl = 0.

Inserting the definition (4) and using (3) we have
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wellegforpsitrasf
oy L vi) oy 1L n2 o2y
ih|— - | -+ —| — = — —¥Y| = - — —. (3.5)
ot L L] oag 2L 2m g¢&?
The effect of the prefactor has been the non derivative term. The reader can recast (5) in amore usual shape:
wellegforpsitrasf2
oy n?2 o2y L ve)oy 1L
ih—=- +1h — &+ — | — + — — (3.6)
ot 2mL? a¢&? L L | og 2L

The operator in ther.h.s. of (6) isakind of effective Hamiltonian, and bare some similarity with acoupling to a vector field in more dimensions.

Here we give an example of time evolution computed using equation (6). Dashed lineistheinitial state.

A warning on notations for derivatives!

In this and in the following problem we will use frequently two space variables, x and £. The respective wave functions ¥[x] and y[¢] are different
but related via eq.(4). When we take derivation we have to specify the variable with respect to which variable. With the notation f ' one denotes,
correctly, the differentiation with respect the argument, not a generic partial derivative. So we have:

o le]
— ¥y —y=va.
4 X 8 &
m  Galilei transformations
The genera transformation (1) is a combination of two simpler transformations: a time dependent transdlation and a scale transformation. In the
translation L remains constant while in the scale transformation x is held fixed at 0 and x/L = &. For the particular case of v|_constant the first caseis
aGalilel transformation so let us begin from this simple case.
o Galilei transformation
From the general theory we know that known the wave function ¢ in amouving frame with velocity V the wave function in the rest frameis given by

wellGalileil

plt, £[t, x1]EXplimVe/n] Exp| - mV2t /n (3.7)

2

Pt x] =

Here L is fixed and do not play any role, so we can put L =1 to avoid trivial rescaling. ¢ is not the same as ¢: the Hamiltonian for the mouving
observer would be always a free Hamiltonian, not the complicated effective Hamiltonian appearing in (6):

wellgalilei2operator

(3.8)

2 2
jhi+ i 9 (weumvgmeumvztuzm) _
ot 2mpe?
2 2 2 2 2
eimMVern gimVt/ (2n) jhi+ii + iaﬁjmy,i[iv w,mvi(p =
ot 2mpe? 2mo¢g A 2m\ h
Thefirst termis zero due to Schrodinger equation for ¢, for the second we can write
L. . [e)0) 0 . .
eimvesn enm\ﬁt/(Zh) iV — _ mV2w - iAV (wean§/h enm\ﬁt/(Zh)).
o& o¢

Finally we have shown that if ¢ satisfy the usual Schrodinger equation then ther.h.s. of (7) satisfy
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5] n? 42 ) . G, .
ih— + ((pelmV§/n eJLmVl/(ZiJ)) - 1AV — <(pelmV§/h elmVl/(Zh))

ot 2m pé&? o¢
which is exactly the equation (6) for y inthe casedL/dt =0, v = V.

Let us stress a point which can be overlooked at a first reading. Every change of coordinates is a unitary transformation, then do not change the
physics. Expression (7) is a trivia unitary transformation (a change of phase) but its meaning his much more important because ¢ satisfy the same
Schrédinger equation than ¥, i.e. Galilel transformation are an invariance of the physics.

m  Equivalence Principle

As trivial as can appears equation (6) reserves some surprises. It is well knownthan in Classical Physics the Equivalence Principle say that we can
locally get rid of a gravitational field passing to an acceleated frame. In non relativistic mechanics this amount to say that gravitational and inertial
mass are the same, in this way form the Newton equations in a constant grvitational field g:

wellNewton
dv
ma=m —=mg (3.9)
dt

g can be eliminated passing to an accelerated observer with acceleration A. In the transformation a» a+ A and if wechoose A =gandif m = my, g

disappears from the equation. Clearly we can always choose an appropriate A for any ratio m / myfor one body (this is just a change of units for
inertial mass an gravitational mass), the Equivalence Principle say that the ratio m / my is constant for every body, let ussay 1in usual unities, and g
effectively disappears with a change of reference frame.

In Quantum Mechanics at first sight things seem different: Schrodinger equation is based on a Hamiltonian formulation (i.e. with momenta) not on a
Lagrangian formulation like (9), the mass is in the denominator of kinetic term and is not clear how it is related to a gravitational term of the form
U[x]=-mgx.

Let us attack the question form another point of view. Given aHamiltonian in an inertial reference frame

+ U[X] (3.10)

we can always perform a (trandational) change of frame using (1) with L =1. x_ represent the arbitrary movement of the new frame. Now we can ask
for which kind of potential the wave function in the new frameis related to the original wave function by a phase transformation similar to (7)
wellGalilei2

Wit, x1= o[t, £[t, x]] EXp[iS/h] (3.11)
and ¢ satisfies a usual Schrodinger equation, i.e. without derivative terms. We know in advance that once x has been expressedin terms of &, we
obtain y/[t,£] which satisfies (the generalization of) (5)

wellegfgeneraltrasf

o U n? 0%y
i —7V—] = - — + U[X[E]] 4. (3.12)
ot o0& 2m 5e?
V isthe velocity of the frame. Welook for solution of the form
changepsiphil
Ylt, €] = o[t, &[t, x]] EXp[iS/A] (3.13)

oY op i8S
— = | — + — —o| EXp[1S/A];
ot ot h ot
oy ap i8S
— = |—+ — — | EXp[1S/A];
o0& o¢ h o0&
2y (8¢ i 6S 6p i 62S 1 (6S)2
— = +2—— — + ———0¢- — | —| | Exp[iS/A].
og? o&? h o0& 6 h a¢? n? log
Substitution in (12) give
wellegforphi
o A2 62w
ih —+ — —| =
ot 2m 5ée?
i (3.14)
h? i 6S 8¢ 1 &S 1 (8S 8¢ i8S S
- — -+ —— - — | — | 0|+ 1hAV|—+ — — 0| + Up +—o0.
2m| h 6 0 A &2 72 \a& 8E h BE at
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The r.h.s. must be a potential term so first derivatives of ¢ must cancel, this poses the constraint

oS
o¢
AsV isafunction of t only thisimpiesthat S must be linear in &, and this is what we need to cancel the imaginary term proprotional to the second

derivative od Sinther.h.s. of (14). The general solution for Sisthen of the form

S=mve + ft]. (3.16)

- mv. (3.15)

Substituting in ther.h.s. of (14) we have an effective potential of the form

wellUeff

8s 1 2

Uett = UX[E]] + — + —
ot 2m

oS
o¢
This equation must be satisfied for any £ and any t. In our notationx = X, [t ] + & sowe have only two possibilities

oS dv df 1
-V— = UX[E]]+M—& +— - —mV? (3.17)
o0& dt dt 2

1. dv/dt=0. Then U must be constant, let say zero, and we recover the Galilei invariance, v is any constant.
2. U must belinear in ¢, and as a consequence in x and we have that dv/dt is fixed. Writing for obviousreasonsU = - my g x ther.h.s. of (17)
becomes
-Mmyg (XL + &) + mdl§ +if£mv2 = md—v =mg.
dt dat 2 dt
Form=mwehave: V = gt + vo. Wecanneglectv , it can be reabsorbed by a Galilei transformation, and we have

1
V=gt; x.= —gt?.
2
Uet ¢ can then be taken zero by achoice of f:
df 1
0=— - —mV?- mgx_;
dt 2

t(1 1 1
f It :J[meZergfgtz at = —mg?ts.
o\ 2 2 3

This is exactly the translation of Equivalence Principle: with m = my a particle which in ainertial frame is in a (constant) gravitational field g and
satisfies a Schrodinger equation
o¥ n? 2V

ih— = — 7mgx‘P
ot 2m ox2

isunitarily equivalent to afree particle solution ¢[t,£] in an accelerated frame
1
X = —gt2+ g
2

i

1
ult, x] = oft, 5]Exp[h[mgt§+§mgzt3]]; (3.18)

m  General rigid motion

The arguments of previous section can be reversed to answer the following question: consider a sistem in arbitrary motion (L fixed), i.e. x,[t] isthe
time dependent position of "reference frame", how looks physics of a"free" particle in that system?

We have aready al the bits of information to solve the problem. In afixed ("laboratory frame") the evolution is given by a free Hamiltonian with
mouving boundary conditions. By the change of variables (1) which here can be simpified in

welltrasfvar2

(t, X) > (t, &5 X=x+&; t =1 0=<&=<L (3.19)

we transform the model in a"usua" fixed boundary problem and, more importantly, we pass to physical coordinates £ which describe the motionin a
reference system comouving with the well: an observer attached to the box canonly use these kind dof coordinate. In this discussion L plays no role
and everithing we say isvalid also for more redlistic infinite systems.

Schrodinger equation in this system take the form (6) which here simplify (without L factors) in
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welltrasfvar3

fia vV _— . (3. 20)

Capita V, as before, denote the frame velocity. At variance with (6) ¢ has dimension of alength and, if needed the ¥ function in laboratory frame is
(4) without any prefactor. What we earned from previuous section is that we can get rid of the derivative term with a unitary phase transformation, i.e.
achange of variable for ¢ (13):

changepsiphi2
UIt, €1 = oft, €1e*¥% S =mve + ft]; (3.21)

f[t] is arbitrary and we can conveniently choose (see eq.(17) )

with this choice the equation for ¢ becomes

equationforphil

im—¢co (3.22)

The reader can verify (22) by direct substitution of (21) in (20). Thisisaquiteinteresting result by itself: every motion of the reference frame appears
in the form of alinear potential dipenending from the acceleration of the frame. This is from one side in agreement with what we have seen on the
equivalence principle, on the other side it isintereting as only the accel eration matters, not for example the third derivative of the position etc.

Relation (22) can be generalized in severa ways.
¢ Motionsind=2andd=3
The generalization is quitetrivial, it isjust necessary to write vectors :

changepsiphi3
Uit, €1 = olt, £ e S=mV. g+ f[t]; (3.23)

1
ft] :Jdlt — mV?
0 2

The equation in the comouving frame becomes

equationforphi3
a0 n? av
jﬁ—:——vgszrm—-fzp. (3.24)
ot 2m dt
o Gauge transformations
From a converse point of view we can ask when vector coupling as that in eg.(20) canbe reabsorbed in a phase, i.e. with a unitary transformation. In
the text and in other notebboks it is shown that this is possible only if the vector is a gradient, the related unitary transoformation is called a gauge
transformation. dV/dt in equation (24) now couple to the center of mass of the system.

o n? 1 dv
ih—=-— 5> —vlp+> m —-& o
ot zz'm : Z' at

o' Interacting particles

Interaction of particles is described by trandlation invariant potentials, of the form U[xi - X ] , these terms are unaffected by the transformation (19)
so above conclusions continue to hold.
e\ Energy conservation

It can be interesting to observe that in the comuving frame one can speak of energy conservation, i.e. H do not depend explicitely on time, only for
dV/dt = const., i.e. for uniform motions or for constant acceleration, just the two cases covered by Galilei transformations and Equivalence Principle.

m Scale transformations

Let us consider the problem of the potential well for fixed x, , the only variation is in the length L and the trasformation (1) is a (time dipendent)

change of scale

wellscalel

X = £ (3.25)
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We want to show how this scale transformation is implemented in Quantum Mechanics as a unitary operator.
For finite volumes a scale transformation is a bi more complicated than usual. Let uscall Lo theinitia length of the box. The Hilbert space in defined

att=0is1.2 [0, Lo], after atransformation Ly - X Lo= L[t] the relevant Hilbert space is1.2 [0, L], i.e. has changed. This changement is not there
ininfinite or semiinfinite domains.
We can define the unitary transformation which implement a scale transformation as

defscaletransformation

S.: 120, Lo] »L2[0, Alo]; SiU o= U dalx] = —w[;]. (3. 26)

The formulas will be simpler with Lo= 1, but we retain this parameter to show clearly the dimensions of what we write.

Itistrivial to verify that Sisindeed unitary (preserve scalar products). It transform functions with support in [0, Lo] in functions with support in [0,

L , L
JW/A[X]I ax =J
0 o

Putting A = Exp[e], and defining the infinitesimal generator D for this transformation, it follows from a Taylor xpansion of (26)

L], preserving their norm:

21 Lo )
—dx = fUlET L dg.

o] e

A

a le] 1 e}
A=e"=1-q wh[x]:[l——] UIX] - aX — | = Y[X] - a|— + X — | Y[X].
2 X 2 X
defDwall
i h 6] o 1
SA:EXp[—fo(D}; D= — X —+—X| = — (XpP + pX). (3.27)
h 21 OX  OX 2
The canonical commutations relations give
commutationrelationsDxp
h h
(D, x"] = n—x" = -inax" (D, p"] = -—np=1inap. (3.28)
1 1

D measures the dimension of operators. Some care must be taken using previous relations in finite intervals, as products of operators can bring
outside Hilbert space, we always compute explicit matrix elements.

From the definition (26) we can easily compute how operators transform under S;:
scaletransformationxp

1
S,pSt = ap; SxSt = —x. (3.29)
A

The details of the (easy) derivation are left to the reader. These relations justify the name of scale transformation at the quantum level.

Consider now a Hamiltonian defined on abox L, H) . Let us denote by H® the original Hamiltonian. Applying (29) to H® we find

scaledHwalll
2

S, HO 53t = »2 L - R2HL ., (3.30)
2m
The momentum p appearing on the right hand side of (30) is defined on 1.2 [0, L] so we have correctly defined H“) the Hamiltonian. Let us note
that both sides of (30) have the same spectrum, the one of unitary equivalent Hamiltonian H©'. In fact the eigenvalues of H'“) scale ad 1 /22,
Finally let us write
scaledHwall2
1
HL = — S, HO gt (3.31)
32
We see that apart a scale factor the two Hamiltonians are equivalent, i.e. solving H(®) we have practically solved H™. Things change for time

dependent scale transformation, in fact we now (see text) that for time dependent unitry transformations the infinitessmal generator of time transla-
tions (i.e. the Hamiltonian) has a non homogenous transformation, then the evolution generated by (31) is not unitary equivalent to the time evolution
in the box of length L. Thisisthe formal reason for the different form of Schrodinger equation.

Let ustakeastate® in.2 [0, L], wehave
o0 1
in— = HY & = — 3, HY St
ot 22

The function y definedasy = S;* @ describe the sistem in the box of length Lo. Using (27)
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od oy oSt oY A
—HYslo= —HYy-inSt —=i1i—-in|—|P=i—+ —DSld=1n—+ —Dy
X A2 ot ot ot ot A o] X
oy 1 n &y 11 5} el
1h—= — CUZ[/*-DZ]]:——————— —+ — X | Y
ot 22 A 2mi2 ox? A2 X  OX

which isidentical to equation (6) once made the substitutions A-L and v = 0.

This derivation show that scale transformations are indeed unitary operators and that the origin of prefactor 1//L in (4) was indeed due to unitarity.

ProblemWellModes

Problem 4

Afreeparticlemovesinabox, [X_, Xgr]. Theboundary conditionsare y [x, ] = ¢ [Xg] = 0. The boundaries can move.
1. Giveaformal solution asan expansion in adiabatic modes.

2. Recover the case of rigid uniform trandations as a Gdlilei transformation.

3. Study the time dependence of the mean energy and mean momentum on a generic state.

4.  Consider the case of oscillating walls and explore the possibility of resonances.

® Solution
o Comments and questions

Before starting the solution let us make some comments on the questions that can be posed about this problem.

1. Thisfor novicesin QuantumMechanics this problem is the source of atypical puzzle : for a sudden perturbation we expect that the wave
function is practiiically unchanged, but then for a compression of the box will cut apart of , in contrast with unitarity. Clearly thereis no
violation of unitarity, simply the sudden approximation will be valid for expansions of the box but not for compressions. In the last case higher
and higher oscillations modes are excited and the function will change quite strongly. From mathematical point of view the Hilbert spaceis

defined as1.2 [0, L]with zero boundary conditions. When Ly<L,,L2[0, L;] ¢ L2[0, L,]soinanexpansionthe"new" Hilbert space can

describe old functions and sudden approximation apply. On the contrary for compressions the new Hilbert space just do not haveininit al the
old functions, in particular those with part of the support is outside the new interval.

2. Weexpect that in some way the movement of the boundaries implies an exchange of energy with the environment. How does this happen in
details? In particular the exchange is confined to the boundaries? The answer to this question is yes, as we will show below, together with a
simple semiclassical explanation of the phenomenon.

3. Naively the Hamiltonian of the system is always a free Hamiltonian, which commute with itself and with momentum, how these quantities can
change? We have already seen thiskind of questionsin other problems, and we have to show that moving boundariesimpliesin fact a
Hamiltonian explicitely time dependent, through boundaries conditions.

m Formal solution

In this problem we will usetheunitsm=#=1.

Let x, and xg the left and right bounaries of the box. At the boundaries we assume ¢ [x. ] = ¥ [Xg] =0. The Hilbert spaceisL.? [x,, Xgr], with zero

boundary conditions. A complete basis for this spaceis

wallbasis2
Uk [X; L] :ﬁSin{M; Ek:iﬂzi. (4.1)
L L 2m L2
where L = xg - x__. This has nothing to do with movements of the boundaries. The solution of Schrédinger equation can be always be expanded with
respect to the basis (1)
modeexpansionWall
i, t] = ) aklt] uclx; L (4.2

We note that expansion (2) automatically fulfills boundary conditions eve for mouving walls.

The only difference between fixed and mouving boundaries isin the time dipendence of coefficient functions ai. In the former case
ag[t] = ac[0] Exp[- 1 Bct /h],

In the general case time dipendence of these functionsis fixed by substituting the expansion (2) in the equation
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5} n? 82
ih—Y[x, t] = - — —4
ot 2m 5x?

The only non trivial pointisthat functions (1) depends on t through the parameters x, and L. We have

n? &2

2m ox2

das dug i

ZS at Us + as m :Zs —g as Us = —hjizs Es as Us,

Using orthonormality of the basis we can multiply by uy and integrate, obtaining an equation of the form

wellequationsforak

day
;+ZS Fis 8s = —i Ey a; (4.3)
where
wallequatonsforA2
L 2ks (L s VL s
st:jumus: DR T h1e (1% ke s); Fa=0. (4.4)
0 k2 _-s2 (L L
An easy computation show
wallequatonsforA2bis
2ks (L ) VL )
Fes= —— |— (D" + = (<14 (-1)*%)| (k#s); Fu-=0. (4.5)
k2 -s2 (L L

wherev| =dx_ /dt; vg=dxg/dt; dL/dt=vg-v_.
The matrix F being non diagonal, equation (3) imply transitions between different modes. Let us note some points:
e\ The basis (1) has definite parity for reflections around the mid - point:

(XR + XR) )
XM= ——— X = Xm->- (X = Xw, i.e. X -=> 2Xy - X.
2

under this operation

k+1

Uk [X; L] = (=1)" 7 uk[x; L].

o Forvr=-v_ (aparity preserving movement around the middle of the box) dL/dt =- 2 v, and

2ks v .
k2,52f<<1+ -1®)) (4.6)

st: -

i.e. only transitions between states with same parity are allowed.

o' For vL = vR = const. we have arigid trasation of the walls, then the solution must follows from Galilean invariance. This is indeed true, the
reader can prove it by himself or read the proof below.

o' The matrix Fisantihermitian (see also text) and this assure conservation of the norm, asit is easily shown.

In principle solving exactly or approximatively eq.(3) is equivalent to solve Schrodinger eguation.

We have to stress the following point, to avoid possible misunderstandings. The functions (1) are eigenstates of the "instantaneous' Hamiltonian
defined on a box of length L and left boundary x|, H[L], but are not stationary states as the time evolution in £ coordinates is not given by H[L]. This
point has been discussed in problem [3] and will be rewieved in a particular case in the next section.

m Rigid translation

The coefficients ay satisfy formally an "Hamiltonian" equation of the form

hamiltonak
dag i )
KZ*E(Hksas; Hks = ~1hFs + Bcoks = (F + Ho)ys (4.7)

H is not diagonal except if we can neglect transition matrix #, and this is the adiabatic approximation. Only in this approximation functions uy are
approximatively stationary. Schrodinger equation in & coordinates reads (see problem [3] )
modeswellegforpsitrasf2

L

— ¥
L

L Vi
— &+ —
L L

oy n2 8%y
ih—=- —— +1h
ot 2mL? 56¢&2

oy 1
LT
o 2

(4.8)
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where

modeschangexcsi

X =X+ L& (4.9)

In general the effective Hamiltonian in (8) is time dipendent and do not have stationary states at all. An exception is the rigid motion (dL/dt = 0) with
constant velocity, this case must be covered by a Galilei transformation. In this case the equation simplify in

modeswellegforpsitrasf3

oy n? 0%y v Oy
- +ih— — | (4.10)
ot 2mL2 5¢&2 L o6¢

Gdlilei invariance imply that functions uy are stationary states, then, up to a unitary transformation, they must be the same obtained by solution of

(20) or (7). We now from the general theory of Galilei transformations that given a function ¢ in the mouving frame the state represented by this
function is described, in the rest frame, by

modesGalileil

i
Wit, x] = o[t, £[t, x]] Exp[imVL £/ h] Exp[EmVEt /h} (4.11)

Thisisin particularly true for ug:

1
Uelt, E0t, x]] EXp[imV, £/4] Eprmvﬁt/h] (4.12)

P rt, x]

The stationary eigenfunctions of (10) are not uk but their unitary transformed form

modesnewUbasis

U(t, €] = uk(t, €] Exp[imV £/ h] (4.13)

asit is easily verified. Had we used this set of functions as basis the matrix elements would be absent of course. With our choice the compicated
equations for ax must reconstruct the exponential missing £-dipendent phase. Let us show thisasit is not obvious from (7).

A general stateiswritten as

i
Wit, x] = )1 Aqunlt, €] ExplimVi €/ n] Eprmvft /h]

¢ isexpressed as afunction of x with (9). By definition

ag = Jdlg Uy

i
D, Avtnlt, €] ExplimV £/ n) Exp| - mVEt /ﬁ”,
from which follows

da i V2 i ‘ i
L Tmta - *Jdlﬁ Uk (Z An Ep Uy e ™ &/ ‘egmvft/h)
dt 2 h h n

To compute the sum we use Schrédinger equation for u and integrate by parts

day i WP i n?
= —m—a - — — | d§

U @i MV E/n ~mVZt/n
a2 h2m (Z”A" ne ©

2

o VL VL
~u -2iuem— +nf —
h 72

Last termis proportional to aand cancel exactly the first term. Using Schrédinger equation for ug
dak i

L TEa v e;m\/ft/hjdlg Ul (Z A, Un elvag/n>
dt h n

The sum canbe evaluated inserting a complete set of ug functions,which we write as scalar product:

D (i [ us) {us

i c I mw2 .
Dy A e M ) 2

A simpleintegral shows that

) 1 2ks N 1)k
i Jue) = & 255 )
and finally
day i ve 2ks Kes i
— = ——Ea - — (71+(71) )aszngkakkasaS.
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with reproduces the correct equation.
m  Energy variations

We want to study the variation of the mean energy on a state as wall moves. Let us take an arbitrary state ¥ and expand the wave function as a series
inthe basis (1)

2 2
¥ - Zk a[t] uglx, L]; E[¥] :%%Zkagakkz. (4.14)
Using (3) and the antisimmetry of F:
dEdtlwall
€ ot ﬂzhzz k? (- ag Fys as + Fsagax). (4.15)
dt L 212mHs

The termsin (3) proportional to Ex cancel in previous equation. Using the antisymmetry in k-s we can rewrite the sum in the r.h.s. as

1
2 Q2 . « 2 o2\ A
Est (k?-s?) (- ag Fsas + Fsxas ax) = 7st (k? - s?) aj Fs as.
Substituting the values for Fys we must remember that k=s terms are zero, then

L Vi
2 2 * k-s k-s *
7§ks (K*-s )akasaS = - EK%Sst{[ (-1) + T (-1+ (-1) )}akaS =
L \"J L
k-s k-s * 2 o
7§k‘52ks{t(71) +T(71+(71) )}akas+t§k2k a; ay.
Last equality has been obtained by adding and subtracting the k=s term in the sum.

Thelast term inserted in (15) cancels exactly the first term in that equation and we have

dE 2 n? L \
o ZLZmZkaZKS{E -1k . ot (-1+ <71)k’s)}a;as -
2 n? ks VR Vi
:72L2mzk’52ks{(71> fakas—fakas}

The relation can be a bit simplified decouping the independent sums. We note that this is possible because in the last form the sum is over uncon-
strained indicesk and s.

modesdedtwithak
2 22
T vkt s kad?) (4.16)

LZm

From expansion (2) and from explicit form of the basis (1)

GXUJ[X] =Zk E Hakms[w};

L L

then ( remember that xg= x + L)

psileftright
2 2
' _ - . ' _ - 1)K 4. 17
llf[XL]—wlL szkak, ¥ [XR] = C LZk(l) k ag . ( )
and we have
dE mn? vg L® , v LB )
—- - — Xl - = —— )
dt 2m ‘L 22 L 272
i.e
dedtsymm
dE n? ) )
o Z—{VLW (XL) S - Ve ¥ [XR] 1T} (4.18)
m

The reader can verify that (18) has the correct dimensions ( | ¥ | 2 has dimension 1/L in one dimension). The signs are quite intuitive: if v > 0weare
compressing the system and energy grows, if vg > 0 we expand the well and the energy decrease, asin a perfect gas.
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More importantly (18) shows that the energy change for contact with the reservoir, we have no nonlocal properties in the game.
o Semiclassical interpretation
Consider to fix the ideas aleft boundary fixed and an expanding right wall, vr > 0, ans consider a bound state of he system. In ade Broglie approxima-

tionfor 71 ' ~ p ¥, where p is the momentum at the boundary. As an order of magnitude | ¥ | 2_ 4L and from eg. (18)

sclassl
dE 1 p? v2 vg

=~ -—— VR — = -

dE mo_ 'R, (4.19)
dt 2m L 2 L

v isthe velocity of the particle. It is an easy kinematical exercize to show that a particle with positive velocity v which scatter against awall mouving
at velocity vglostin an energy 2 mv vg. If we have N scattering for second the energy loss will be

dE

— = -2mvvVvgN
dt

In abox of length L we have N = v/(2L) scattering per second and classically

dE VR
— = -2mvvgN = —mv?® —

dt L

which coincides as an order of magnitude with (19). The factor of 2 is due to the fact that in a stationary state only half of the particles (in a statistical
sense) are right mouving, as the classical particle considered above.

m Momentum variations
Wefirst state the result and make some comment. Let P the mean momentum on an arbitrary state ¥, then

dpdtwelll
d 2 2 2
f - f:n:; b P Ak <—1>k}2 | - :—m{w X1 1® - fu (xel 1) (4.20)

Last equality follows from (17). Here is an example of time variation of force F = dP/dt for fixed left boundary, the right graph show the short time
regime.

A NN %”U”\WMM MWMM |
VYT 4 WMM

A couple of coments and an unorthodox proposal :
e\ For v = Vg = Vwe have arigid movement and from (18) we have, as expected :

dedtdprigid
dE dP

-V —
dt dt
o Asdefinition of p we take the usual definition, i.e.-i 2 / X, interpreting the walls as alimit case of finite barriers.

The proof of (20) can probably be done in several ways, we choose the most direct one, i.e. multiplication of matrix elements, just to avoid problems

with subtle definitions of operators and so on. The derivation is quite tedious but instructive and we ask the reader to try to prove (20) before reading

next paragaph.

&' In one dimension energy and momentum conservation determine uniquely the final state of a scattering process. We can in this way imagine the
following situation: take the barriers as real objects of mass M and suppose they have velocities v and vg. If we apply momentum and energy
conservation to the system walls + particle we have

dv, dvgr dP dv, dvgr dE
M + — = 0; My, + Mvg — + — = 0;
dt dt dt dt dt dt

Energy ans momentum derivatives for the particle are given by equations (18) and (20).

These two equation, plus Schrédinger eguation, determine the motion of "classical" walls induced by quantum fluctuations of the particle. The
equations are highly nonlinear, asv and vg enter in the solution of Schrédinger equation.
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The equations canbe reduced at one equation if one assume arigid box. In that case the velocities are equal and the two eguations coincide by virtue
of (20).

m  Proof of eq (20)
Consider as usua a generic state with expansion's coefficients ay in the basis (1). To compute the effect of P on a state let us start form basis

functions. We can write (sum over intermidiate states)

poneigenstates

Plky =) Is)(sIPlk (4.21)
matrix elements are easily computed
poneigenstates2
i 2ks Kes i
(s [P k)= — (-1)°°-1) = — B (4.22)
L g2 _k2 L

We note the similarity of matrix B with a part of matrix F, eq.(4) thisis not an accident as the derivative with respect to x is almost identical to the
derivative with respect to t on the basis (1). For what follows it is convenient to keep separate the two part of matrix F, writing (alwaysfor k s):

defAendBforF

L vL 2ks ks ks 2ks
Fks = — Aks + — Bxs: As = (-1)" 7 Bis- ((*1) ’l) ; (4.23)
L L K2 _ g2 K2 _ g2
Consider now the meanvalue of p. From (21) and (22)
i
@Ip12) =P = ), aiBua
The time derivative, using equation of motion (3) is
dpdtprovvl
dP 1dL i2 i
— = — — — : - - — : 4. 24
TP T BB B-Boac- ) al (B Flga (4.24)

1 2 2

_EZS#k alBsk (Es - Ex) ag = - :n; Zw Bk (57— K?) a -
n? n? 2k

712 n2 2 2

S5 a3 k)

We used the fact that even after simplifying (s - k?) the term ((71)'“5

Using (17) equation (24) becomes

- l) vanishes for k=s so the sum can be extended without constraints.

dpdtprovv2
dL n? i
Po — {ju ) - o el 12} - =) al (B Flg a. (4.25)

dP 1
L dt 2m L

E_,

The difficult part of the computation is the commutator [B.F]. Below we show that (A isdefined in (23) ):

1 i 1 dL 1 dL
[B, Alg = - Bsk ﬂ—tzska;[s, Flgoak = + — — — a;Bsax = — — P

+
L L dt <=k L dt
i.e. the commutator cancel exactly the first termin (25) and we recover the result (20).

o The commutator

As[B, B] = 0, in the commutator [B,F] only the term [B,A] is different from zero. the first term in B isidentical to A, then commute, and the only
contribution come from the second term, the one proportional to -1 in (23). Explicitely (we put aminus sign for convenience)

2sm 2mk o 2sm - 2mk
1 1

—[B, A} _ (7 )mk7 B s-m
. stz_m?m?_k2 stz_m? - K2

Here and below in the primed sum terms with m=k, or m=s are axcluded, they were zero in both A and B. Summing together the two termsand
isolating the m-independent part:
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. 2sknt m v s
“[B Al = ) o (DT (D"- (D7) -
1 : k2 (-1)™  s2 (-1)"
s4sk ((-DF- (-1)°) > Nt
k2 g2 &M k2 - nt s?2 -t

We repeat : in the sum are exluded both m = sand m = k terms.

The sum canbe evaluated with he following trick. Consider a generic complex value z, instead of k or s. Each term is now well defined and we can
first sum without constraints then subtract the unwanted terms and at the end take the limit for z to k or s. The complete sum is well known, you
check it also with Mathematica :

= (-1)t -1 +7x Csc[nx]

> = = T[x]

L-1 Xzfl_2 2)(2

For thelimit x —» k we pose x = k + z and Taylor expand:

(-1) X
Tk +z] = +
2k z

1 (-1

2k2  2k?

+ 0 (z2)

The pole term iswhat must be subtracted, it isin fact the limit of the seriesterm as x— Kk, of the series, S

(-1)

SPOIe: (k+z)27k2 ~ 2Kz - 4k2

Then, after multiplication by k?

1 (-1)¢ -k 1 1 .
Lim.,ok?2 (T(k+2] - Spore) = k* |-—— - + = [,,, —(-1) ]
2 k? 2 k? 4 k2 2 4
We have also to subtract the term with m = s, thisis easy, and the first sum becomes
Z- k2 (-1)™ 1 1 kK2 (-D®
- = ,_,_(,1)J,7
™ k? - n? 2 4 k? - s?
The second sum is obtained interchanging the roles of s and k, then we have
k
1 s2 ()% k(-1 (-1 -(-1)F)
~[B Alg = 4sk ((-1)*- (-1)°) { - . }
k2 - s? s? —k? k2 - s? 4

The first two term after multiplication by the signsin the prefactor become

s2 (1- (71>k+s) k2 ( (71>S+k 71)
- = - (-1
S2_ k2 k2_ S2

while the last two terms give

Summing

k+s 1
-[B, Alg =4sk (1) -1)|-1+ —| = -2sk
k2 -s? 2
Thisiswhat announced.
m Adiabatic variations

The complicated variations in time of both E and P comes from the transition matrix F. In the adiabatic approximation these transition elements are
negligible (see text) so in this limit the only variation in time come from the factors L in front of matrix elements, see eq.(15) and (22). Energy scale

as1 /L2 andpas UL, then, in thislimit

adiabaticPandE

1
— =-2—-——E — =-——FP (4.26)
L
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m Scale transformations
In problem [3] the unitary transformation corresponding to scale variations has been introduced

modesdefscaletransformation

1

Sy L?[0, Lol »12[0, ALo]; Su¥ =Wy Walx] = —wH. (4.27)
Vi
Infinitessimal generator D and commutations relations are reported below, see problem [3] for more details:
a e} 1 e}
A=e"=1l-a Y[x] = [1**] UIX] —oaX — | = Y[X] - o | = + X — | ¥[X].
2 X 2 ox
modesdefDwall
i h e} le] 1
S}:Exp{—focD}; D= — |X—+—X| = — (Xp + pX). (4.28)
h 21 ox  Ox 2
The canonical commutations relations are
modescommutationrelationsDxp
h h
(D, x"] = n—x" = -inax" (D, p"] = - —np=1inap. (4.29)
1 1
modesscaletransformationxp
1
S,pSt = ap; SixSt= —x. (4. 30)
A

Consider a system with x =0 fixed and width Lo. An expansion (or contraction) to L[t] =A Lo isascale transformation. it is easy to show, see again
problem [3] that Hamiltonians in the final box, H“) and that in the initial box, H1) are related by a scale transformation
modesscaledHwall2

1
HY = — 5, HO gt (4.31)
)LZ

Taking the time derivative of the previuos relation and using the definition of D we have

— H®Y = 72iH<") +
dt A

i —

1
—[D, HVT.
N ]

The naive use of commutation relations (29) would give zero, but care must be taken in computing the commutator. On energy eigenstates

n
<kHD, HU] |s> = (Es- E) <k [D|s>= (Es- E) — <k |XO+0X | s>

21

A short calculation shows that

2ks kes
<k |Dlk>=0;, <k|D|s>=1hn (-1)"7; k+# s.
k? - s?

We are exactly with the same kind of sums considered in previous derivations. We leave to the reader the proof that final result isagain (16).
m  Oscillations

If movement of the walls is periodic there is a possibility to produce a resonance phenomenon between particle states. The general equations for ay
coefficients:

wallequatonsforAoscill

day
—4—2 Fxs as = -1 Ex ax ; (4.32)
dt s

are known to produce resonance for external periodic perturbation. Let us recall briefly the theory. Extracting the "free evolution”, i.e. time depen-
dence due to E, with the change of variables

t

a = Cklt] Exp[—ﬁf Eedt | = ciclt] Exp(-i 6e[t]], (4.33)
0
equations (32) take the form
transitionc
dcg
" D EXPLE Gk 6s) ] Fises = O, (4.34)
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well suited for an iterative solution. If we start with asystem in astate @, i.e. ¢, = 1, al other c's zero, a perturbative correctionsto cy, for k «, is
readily obtained

transitionOorder

dc t
d—k+ EXPLi (6 - 60) ] Fiu Co = 07 = Cp = J EXP i (6k - 60) ] Fia (4.35)
t 0

At first order in the "small" perturbation due to F matrix only the term with s=« has been extracted, because at zero order only cis not zero. Usually

the right hand side of (35) is arapid oscillating function, keeping small the value of the integral, This is the usual perturbation theory (see text). The
exception being if in F is present a frequency which cancel the factor 6¢ - &, in this case there is not depression and the amplitude for transition can

be large. If we limit to the case of one frequency and assume that approximatively the energy are fixed this happens when the external frequency is
near a difference E;- E,. We can approximatively restrict our attention to the two system level -8 but we can try to resolve exactly eq.(34) for this

reduced system
dcg dc,

— EXp[]l <6676¢7)] FBaCa = 0;
dt dt

+ Exp[i (60 = 6p) ] FIXBCB = 0.

Consider for simplicity Ex constants and assume E; > E, . The resonant termin Fg,, is of the form
Fgo = F EXp[-1Qt]; Fos = -FEXp[1Qt];, @ = Ez- E.

The form of F,; has been deduced from antihermiticity of the matrix F . The equations can be solved, and simplify greatly at exact resonance. For
€a[0] =0, c4[0] = 1:

dcg dc,
+ FCy =0; ?—TCB:O; Cs[t] = Cos[Ft];, cqt] = Sin[Ft].

dt

The system oscillated with period 27/%. Populations of the levels, | ¢k |2 become 1 with period /7.
In the present case the matrix F has the general form (4)

fksoscill

L 2ks (L s
Feo J”k S us = DRt e 1 (1)) | (k£ S); Fa=0. (4.36)
0 k2-s2 | L L

Consider for instance an oscillating box with

L =Lo(l+ ACos[Qt])

The system (36) alows resonance transtions. We can excite the system in two different ways: take fixed one of the walls, the left for definitess, of
move both of them in opposite directions, in the last case VR = - vL, vL = - 1/2 dL/dt. In the two cases w ehave respectively

fksresonance

2ks QASIn[Qt] ks
Fys = (-1 ;
k? -s2 Lo (1+ACos[Qt])
) (4.37)
2ks QASIN[Qt] 1 ks
Fgs = — ((-1) + 1)

k2 -s2 Lo (L+ACos[Qt]) 2

In the first case all transitions are allowed, in the second case only transitions without change of parity. For small oscillations amplitudes, decompos-

ing the trigonometric functions, we see that the "strength factor" # is given in the two cases by the same expression, asthesum (1 + (-1) k’s) cancel
the factor 1/2 in the second case:

1 2ks QA
2 k2_s2 Lo

F =

Matrices (37) alow resonances induced by higner harmonics, in fact expanding the denominator a whole series of frequencies appear. Another kind
of nonlinear resonances can be induced if the transition k - s can be achieved by k- i-s, this would correspond to a correction to the model of two
states system, or inperturbation theory to higher orders. If corections are just induced by higher harmonics in the perturbation they are simply
computed, for examplein (37) we have, expanding the denominator

2ks QASINn[Qt] 2ks QA

1
= — |Sin(ot] -A—-Sin[2ot] + ...
k2_-s2 Lg (L+ACos[Qt]) k2 _-s?2 Lo 2

Passing from trigonometric functions to exponential s thisis seen to correspond to an effective strength

ks oA 1
Fo = — =
k2-s2 Lo 2
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Problem 5

A particle movesin a box, [O,L]. Sudy the evolution of the states for a moving wall at x=L. Generalize the problem for the case of both walls moving.
Try to construct a self-consistent equation for the walls, defining a mass for them. Study the case of wall oscillations and associated selection rules.

@® Solution

m Introduction and mode expansion

The Hamiltonian is the free Hamiltonian, with boundary conditions,

H= —; y[0] =y[L] =0. (5.1)

From now onweusei =m=1.
Eigenfunctions and eigenvalues are:

wallbasis

2 7 kx 1 k2
ug[x; L] = lfsin[ }; Ex = — % —. (5.2)
L L 2 L?

As the boundary moves L depends on t. We can always expand in the previous compl ete base

modeexpansionWall

Ui, t] = ) aclt] uclx; L] (5.3)
Introducing this expansion in the Schrédinger equation it is easily found (see also text and previous problems)

wallequatonsforA

dak
¥+Zs Fks as = -1 E¢ ax ;
. (5. 4)
L L e 2Kks
st=JUk6tUs=* (-1) J (k#s); F =0.
0 L k2732

It is easily shown that from orthonormality of the basis F must be anti-hermitian.. Diagonal elements are zero for areal basis. We leave to the reader
as an easy excercise to show that these properties preserve the norm for an arbitrary state. This for novices in QuantumMechanics is the source of a
typical puzzle: for a sudden perturbation we expect that the wave function is practiiically unchanged, but then for a compression of the box this will
cut apart of i, in contrast with unitarity. Clearly thereis no violation of unitarity, simply the sudden approximation will be valid for expansions of the
box but not for compressions. In the last case higher and higher oscillations modes are excited and the function will change quite strongly.

From mathematical point of view the Hilbert space is defined as 1L2[0, L]with zero boundary conditions. When  Li;< Ly,

L2[0, L1] ¢ L?[0, Ly]soin an expansion the "new" Hilbert space can describe old functions and sudden approximation apply. On the contrary
for compressions the new Hilbert space just do not have in in it al the old functions, in particular those with part of the support outside the new
interval.

m Equations of motion and scale transformations

Equations (4) in principle (and also in practice as we will show in a numeric notebook) solve the problem. It is nevertheless interesting to approach
the problem as a solution of a differential equation with moving boundary conditions directly, this would be imperative if, for example, we do not
know the explicit form of eigenfunctions for fixed boundary or if mode expansion converge slowly.

A very simple way to circumvent the moving boundary, in this case, is to make a change of variables in the Schrédinger equation. For clarity we
introduce also atemporary new name for time, t

Xx/L =& t =1

Now as ¢ varies between 0 and 1 we can recover whatever box. A bit of care must be taken in changing variables and for didactic reasons we report
all passages.

o 0¢& O ot 0 1 9

= — —f — — = - —

ox ox 8¢ ox ot L ag

v n? 1 %y 1
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or

wallequationInxi
oY n2 1 (0%y . oy .
ih—=-— —|— -12mLLE — - imLLy

;o w0, t] =y[1, t]=0. (5.5)
ot 2m L2 (g¢g? o0&

The problem has been transformed in a usual fixed boundary problem, alb6eit a kind of “external field" has now appeared. Once a solution of (5) is
found, f[£,t], the solution in the original variables will be ¥[x,t] = f[x/L[t],t}/~/L .

Let us note that
o 1 1 e} o ]
—+t—-= —|&§—+—£
8E 2 2 8 BE
and write (with 7=1=m)
wallequationinxi2
oy 11 (6%y .
i—=-—-—|— -ill §—+—§) Wi @0, t] =yll, t]=0. (5.6)
ot 2 12 |o¢g? o¢ g

It isinstructive to consider this change of variables as a scale transformation and apply all the machinery of unitary operators.
A scaletransformation is defined as

p5defscaletransformation
1 X
Sy L?[0, 1] 120, A]; Si¥ = dn dalx] = —U/[f]- (5.7)
NP

Itistrivia to verify that Sisindeed unitary (preserve scalar products). It transform functions with support in [0,1] in functions with support in [O,L],
preserving their norm.

Putting A = Exp[e], and defining the infinitesimal generator D for this transformation, it follows from a Taylor xpansion of (7):

p5defDwall
i h
A= e% S,\:Exp{f—aD}; D= —
A 21

o] e}
X —+ —X
oX 90X

1
:E(Xp+px)- (5.8)

The canonical commutations relations give (exceptionally we put also the right powers of 7 )

p5commutationrelationsDxp
ol bal
D, x™ = —x™ = —imax; D, p™ = - —mp = imap. (5.9)
i i
D mesasures the dimension of operators. Some care must be taken using previous relations in finite intervals, as products of operators can bring
outside Hilbert space, we always compute explicit matrix elements.

From the definition (7) we can easily compute how operators transform under S;:

p5scaletransformationxp

1
S,pSt = ap; S,\xSf:;x. (5.10)

The details of the (easy) derivation are found in the Complements of chapter 7.

Consider now a Hamiltonian defined on abox L, H“) . Applying (10) to HV) we find

p5scaledHwalll
2

S HD gt = 2 L = L2HD, (5.11)
2m

The momentum p appearing on the right hand side of (11) is defined on 1.2 [0, L] so we have correctly defined H(“) the Hamiltonian. Let us note
that both sides of (11) have the same spectrum, the one of unitary equivalent Hamiltonian H'®). In fact the eigenvalues of H") scale ad 1 /L2.
Finally let uswrite
p5scaledHwall2

1

HLY = — g HD gt (5.12)

L2
We see that apart a scale factor the two Hamiltonians are equivaent, i.e. solving H*) we have practically solved H™. Things change for time
dependent scale transformation, in fact we now (see text) that for time dependent unitry transformations the infinitessmal generator of time transla-

tions (i.e. the Hamiltonian) has a non homogenous transformation, then the evolution generated by (12) is not unitary equivalent to the time evolution
in the box of length 1. Thisisthe formal reason for the different form of Schrodinger equation.
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Let ustakeastate ® inL? [0, L], we have (with7 = 1)
o 1
i— =HV &= —g HY glo
ot L2
The function v defined asy = St @ describe the sistem in the box of length 1. Using (8)

v = Sts; St = Exp[ilog([L] Di;

we have
od oy oSt oy L
7H(1)S|:lq)— H(l)w—nsil—zl——l i =1—+7D$1®—1—+7Dw
L2 L2 ot ot ot ot L G, L
and finally
oy 1 L 1 (%Y C11 5] )
i—= —HYy - —Dy = -—— + 2L — — [x —+ — x| ¥
ot L2 L 212 | ox2? i 2 X  Ox

which isidentical to equation (6).
m Energy variations

We want to study the variation of the mean energy on a state as wall moves.Take an arbitrary state ¥ and expand the wave function as a series in the
basis (2)

2
‘P:Zkak[t]uk[x,t]; E[W]:%%Zkagakkz.
Using (4)
wallequatonsforA2bis
Fes = 2ks (L -1k v (-1+ (-1)*®)| (k#s); Fa=0. (5.13)
k?-s2 (L L
p5dEdtiwall
: 2
ez e TR (e Rea s Facaia, (5.14)
Using antisymmetry in k-s of the termsin parenthesis
Zk k? (- ag Fxs as + Fexagax) = EZ (k? -s?) (- agFesas + Fecagag) = —Z (k? - s?) aj Fys as.
s 2 Lks ks

Substituting the values for Fys we must remember that k=s terms are zero, then

L
7st (k? -s?) aj Fs as = - [st (-1)"*2ks ajas =

L L
k-s * 2 *
_Egk,s(_l) 2ks akas+E§k2k ay ag.
The last term exactly cancel the first termin (14). Then

dE L K )
E:*EE ’Zk(l) kay |

From mode expansion:

j—f—zkakﬁ@s[ﬁfx}gk; YL = ) a % (—1)"% :

and
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energyloss

dE 7 L LS

1
YLl = —EL WLl

dt L2L2x
. (5. 15)
dE L
— = - — | B&gY[L] |% (innormal units).
dt 2m

We see that, as intuitively expected, we have an energy loss when box grows and an energy gain for compressions. Eq.(15) has a nice semiclassical
interpretation. For ade Brogliewave h 6x ¥ [L] ~ p ¥, where p isthe momentum at the wall.

L is the velocity V of the wall let us suppose positive for example (expansion). | i |2 is the density and for one particle | ¢ |2~ 1 /L . For the
energy loss we have

dE V p2 v

dt 2m L L

Let us consider aclassical particle of velocity v and mass m which hits the wall. An easy exercise in kinematic shows that in the scattering the particle
lost an energy 2mv V. If there are N hits per second the energy loss will be

dE
— = -2mvVN
dt
In asecond a particle of velocity v hits v/2L times against the wall, then
dE v \Y
—=-2mvV —= -2E —.
dt 2L L

The factor of 2 isdue to the fact that for a stationary states only half of the particles (the right movers) hits against the wall.

A different and instructive derivation of energy variation can be obtained using (12). Taking time derivative and using the definition of Sin terms of
D we obtain
d—H“" = 725H<") +
dt L

The naive use of commutation relations, see (9) would give zero, but carre must be taken in computing the commutator. On energy eigenstates

1
<k|[D HY]|s> = (E-E)<k|D|s> = <a_a>;<k
1

X Ox+ OxX | S >

A short calculation shows that

2ks

k2 -s2

<k|D|k>=0; <k|D|s> =1 (-1 ks,

We are exactly with the same kind of sums considered in previous derivation. We |leave to the reader the proof that final result is again (15).
m  Arbitrary movements for both walls

The system can be trivially generalized. Let XL, XR the positions of left and right boundaries, and L = xR - xL.

Eigenfunctions and eigenvalues are:

wallbasis2

2 k (x - xL 1 . k?
Uy [X; L]:ﬂlfsin[y; Ex = — % —. (5.16)
L L 2 L2

The mode expansion becomes

wallequatonsforA2

dag
K+ZSFkSaS:71Ekak,
. (5.17)
L 2ks (L e VL e
st:JUkﬁtus: — (-1) + — (-1+ (-1)"7) | (k#s); Fu=0.
0 k?2 -s2 (L L

xL, and xR =xL + L arethe boundaries, vL is d(xL)/dt.
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Let us note some points

1. Thebasis (1) has definite parity for reflections around the mid-point XM = (XR+xL)/2, X-XxM -> - (x-XM), i.e. X-> 2xM-x, under this operation

ue D LT > (-1 T ugrx; L

2. ForvR=-vL (aparity preserving movement around the middle of the box) dL/dt = - 2 vL and

2ks vL

k-s
G (D))

i.e. only transitions between states with same parity are allowed.

st: -

3. ForvL =vR we have arigid traslation of the walls, then the result must follos from Galilean invariance. Thisisindeed true, the reader can
proveit by himself or read the proof below. (The proof isin aclosed cell).

Proof
m Energy conservation and free walls

It is possible to compute both energy and momentum variation as the walla move. The computation proceed asin (14) giving

dEdtanddPdt

dE VR | . 2 vL . 2
w2 ¥ [xR] | +7 ¥ [xL] |
t
(5.18)
dpP

1 , .
— = - (| ¥ xR 12— | ¥ xL] (2).
dt 2

We use the symbols E, P, to denote mean valuesin this section. vL and vR are the velocities of |eft and right walls, and in terms of mode coefficients

. 2 . 2
¥ [xL] = Zkak L Ek; ¥ [xR] = Zkak L Ek (71)k;

The derivation is proposed as an exercise to the reader, a direct proof is aso given below (closed cell),
For vR = vL=V (rigid movements) dL/dt = 0, and the result is proportional to energy change and we obtain the expected relation between energy end
momentum (thisisjust aconsequence of Galilei invariance)

dP 1 dE dE dpP
— . — V

d vdt' dt o dt’
In general
devrel
dE P 1 . ) , )
—=V— - —vie (|¥ [XR] |7+ | ¥ [xL] |?);
dt dt 4

(5.19)

1 1
VR =V + —Vig; VL =V - —Vig;
2 2

These expressions alow to pose the following problem. Suppose that thet wo wall have alarge mass M and are completely free, how they move? We
can obtain the movement by energy and momentum conservation.

dedpandmovingwalls

dvR dvL dpP

+ + — =0
dt dt dt (5. 20)
dvR dvL dE
MvR + MvL + — =0.
dt dt dt

These equation in principle determine the movement. The "force" acting on the wallsis very complicated and velocity dependent, remember that L[t]
and vL[t] enter in the expression for the evolution of expansion coefficients ay .

In idealized case is when left and right walls are identified,the equation in this case describe a motion on aring. Clearly in this case vL = VR, the
length of the ring is fixed by itsinitia value. The simplified equations read in this case (dL/dt = 0), and are reduced to those for P (equation for E
followsfrom V dP/dt = dE/dt ):
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dv dP
s —=0
dt dt
dak \Y
7+,Z Bys as = -1 Ex ax ;
dt L—*
2ks K_s
Bs = (-1+ (-1)"); (k#s);
k2 - s2
dpP ha K 2 2
o e T S k)

Proof of (18)
The variation of energy of the quantum state for both walls moving proceed exactly asin (14)
dE L G
— = -2-E- — (k? -s?) ag Fys as.
dt L 212 ks
The only difference is in the F matrix. Inserting (4) and remembering the for k=s Fys is zero we have (the deduction is similar to that following

eq.(14) ):

dE L ha vL vL
—=-2-E- — ) aa;2ks (-S4 D 0 -
dt L 212 i L L L
72 VR ha

k
S D ack (<11 — — ) ack |?
L2 K L2

We have introduced the velocity of the right wall, vR = vL + L. Using expansion in the basis (1)

dv 2 mk(x - xL),
SR Y R MR
dx k L L L
2 2
' . ! _ - 7 1, k.
\P[xL]:Zkak EEk, ‘I‘[XR]_Zkak /L Lk(l),

then we can also write the generalization of (15):

dE VR | . 2 vL . P

— = —— | ¥ [xR] | +7"1f [xL] |

dt 2 2
Let us now consider momentum. We can imagine that this momentum is usual momentum in presence of an infinitely high barriers smulated by the
walls, so we use usual definition for it. On aenergy eigenstates

Plk>= |s><s|P|k>;
11 2ks Kos i 2ks K s

<s|Plks>=_" e (-1)"°-1) = —Bsx; (k#s)
]'l|_k2_32 LSZ_kZ

We note that matrix B is apart of matrix F, the one proportional to vL. For an arbitrary state

hi}
<V |P|¥> = fzks aZ Bsy ak.
Taking the derivative and using equation of motion for ay

dP L i2 i
E: - EP + kasaS (Es - Ex) Bsk ax - Tstas[B' Flo 8

Thefirst sum istreated in the usual way:
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2 s2 _ K2 ;
Zk as (BEs -E) Bskak = —— 5 2ks ( (-1 s 1) a =
#S L2 k+s s2 _ k2
7T2 K
EZkis tks ((-1)F°-1)a =
2 2 , ,
| ke cn D ke :—‘\P[XRH ——‘Mxm
dP , i
2 2
fdt:_[P-—(“}’[xR]\ —|‘P[XLJ\)—EZkSaS[B, Flo

F matrix is composed of two parts, the second being proportional to matrix B, we pose

L vL 2ks 2ks

Fis = — A + — Brsi  As = (-1)% B = (-1+ (-1)*®).
L L K2 _ g2 K2 _ g2
dp L b 1 R 2 L 2 il 5 A
— = - —P - —(|V¥ - |y S— :
dt L 2 U1¥ DR Z- ¥ D 1) L2 s 2515 Al
The commutator can be computed and gives - By and cancel exactly the first term
dp L 1 . . il
— = - —P - — ([ |¥Y [XR] 2= | ¥ [XL] |?)+— — alBsgax =
dt L 2 (| | ) L |_Zks °
1 . .
- — (|Y xR 12| ¥ oxL) 1),
2
Computation of the commutator
Only the term with -1 in B gives a contribution to the commutator:
2sm  2mk 2sm 2 mk
(B, Alg = ) (-1)™ - (-1)°" -
Ms2 - n? n? - k2 s?- n? m - k2
c4sknf 1
> — L™ (DY - cD®) =
ms2_ m? n?- k?
1 : k2 -1)™  s?2 (-1"
4sk ((-1)f- (-1)°) > -
k2 -g2 ™ k2 - n? s? - n?

In the sum are excluded both m=s and m=k terms.
The sum can be evaluated in the following way. First let us sum on al values but in the form (verify the sum with Mathematica ):

> (-1)

> -

L-1 X27|_2 2X2

-1l+nxCsclnx]

For x— k pose x =k + z. Series expansion gives

(-1) K

2k z

1 (-1

2 k2 2k2

+ + 0 (2)

The pole term is what must be subtracted, it isin fact the limit of the seriesterm as x— k,

(-1)

(k+z)2-k2 2kz  4k?

After multiplication by k?we have for the whole sum

We have now to subtract the term with m = s, as arisult thefirst sumis

(-1)°

1 1 k)_ k?

k2 - s2

The second sum is obtained interchanging the roles of sand k, then
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1 1 ‘ 1 (-1)% - (-1)

“ (-1)
k2 -s? | s?2- k? k2 - s2 4

-[B, Alg = 4sk ((-1)" - (-1)°)

The first two term, once multiplied by the sign in the prefactor, become

1 1

52 (17 (—l)k+s) B K2 ( (71>s+k 71) _ 7<71)k+s i1
Szf k2 kz, 52
Thetwo last terms:
(-1DF- -1®%) (-D° - DY) = 2 ((-1)*°-1)
and
4Kks 1 2ks
,[B’ AJSk _ 71)k+571> [77] _ <<71>k+571) _ Bsk
k2 -s2 2 s2_ k2

m Oscillations

If movement of the walls is periodic there is a possibility to produce a resonance phenomenon between particle states. The general equations for ay
coefficients:

p5wallequatonsforAoscill

dak
—+ ) Fas= -iEa; (5.21)
dt s

are known to produce resonance for external periodic perturbation. let us recall briefly the theory. Extracting the "free evolution”, i.e. time depen-
dence due to E,with the change of variables

t
aK = ck[t] EXp[—J‘lJ E¢ dt } = ck[t] EXp[-i6k[t]]
0
equations (21) take the form

p5transitionc
dcy

dt

+ ) EXPli (6k-085)] Fs Cs = O, (5.22)

well suited for an iterative solution. If we start with asystem in astate o, i.e. ¢, = 1, al other c's zero, a perturbative correctionsto cy, for k «, is
readily obtained

p5transitionOorder
dcg

dt

t
+ EXp[i (6k - 6a) ] FkaCa = 0; = Cik = *J Exp[i (6k - 6a) ] Fra (5.23)
0

At first order in the "small" perturbation due to F matrix only the term with s=a has been extracted, because at zero order only cis not zero. Usually

the right hand side of (23) is arapid oscillating function, keeping small the value of the integral, This is the usual perturbation theory (see text). The
exception being if in F is present a frequency which cancel the factor &y - &, in this case there is not depression and the amplitude for transition can

be large. If we limit to the case of one frequency and assume that approximatively the energy are fixed this happens when the external frequency is
near a difference E;- E,. We can approximatively restrict our attention to the two system level - but we can try to resolve exactly eq.(22) for this

reduced system
dcg dc,
+ EXp[1 (65 - Sa)] FpaCo = 05 + BEXp[i (60 -6p)] FapCp = 0.
dt dt

Consider for simplicity E, constants and assume E; > E, . The resonant termin Fg,, is of the form
Fooa = FEXP[-1Q1]; Fop= -FEXp[iQt], Q = Ez- E.

The form of F,shas been deduced from antihermiticity of the matrix F . The equations can be solved and simplify greatly at exact resonance. For
Cy[0] =0, c4[0] = 1:

dcg dc,
+ FCq=0;
dt dt

- FCz=0; cpg[t] =Cos[Ft]; cult] = Sin[Ft].

The system oscillated with period 27/%. Populations of the levels, | ¢k |2 become 1 with period /¥

In the present case the matrix F has the general form (4)
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p5fksoscill

L 2ks (L s K-s
Fre = J“k o U = DMt D (f1e (- | (k£ s) 5 =0, (5. 24)
0 k2752

L L
Consider for instance an oscillating box with

L = Lo (l+ACos[Qt])

The system (24) alows resonance transtions. We can excite the system in two different ways: take fixed one of the walls, the left for definitess, of
move both of them in opposite directions, in the last case VR = - vL, vL = - 1/2 dL/dt. In the two cases w ehave respectively

p5fksresonance
2ks QASINn[Qt] Kes
Fys = (-1) ;
k2 -s2 Lo (1 +ACos[Qt])

2ks QASIn[Qt] 1 Kes
Fys = — ((-1) + 1)
k2 -s2 Lo (L+ACos[Qt]) 2

(5. 25)

In the first case all transitions are allowed, in the second case only transitions without change of parity. For small oscillations amplitudes, decompos-

ing the trigonometric functions, we see that the "strength factor" # is given in the two cases by the same expression, asthesum (1 + (-1) k’5) cancel
the factor 1/2 in the second case:

1 2ks QA

Fo= - .
2 k2-s2 Lo

Matrices (25) alow resonances induced by higner harmonics, in fact expanding the denominator a whole series of frequencies appear. Another kind
of nonlinear resonances can be induced if the transition k — s can be achieved by k— i—s, this would correspond to a correction to the model of two
states system, or inperturbation theory to higher orders. If corections are just induced by higher harmonics in the perturbation they are simply
computed, for examplein (25) we have, expanding the denominator
2ks QASIn[Qt] 2ks QA ([ 1
= — |Sinot] -A—-Sin2Qt] + ...|.
k2-s2 Lo (1+ACos[Qt]) k2-s2 Lo 2

Passing from trigonometric functions to exponentials thisis seen to correspond to an effective strength

ks qA? 1

F2 = .
k?-s? Lo 2




