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problemSolenoid

Problem 1

A charged particle is constrained to move along a circle of radius R, in x y plane. The circle encloses a perfectly isolated cylindrical solenoid with
axis along z, radius a < R, and carrying a magnetic flux F.
1. Find the energy eigenstates.

2. Describe the time evolution for the flux varying with time.

æ Solution

à Static field

The kinematic is shown here:                   

Let j be the azimuth angle along the circle. Without external fields the Hamiltonian is

(1.1)H =
1
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A  magnetic  flux  F  implies  a  non  zero  vector  electromagnetic  potential,  which  can  be  assumed  directed  along  the  circle,  Aj.  The  invariance  for

rotations around z axis implies that Aj is independent from j and finally Maxwell equations give, integrating along the circle:

¨ Aj R dj = F , Þ Aj =
F

2 Π R
.

The coupling with electromagnetic field comes from the substitution p ® p - e A/c, in our case
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Introducing the parameter  

(1.2)

alphaparameterring

Α =
e F

2 Π Ñ c
,

the Hamiltonian can be written as

(1.3)H =
Ñ2

2 m R2
 
1
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¶

¶j
- Α

2

.

If we require one-valued functions on the circle the normalized eigenfunctions and the corresponding eigenvalues are



(1.4)

statesRing1

Ψn@jD =
1

2 Π R

 Exp@ä n jD; En =
Ñ2

2 m R2
 Hn - ΑL2; à

0

2 Π

Ψk
*

Ψn R âj = ∆kn.

The normalization and the measure have been chosen in such a way that È Ψ È2 has the dimension of a probability per unit length. Let us note that for

Α  = k+1/2 with kÎZ,  the ground state is degenerate, both states k and k+1 have the same energy. The meaning of systems with different Α will be
discussed in the next section.

We note that outside the solenoid there is no magnetic field, but energy spectrum, which is surely observable, has changed with respect to the free
particle case.

Other interesting  quantities are the charge density Ρ = e È Ψ È2 and the density current j = Ρ v. In presence of an electromagnetic field v = 1/m (p - e

A/c) and we have

Ρ = e È Ψ È2; j = ä e
Ñ

2 m
 HHÑ Ψ

*L Ψ - Ψ
*
 ÑΨL -

e2

m c
 A ý Ψ ý2

In our case  the current has only a tangential component j and:

(1.5)Ρ = e È Ψ È2; j = ä e
Ñ

2 m R
 

¶Ψ*

¶j
 Ψ - Ψ

*
 
¶Ψ

¶j
-

e2

m c
 Aj ý Ψ ý2 .

It is easy to verify that the current conservation equation holds:

(1.6)
¶Ρ

¶t
+

1

R
 
¶j

¶j
= 0

In particular for stationary states (4) 

(1.7)

ringcurrent

jn =
e Ñ

m R
 n -

e2

m c
 Aj ý Ψn ý2 =

1

2 Π
 
e Ñ

m R2
 Hn - ΑL.

Let us note that for ΑÏ Z the ground state has a non zero mean current.

à Gauge invariance

Formally the vector field is a gauge transformation, 

Aj =
F

2 Π R
 

¶

¶j
 j; A =

F

2 Π
 Ñ j.

We have stressed that this is not true as L = j is not a single valued function. 

The  situation  is  nevertheless  more  subtle  than  that.  In  the  text  has  been  pointed  out  that  the  real  significance  of  vector  field  is  to  allow a  parallel
transport of the phase of the wave function, i.e. to construct phase factor of the form 

(1.8)U@A, BD = ExpBä 
e

Ñ c
à
A

B

AΜ dx
ΜF

The physical  non trivial  effects  come from close integrals,  which locally,  via Stokes theorem, are related to electromagnetic fields: taking  a small
contour, boundary of a space-time small surface ΣΜΝ

¨ AΜ dx
Μ

> FΜΝ Σ
ΜΝ

Globally, as in the present case, the closed integral can be non trivial and produce physical effects even if the particle never "see" a field, in our case
the  particle  is  always  outside  the  solenoid.  The  crucial  point  is  that  these  closed  integrals  always  appears  as  exponential  (phase  factors)  and  the
physical effects are measured by

ExpBä 
e

Ñ c
¨ AΜ dx

ΜF
In our case then the point is not the single valuedness of L but that of 

(1.9)ExpBä
e

Ñ c
¨ ¶Μ L dx

ΜF = ExpBä
e F

2 Π Ñ c
 ̈ dj F = Exp@ä 2 Π ΑD

This phase is indeed trivial if Α is integer, then only fractional part of Α must be physically observable.

This is indeed the case and can be seen in two different ways.

2   Problems_chap12.nb



ã Method 1

Consider the two Hamiltoniana for Α differing by 1

H =
Ñ2

2 m R2
 
1

ä
 

¶

¶j
- Α

2

; H' =
Ñ2

2 m R2
 
1

ä
 

¶

¶j
- HΑ + 1L

2

.

The transformation

Ψ ® Exp@ä jD Ψ º UΨ.

Is  a  unitary  transformation  from  the  space  of  periodic  functions  into  itself.  It  is  trivial  to  verify  that  indeed  all  scalar  products  are  preserved.  For
operators 

1

ä
 

¶

¶j
- Α ® U 

1
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¶

¶j
- Α  U-1

= ã
ä j

 
1
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¶

¶j
- Α  ã

-ä j
=

1
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¶

¶j
- Α - 1 .

For the Hamiltonian follows:

U H U-1
= H'.

Then systems with Α differing by 1 (and hence by an arbitrary integer by induction) are unitary equivalent, i,e, it is always the same system seen with
different coordinates.

ã Method 2

Here  we  put  our  attention  on  physical  observables.  Consider  two  different  experiment,  on  with  Α  and  another  one  with  Α'  =  Α+1.  Given  a  state
described by  Ψ in the first experiment there exist a state Ψ' = Exp[ä j]Ψ  in the second experiment which satisfy the same equation as Ψ (this is in fact
what gauge invariance means).

For Ψ and Ψ' we have

ä Ñ
¶Ψ

¶t
=

Ñ2

2 m R2
 
1

ä
 

¶

¶j
- Α

2

 Ψ; ä Ñ
¶Ψ'

¶t
=

Ñ2

2 m R2
 
1

ä
 

¶

¶j
- HΑ + 1L

2

 Ψ
';

If we put Ψ' = Exp[ä j] Ψ the second equation transforms in the first one. Note that the transformation is well defined,i.e. single valued.

Now consider a  matrix element of an arbitrary operator. If the operator does not contain derivatives trivially the phase cancel between initial and final
state. If it contains derivatives, gauge invariance imposes that the only observables quantities are those which depend on the combination p - e A/c,
i.e.  the  mechanical  velocity  of  the  particle,  and  we  have  to  compute,  for  the  new  experiment  (it  is  enough  to  consider  mean  values  on  arbitrary
functions):

(1.10)à dj Ψ
*

ã
-ä j FB1

ä
 

¶

¶j
- HΑ + 1LF ã

ä j
 Ψ = à dj Ψ

* FB1
ä

 
¶

¶j
- ΑF Ψ

Then the second experiment measures exactly the same things as the first one, eventually changing the name to the states. 

The simplest example is the current (7). The second experiment would measure in his n-th state with energy C Hn - Α - 1L2  a current jnµ (n-Α-1).

The same result  with same energy and current would be interpreted in the first experiment as a measure on the state n-1, it is just a question of labels
for states!

The argument sketched above roots on the deep paper of Wu and Yang [*]. This somewhat simplified version is inspired to a similar simplification
due to Berry et al. [*].

à Time dependent magnetic flux

Let us consider now a time dependent magnetic flux, i.e. Α  = Α(t).  A general approach to study time evolution in the presence of a time dependent
field is to expand Ψ(t) in eigenfunctions parameter dependent (i.e. defined for each value of the parameter)

(1.11)

Ringadiabaticexpansion1

Y Hj, tL = â
n
bn HtL Ψn@j; ΑD ExpB-

ä

Ñ
à
0

t

En@ΑD dtF
The time dependence is both explicit and implicit, through Α. The explicit energy dependent phase is usually called dynamic phase and it is the only
surviving in adiabatic changes (usually). A possible additional phase generated in cyclic transformations by coefficient bn  would be the Berry phase

of the system. The coefficient bn satisfy a differential equation obtained substituting (11) in time dependent Schrödinger equation.

Our present problem is simple in that adiabatic states already contain the whole time dependence. In fact, the functions (4) do not depend on Α, then

ä Ñ
¶

¶t
 Ψn@jD ExpB-

ä

Ñ
à
0

t

En@ΑD dtF = En@Α HtLD Ψn@jD ExpB-
ä

Ñ
à
0

t

En@ΑD dtF,
and by construction for each Α:
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H@ΑD Ψn@jD ExpB-
ä

Ñ
à
0

t

En@ΑD dtF = En@Α HtLD Ψn@jD ExpB-
ä

Ñ
à
0

t

En@ΑD dtF.
This  means  that  combinations  with  bn  constant  satisfy  Schrödinger  equation,  i.e.  the  evolution  is  always  adiabatic,  independently  on  the  way

magnetic flux varies.

Let us now compute the  variation of mean energy for the would be stationary states (with Α constant).

dEn

dt
= -

Ñ2

2 m R2
 Hn - ΑL dΑ

dt
= -

2 Π Ñ

e
 jn

dΑ

dt
= -

1

c
 jn

dF

dt
.

Equations (2) and (7) have been used.  The current is constant, but confined to the ring. Expressing the flux as an integral trough a disk having the
circle as boundary 

dEn

dt
= -

1

c
 à
Disk

jn
¶B

¶t
 dS.

Using Maxwell equation rot E = - 1/c ¶  B/¶ t and Stokes theorem to transform the integral in a line integral along the ring:

dEn

dt
= ¨ jn E ds.

We see that the variation of mean energy is due to work performed by the electric field induced by magnetic flux variation. 

Varying Α the spectrum changes and we can obtain dynamically an "adiabatic flow". Energies are proportional to Hn - ΑL2then a level degenerate for

Α=0 splits as Α increases, its energy lower if n > 0 while rises if n < 0. the two fluxes crosses at Α Î Z + 1/2. This is clearly shown in figure below:

0.5 1.0 1.5
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En

ã A subtle point

Suppose that we have a particle in the ground state and the magnetic field switched off, i.e. Α = 0. Now we increase Α and end at time T with Α=1.
The final system is gauge equivalent to the original one, i.e. we have performed a cyclic transformation, this does not means that nothing happened.
From (11) we see that at time T the system is in the state n=0 of the Α=1 system. 

Ψ0 =
1

2 Π R

; En =
Ñ2

2 m R2
 H1L2;

This is the gauge transformed state of the excited  state n=1 in the Α=0 system, end in fact the energy, which is gauge invariant, has changed in the
transformation. In the intermediate states Α was time dependent and from Maxwell equations an electric field

E = -
1

c
 

¶

¶t
 Aj = -

1

c
 

¶

¶t

F

2 Π R
= -

Ñ

e

dΑ

dt
;

was acting on the particle, so  the intermediate stages were not simple gauge transformations. There is no reason that for cyclic transformation a state
of the system remains unchanged.

WuYang
1)  T.T. Wu and C.N. Yang, Phys. Rev. D 12, 3845, (1975).

Berry1
2)  M.V. Berry, R.G. Chambers, M.D. Large, C. Upstill and J.C. Walmsley: Eur. J. Phys. 1, 154, (1980).
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problemDefect2

Problem 2

A particle moves on a circle of radius R. A device on the circle adds a phase 2Π Α when it is crossed. Study stationary state solutions and let Α = Α(t).

æ Solution

à Static case

The kinematic is shown here :         

Let j the angle along the circle. The system can be described by:

(2.1)

ringDefect1

H =
Ñ2

2 m R2
 
1

ä
 

¶

¶j

2

; Ψ@2 ΠD = ã
-ä 2 Π Α

 Ψ@0D.
The Hamiltonian is the one of a free particle but boundary conditions are different. Momentum and Hamiltonian are self-adjoint operators in the space
of periodic functions up to the phase 2Π Α. For the momentum:

< f È pj È g > = à
0

2 Π

f*@jD 1

ä
 

¶

¶j
g@jD = -

1

ä
 à
0

2 Π ¶

¶j
 f*@jD g@jD +

1

ä
 Hf*@2 ΠD g@2 ΠD - f*@0D g@0DL =

-
1

ä
 à
0

2 Π ¶

¶j
 f*@jD g@jD = H < g È p È f >L*

The eigenfunctions are easy to find: they are just usual periodic eigenfunctions with an additional (Α j) phase shifting:

(2.2)

defecteigenstates

Ψn@jD =
1

2 Π R

 Exp@ä n j - ä Α jD; En =
Ñ2

2 m R2
 Hn - ΑL2; à

0

2 Π

Ψk
*

Ψn R âj = ∆kn.

The normalization and the measure have been chosen in such a way that È Ψ È2 has the dimension of a probability per unit length. 

The reader will notice the similarity between this result and the one obtained in problem (1). Let C[Α] the space of continuous periodic functions up to

a phase 2ΠΑ. In problem  (1) the set of functions was defined C[0] and the Hamiltonian was

HSol =
Ñ2

2 m R2
 
1

ä
 

¶

¶j
- Α

2

.

Let U the unitary operator from C[0] to C[Α] such that

(2.3)

unitaryTrasfgeneral
U : C@0D ® C@ΑD; Ψ ® Exp@-ä Α jD Ψ.

We have

(2.4)

unitarytrasfH

U 
1

ä
 

¶

¶j
- Α  U-1

= Exp@-ä Α jD 
1

ä
 

¶

¶j
- Α  Exp@ä Α jD =

1

ä
 

¶

¶j
; U HSol U-1

= H.

The two system are in fact connected by a unitary transformation. For completeness we notice that in (4) the derivative operator on the right hand side
acts on C[Α] while that on the left hand side on C[0].

à Periodic systems and spectral flow

Our Hamiltonian and the boundary conditions (1) are explicitly periodic in Α.  Let us now change adiabatically Α, Α ®Α+1. This is manifestly a cyclic

transformation, we have not even to perform gauge transformations as in problem (1). The adiabatic eigenfunctions for the system are
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(2.5)

defectadiabaticSates

Fn@j, tD =
1

2 Π R

 Exp@ä n j - ä Α@tD jD ExpB-
ä

Ñ
à
0

t

En@ΑD dtF
For adiabatic transformations these states describe the evolution of the system and we see that while Α  ®  Α  + 1, the eigenstate of the Hamiltonian
evolve from n to n-1, apart from a trivial dynamic phase. Remember that the final system, Α=1, is identical  to the original one. Eigenvalues change,

and double degenerate states present at Α = 0 split as Hn - ΑL2  , energy rising or lowering depending on the sign of n. We have again degeneracy

when Α Î Z + 1/2, or ΑÎ Z.

0.5 1.0 1.5
Α

1

2

3

4

5

En

This kind of behavior is characteristic of periodic systems with periodic boundary conditions.

à General time evolution

Time evolution of a state wave function Y is described by

(2.6)

defectevolution1

ä Ñ
¶

¶t
 Y = H@ΑD Y;

Remember that H depends on Α through the boundary conditions.  Let us consider the general expansion in terms of adiabatic states (5)

Y = â
n
cn@tD Ψn@j; ΑD ExpB-

ä

Ñ
à
0

t

En@ΑD dtF º â
n
cn@tD Ψn@j; ΑD ã

-ä ∆n@tD;
H Ψn@j; ΑD = En@ΑD Ψn@j; ΑD

Substituting in eq.(6) and projecting we obtain the general equation for cn's coefficients:

(2.7)

defectckequation

d

dt
 ck@tD = - â

s
cs@tD Exp@ä H∆k@tD - ∆s@tDLD < k@ΑD ¶

¶t
s@ΑD >

As in this problem the adiabatic eigenstates depend explicitly on Α, the coefficients c in general vary with time and adiabatic evolution is not exact.
From eq(2) it follows

(2.8)

defectMatrixFks

< k@ΑD ¶

¶t
s@ΑD > º Fks =

1

k - s
 
dΑ

dt
H1 - ∆ksL + ∆ks -ä Π

dΑ

dt
.

< k È j È s > =
ä

k - s
 H1 - ∆ksL + Π ∆ks

As  follows  from  general  arguments,  see  text,  the  diagonal  contribution  in  eq.(7)  amount  to  a  phase  factor  and  adiabatic  theorem  asserts  that  this
contribution is the only surviving in the adiabatic limit (the evolution follows the adiabatic state). In this limit

(2.9)

defectckequationadiabaticlimit

d

dt
 ck@tD > ä Π

dΑ

dt
ck, Þ ck@tD = Exp@ä Π ΑD ck@0D.

This phase cannot be reabsorbed in a redefinition of base state, we should need to put

Ψn
'

= ã
ä Π Α

 
1

2 Π R

 Exp@ä n j - ä Α jD;
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but this is inconsistent with the periodicity Α® Α+1 of both Hamiltonian and periodic conditions.

Let us in particular consider an adiabatic cyclic evolution, i.e. Α ® Α + 1, in a time T. A state evolve as

cn Exp@ä n j - ä Α jD ® cn Exp@ä n j - ä HΑ + 1L jD ã
-ä ∆n@TD

 ã
ä Π

= ã
ä Π

Ψn-1 ã
-ä ∆n@TD.

Apart  from the  dynamical  phase  and  the  usual  spectral  flow a  new phase  has  appeared,  Π.  This  is  the  Berry  phase  for  this  transformation,  i.e.  the
additional phase acquired by the system under a cyclic transformation. We see that it  does not depend on the details of the transformation, only on
initial and final values of the parameter Α. The change in sign of Ψ is reminiscent of the change in sign for spinor after a rotation of 2Π.

ã N.B.

We said above that for each Α the system is unitarily equivalent to the system of problem (1). In that case the evolution was always adiabatic, why
here things are different? The unitary transformation which connects the two system is S= Exp[-ä  Α j], which is time dependent for tim varying Α.
Under a time dependent unitary transformation Ψ® S(t) Ψ we know, see text, that the Hamiltonian change as

H ® S H S-1
+ ä Ñ

¶S

¶t
 S-1

For the  Hamiltonian H0 of problem (1) we have

H0 ® S H S-1
+ Ñ

dΑ

dt
 j

The first term is the Hamiltonian of this problem, the second one is new, then the two Hamiltonian do not give rise to the same time evolution. At the
end of the problem the connection between the models will be used to derive in a simple way the equation of motion for operators.

à Time evolution for operators

The question we want to clarify is the following: formally the Hamiltonian (1) is time independent and commutes with the momentum. On the other
hand it is clear, for example via spectral flow, that momentum and energy change as Α vary, how is it this compatible with the equation of motion for
the operators?

To handle the problem let us consider two arbitrary states F[t] and Y[t] and compute matrix elements of momentum P, this is in fact how the evolution
of this operator is defined. Using the  base of states (2), denoted here with |n>,  we have

È Y@tD > = â
k
ak@tD Ë k > ; Ë F@tD > = â

k
bk@tD Ë k > .

In the following we put for shortness Ñ = m = R = 1. It is immediate to verify that

< F@tD È P È Y@tD > = â
k
bk

* ak Hk - ΑL.
Evolutions of coefficients ak and bk are obtained substituting the expansions in the Schrödinger equation (6) (no summation on repeated indexes)

dak

dt
+ â

s
Fks as = -ä Ek ak ;

dbk
*

dt
- â

s
Fsk bs

*
= ä Ek bk

* .

The  anti-hermitian  matrix  (Fks)  is  the  one  computed   in  (8),  the  difference  with  equation  (7)  is  due  to  the  fact  that  we  included  dynamic  phase

phactors in the coefficients.  It follows

(2.10)

defectdpdt

d

dt
< F@tD P Y@tD > = -

dΑ

dt
 â

k
bk

* ak + â
ks

Hk - ΑL Ibs* Fsk ak - Fks bk
*
 asM.

The second factor in the sum is antisymmetric in s and k so we can write the sum as

1

2
 â

ks
HHk - ΑL - Hs - ΑLL Ibs* Fsk ak - Fks bk

*
 asM = - â

ks
Hk - sL Fks bk

*
 as =

- â
k¹s

Hk - sL Fks bk
*
 as = - â

k¹s
Hk - sL 1

k - s
 
dΑ

dt
 bk

*
 as = -

dΑ

dt
 Jâ

ks
bk

*
 as - â

k
bk

*
 akN;

The second term exactly cancels the first one in (18)  and finally:

(2.11)

dpdtdefect1

d

dt
< F@tD P Y@tD > = -

dΑ

dt
 â

ks
bk

*
 as = -

dΑ

dt
 2 Π F

*@t, j = 0D Y@t, j = 0D.
We used, with basis (2), the identity:

Ψ@0D = â
k
ak uk@0D =

1

2 Π

â
k
ak.

As an operator equation (a bit formally)
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(2.12)

dpdtdefect2

d P

dt
= -

dΑ

dt
 2 Π ∆ HjL.

The effect of phase variations on boundary conditions is translated as a localized force proportional to the variation rate. More correctly P has in fact
an explicit time dependence on t, through Α, and this is the term we have just compute. The commutation with H is obviously zero and we have

(2.13)
d P

dt
=

¶P

¶t
+ ä@H, PD =

¶P

¶t
= -

dΑ

dt
 2 Π ∆ HjL.

Let us consider in particular the evolution with time of expectation values of P. For long times,  if we take the mean over times longer than characteris-
tic frequencies, we expect rapid oscillating phases with zero mean , i.e.

â
ks
ak

*
 as = â

k
ak

*
 ak = 1.

From (11):

d

dt
< F@tD P Y@tD > = -

dΑ

dt
 2 Π.

This is exactly  the first term in (10) and would be the only one present for adiabatic evolution: we expect then that non adiabatic contributions are
rapidly oscillating and typically non analytic as a function of Α. This will be verified in a separate  notebook devoted to the numerical analysis of this
problem.

Here we give an example. The dashed line
is the adiabatic Hphase averagedL
evolution, the wavy line represent
the true evolution.

5 10 15 20
t

4.5

5.0

5.5

6.0

P
v = -0.05

From (12) evolution of the Hamiltonian follows

(2.14)
dH

dt
= -

1

2
 2 Π 

dΑ

dt
 H∆ HjL P + P ∆ HjLL.

For the mean value on a state E[Y] = <Y|H|Y> we have

(2.15)

defectenergyvariation

dE@YD
dt

= -
1

2
 2 Π 

dΑ

dt
 
1

ä
 IY

*@0D Y
'@0D - Y

'*@0D Y@0DM = -
dΑ

dt
 2 Π ImAY

*@0D Y
'@0DE.

This equation has a simple semiclassical  interpretation.  For semiclassical  waves Y  ~  Exp[ä  S] and ImAY
*@jD Y'@jDE  ~  ä  ¶  S/¶ j.   The classical

momentum is given by ¶  S/¶ j so equation (15) reads

dE@YD
dt

= -
dΑ

dt
2 Π à ∆ HjL ¶ S

¶j
= < Pcl

d Pcl

dt
>

as expected (the variation of momentum, i.e. the force, has been taken from(12) ).

à Commutation relations

The last point we want to study is the following: this quite peculiar dynamics preserve commutation relations? What are the equation of motion for j?

First of all we remember the correct form of commutation relations for compact variables is Weyl form:

(2.16)

weyldefect1
P W - W P = W; W = Exp@ä jD.

 j is not a good quantum variable, it is not self adjoint even in the periodic case. By inspection is evident that using base (2)

< F@tD È W È Y@tD > = â
ks
bk

* as ∆k,s+1 = â
k
bk+1

* ak.
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Inserting a complete set of |k> for the left hand side of (16) we obtain, after a short calculation:

(2.17)

defectshort

< F@tD È @P, WD È Y@tD > = â
kls

bk
*
 as HHk - ΑL ∆kl ∆l,s+1 - ∆k,l+1 ∆ls Hs - ΑLL = â

s
bs+1

* as.

The Weyl commutation relations are satisfied at all times, as it must be for a true quantum system.

The evolution equation for W are deduced as before. Using the known expressions for dak/dt and dbk/dt we have 

(2.18)

provvdefect1

d

dt
< F@tD W Y@tD > = â

ks
IFs,k+1 bs

*
 ak - bk+1

* Fks asM + ä â
k
bk+1

* ak HEk+1 - EkL.
The first term vanishes, see below, the second is just the commutator with the Hamiltonian, then, using the Weyl relations, we have the equation of
motion for W:

(2.19)
dW

dt
= ä @H, WD =

ä

2
 HW P + P WL.

As usual these can be considered as the equation of motion in Heisenberg picture.

To show that the first term in (17) on can substitute directly the values for Fks  or proceed in the following way. The matrix elements of W are Wks  =

∆k,s+1so the two term of the sum can be written as

â
ks
bs

* Fs,k+1 ak = â
kls

bs
* Fs,m ∆m,k+1 ak = â

sk
bs

* HFWLsk ak;

â
ks

bk+1
* Fks as = â

kls
bm

*
 ∆m,k+1 Fks as = â

mk
bm

* HWFLmk ak

So in fact we have the commutator of F and W. The coefficients Fks are just matrix elements of j, which commutes with W, then the result follows.

à Evolution from equivalence of models

We have already stated that this model is, at each time, unitary equivalent to the model studied in problem [1]. Denoting with p and P the momentum

in solenoid problem and in present problem we have shown that, see eq.(3),(4)

U : C@0D ® C@ΑD; UΨ = ã
-äΑj

 Ψ; U Hp - ΑL U-1
= P.

Consider now the time derivative of previous equation for P ( always understood as matrix elements, the time dependence is in wave function of the
states, as usual in Schrödinger representation ). To the derivative there is a contribution coming from U

dP

dt
= -ä

dΑ

dt
 j P + P ä 

dΑ

dt
 j + U

dp

dt
-
dΑ

dt
 U-1

= -ä
dΑ

dt
@j, PD -

dΑ

dt
.

We used the  fact  that  in  the  solenoid model  p  was  a  constant  of  motion.  If  naive  commutation relaations  would  hold,  [j,P]  =  ä  and P  would  be a
constant.  In fact,  some care must be taken,  as j  is not a well behaved operator on periodic or periodic up to a phase functions. It  is essentially the
same computation given above with matrices Fkswe repeat here for completeness. 

We can use matrix elements (8) to compute carefully the commutator. Inserting a complete set of states:

< k È j È m > < m È P È s > - < k È P È m > < m È j È s > =

Π ∆km < m P s > + ä â
m¹k

1

k - m
 ∆ms Hs - ΑL - Π ∆ms < k P m > - ä â

m¹s

1

m - s
 ∆km Hm - ΑL.

The terms proportional to Π cancel. For the rest let us distinguish diagonal case from non diagonal case. For k=s both summation are void, so the term
vanish, for k s  the Kronecker ∆ canbe satisfied, because for example in the first sum if m=s, surely it will different from k. Then for off diagonal terms

ä
s - Α

k - s
- ä 

k - Α

k - s
= - ä

For a generic matrix element

â
ks
ak

* bs < k Ë @j, PD Ë s > = -ä â
k¹s

ak
* bs = -ä â

ks
ak

*
 bs + ä â

k
ak

*
 bk.

Last term is simply the matrix element of identity operator. For  a wave function with coefficient ak in the expansion with basis (2)

Ψ@0D = â
k
ak uk@0D =

1

2 Π

 â
k
ak , à

0

2 Π

dj A*@jD B@jD ∆ HjL =
1

2 Π
 â

ks
ak

*
 bs,

and finally we obtain the result

(2.20)

commutatotphiP @j, PD = ä - ä 2 Π ∆ HjL
and for the evolution equation for P
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and for the evolution equation for P

dP

dt
= -

dΑ

dt
 2 Π ∆ HjL

which reproduces result (12).

problemWell1

Problem 3

A free particle moves in a box,  @xL, xRD.  The boundary conditions are Ψ@xL] = Ψ@xR] = 0. The boundaries can move.

1. Make a change of variables which brings the problem to a fixed boundary value problem.

2. Study as a particular case a rigid motion and explore the connection to Galilei transformations

3. Show that for an accelerate rigid motion the solution is unitarily equivalent to a motion in a gravitational field (Equivalence Principle).

4. For xL = 0 fixed, reformulate the change of variables as a unitary scale transformation.

æ Solution

à A change of variables

Schrödinger equation with mouving boundaries in one dimension can be easily transformed in an equation with fixed boundaries using a trasforma-
tion of variables. Consider a particle in a well with left and right boundaries xL@tDand xR@tD, mouving with velocities vL and vR. L = xR - xLis the

instataneous with of the well. The change of variables

(3.1)

welltrasfvar1 Ht, xL ® HΤ, ΞL ; x = xL + Ξ L ; t = Τ; 0 £ Ξ £ 1.

is what we need. In the new variable Ξ the boundaries are fixed. First of all from the inverse of (1)

(3.2)Ξ =
1

L
 Hx - xLL; Τ = t;

follow

(3.3)

welltrasfcoord

¶

¶x
=

¶Ξ

¶x

¶

¶Ξ
+

¶Τ

¶x

¶

¶Τ
=

1

L
 

¶

¶Ξ
;

¶

¶t
=

¶Τ

¶t
 

¶

¶Τ
+

¶Ξ

¶t
 

¶

¶Ξ
=

¶

¶Τ
+ -

L
 

L2
 Hx - xLL -

vL

L
 

¶

¶Ξ
=

=
¶

¶Τ
-

L
 

L
 Ξ +

vL

L
 

¶

¶Ξ
.

From now on, having explicitely exposed the role of time variable, we call again t the time. 

Before to write down the Schrödinger equation we have to consider the normalization: the Jacobian for the transformation Ξ ® x is time dependent. If
we have a solution Ψ[t, Ξ] normalized in the transformed interval the solution in the original variables is 

(3.4)

welltrasfpsipsi

Y@t, xD =
1

L
 Ψ@t, Ξ@t, xDD.

We have added a prefactor (time dependent) at the obvious change of variables. In a sense this is a definition of Ψ but is useful because in this way we
assure the correct normalization for each time if Ψ is normalized:

à
-L

L

dx ¡Y@t, xD¥2 = à
-1

1

L dΞ
1

L
  Ψ@t, ΞD¤2 = 1.

There is also a group - theoretic reason for the prefactor, as we shall see later.

The Schrödinger equation for Y is 

ä Ñ 
¶

¶t
 Y = -

Ñ2

2 m

¶2

¶x2
 Y ; Y@xLD = Y@xRD = 0.

Inserting the definition (4) and using (3) we have
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(3.5)

welleqforpsitrasf

ä Ñ 
¶Ψ

¶t
-

L
 

L
 Ξ +

vL

L
 
¶Ψ

¶Ξ
-

1

2
 
L
 

L
 Ψ = -

Ñ2

2 m

¶2Ψ

¶Ξ2
.

The effect of the prefactor has been the non derivative term. The reader can recast (5) in a more usual shape:

(3.6)

welleqforpsitrasf2

ä Ñ 
¶Ψ

¶t
= -

Ñ2

2 m L2

¶2Ψ

¶Ξ2
+ ä Ñ

L
 

L
 Ξ +

vL

L
 
¶Ψ

¶Ξ
+

1

2
 
L
 

L
 Ψ .

The operator in the r.h.s. of (6) is a kind of effective Hamiltonian, and bare some similarity with a coupling to a vector field in more dimensions.

Here we give an example of time evolution computed using equation (6). Dashed line is the initial state. 

v=-5 v=-3 v=2

A warning on notations for derivatives!

In this and in the following problem we will use frequently two space variables, x and Ξ.  The respective wave functions Y[x] and Ψ[Ξ] are different

but  related  via  eq.(4).  When  we  take  derivation  we  have  to  specify  the  variable  with  respect  to  which  variable.  With  the  notation  f'one  denotes,

correctly, the differentiation with respect the argument, not a generic partial derivative. So we have:

¶

¶ x
 Y º Ψ';

¶

¶ Ξ
 Ψ º Ψ'@ΞD.

à Galilei transformations 

The  general  transformation  (1)  is  a  combination  of  two  simpler  transformations:  a  time  dependent  translation  and  a  scale  transformation.  In  the
translation L remains constant while in the scale transformation xLis held fixed at 0 and x/L = Ξ. For the particular case of vLconstant the first case is

a Galilei transformation so let us begin from this simple case.

ã Galilei transformation

From the general theory we know that known the wave function j  in a mouving frame with velocity V the wave function in the rest frame is given by

(3.7)

wellGalilei1

Y@t, xD = j@t, Ξ@t, xDD Exp@ä m V Ξ � ÑD ExpB ä

2
m V2 t� ÑF

Here L is  fixed and do not play any role,  so we can put L =1 to avoid trivial rescaling.  j  is  not the same as Ψ:  the Hamiltonian for the mouving
observer would be always a free Hamiltonian, not the complicated effective Hamiltonian appearing in (6):

(3.8)

wellgalilei2operator

ä Ñ 
¶j

¶t
+

Ñ2

2 m

¶2j

¶Ξ2
= 0.

 In fact  Ψ is the whole r.h.s. of (7), as can be verified by applying the operation (8) to the r.h.s.:

ä Ñ 
¶

¶t
+

Ñ2

2 m

¶2

¶Ξ2
 Ij ã

ä m V Ξ�Ñ
 ã

ä m V2 t�H2 ÑLM =

ã
ä m V Ξ�Ñ

 ã
ä m V2 t�H2 ÑL

 ä Ñ 
¶

¶t
+

Ñ2

2 m

¶2

¶Ξ2
 j + 2

Ñ2

2 m

¶j

¶Ξ
 ä m

V

Ñ

-
Ñ2

2 m
 
m V

Ñ

2

 j - m
V2

2
 j =

The first termis zero due to Schrödinger equation for j, for the second we can write

ã
ä m V Ξ�Ñ

 ã
ä m V2 t�H2 ÑL

 ä Ñ V
¶j

¶Ξ
- m V2 j = ä Ñ V

¶

¶Ξ
 Ij ã

ä m V Ξ�Ñ
 ã

ä m V2 t�H2 ÑLM.
Finally we have shown that if j satisfy the usual Schrödinger equation then the r.h.s. of  (7) satisfy
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ä Ñ 
¶

¶t
+

Ñ2

2 m

¶2

¶Ξ2
 Ij ã

ä m V Ξ�Ñ
 ã

ä m V2 t�H2 ÑLM = ä Ñ V
¶

¶Ξ
 Ij ã

ä m V Ξ�Ñ
 ã

ä m V2 t�H2 ÑLM,
which is exactly the equation (6) for Ψ in the case dL/dt = 0, vL= V. 

Let  us  stress  a  point  which  can  be  overlooked  at  a  first  reading.  Every  change  of  coordinates  is  a  unitary  transformation,  then  do  not  change  the
physics.  Expression (7) is a trivial unitary transformation (a change of phase) but its meaning his much more important because j  satisfy the same
Schrödinger equation than Y, i.e. Galilei transformation are an invariance of the physics. 

à Equivalence Principle

As trivial as can appears equation (6) reserves some surprises.  It  is  well  knownthan in Classical  Physics the Equivalence Principle say that we can
locally get rid of a gravitational field passing to an acceleated frame. In non relativistic mechanics this amount to say that gravitational and inertial
mass are the same, in this way form the Newton equations in a constant grvitational field g:

(3.9)

wellNewton

mI a º mI 
dv

dt
= mg g

g can be eliminated passing to an accelerated observer with acceleration A. In the transformation a ® a + A and if we choose A = g and if mI = mg,g

disappears  from the  equation.  Clearly  we can always choose an appropriate A for  any ratio mI � mgfor  one body (this  is  just  a  change of  units  for

inertial mass an gravitational mass), the Equivalence Principle say that the ratio mI � mg is constant for every body, let us say 1 in usual unities, and g

effectively disappears with a change of reference frame.

In Quantum Mechanics at first sight things seem different: Schrödinger equation is based on a Hamiltonian formulation (i.e. with momenta) not on a
Lagrangian formulation like (9), the mass is in the denominator of kinetic term and is not clear how it is related to a gravitational term of the form
U[x] = - m g x. 

Let us attack the question form another point of view. Given a Hamiltonian in an inertial reference frame 

(3.10)H = -
Ñ2

2 m

¶2

¶x2
+ U@xD

we can always perform a (translational) change of frame using (1) with L =1. xL represent the arbitrary movement of the new frame.  Now we can ask

for which kind of potential the wave function in the new frame is related to the original wave function by a phase transformation similar to (7)

(3.11)

wellGalilei2

Y@t, xD = j@t, Ξ@t, xDD Exp@äS� ÑD
and  j  satisfies  a  usual  Schrödinger  equation,  i.e.  without  derivative  terms.  We know in  advance  that  once  x  has  been  expressedin  terms of  Ξ,  we
obtain Ψ[t,Ξ] which satisfies (the generalization of) (5) 

(3.12)

welleqfgeneraltrasf

ä Ñ 
¶Ψ

¶t
- V 

¶Ψ

¶Ξ
= -

Ñ2

2 m

¶2Ψ

¶Ξ2
+ U@x@ΞDD Ψ.

V is the velocity of the frame. We look for solution of the form

(3.13)

changepsiphi1
Ψ@t, ΞD = j@t, Ξ@t, xDD Exp@äS� ÑD

with S independent of j, in this case we have a real phase transformation instead of a pure change of variables. The derivatives of Ψ are

¶Ψ

¶t
=

¶j

¶t
+

ä

Ñ

¶S

¶t
j  Exp@äS� ÑD;

¶Ψ

¶Ξ
=

¶j

¶Ξ
+

ä

Ñ

 
¶S

¶Ξ
j  Exp@äS� ÑD;

¶2Ψ

¶Ξ2
=

¶2j

¶Ξ2
+ 2 

ä

Ñ

 
¶S

¶Ξ
 
¶j

¶Ξ
+

ä

Ñ

 
¶2S

¶Ξ2
 j -

1

Ñ2
 

¶S

¶Ξ

2

 j  Exp@äS� ÑD.
Substitution in (12) give

(3.14)

welleqforphi

äÑ 
¶j

¶t
+

Ñ2

2 m
 
¶2j

¶Ξ2
=

-
Ñ2

2 m
 2 

ä

Ñ

 
¶S

¶Ξ
 
¶j

¶Ξ
+

ä

Ñ

 
¶2S

¶Ξ2
 j -

1

Ñ2
 

¶S

¶Ξ

2

 j + ä Ñ V 
¶j

¶Ξ
+

ä

Ñ

 
¶S

¶Ξ
j + U j +

¶S

¶t
j .
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The r.h.s. must be a potential term so first derivatives of j must cancel, this poses the constraint

(3.15)
¶S

¶Ξ
= m V.

As V is a function  of t only this impies that S must be linear in Ξ, and this is what we need to cancel the imaginary term proprotional to the second
derivative od S in the r.h.s. of (14). The general solution for S is then of the form

(3.16)S = m V Ξ + f@tD.
Substituting in the r.h.s. of (14) we have an effective potential of the form

(3.17)

wellUeff

Ueff = U@x@ΞDD +
¶S

¶t
+

1

2 m
 

¶S

¶Ξ

2

- V
¶S

¶Ξ
= U@x@ΞDD + m

dV

dt
 Ξ +

df

dt
-
1

2
 m V2

This equation must be satisfied for any Ξ and any t. In our notation x = xL@tD + Ξ so we have only two possibilities

1. dv/dt = 0. Then U must be constant, let say zero, and we recover the Galilei invariance, v is any constant.

2. U must be linear in Ξ, and as a consequence in x and we have that dv/dt is fixed. Writing for obvious reasons U = - mg g x the r.h.s. of (17) 

becomes

- mg g HxL + ΞL + m
dv

dt
 Ξ +

df

dt
-
1

2
 m V2 Þ m

dV

dt
= mg g.

For m = m we have:   V = g t + v0. We can neglect v , it can be reabsorbed by a Galilei transformation, and we have 

V = g t; xL =
1

2
 g t2.

Ueff can then be taken zero by a choice of f:

0 =
df

dt
-
1

2
 m V2 - m g xL ;

i.e.

f@tD = à
0

t 1

2
 m V2 + m g 

1

2
 g t2  dt =

1

3
 m g2 t3.

This is  exactly the translation of Equivalence Principle: with m = mg  a particle which in a inertial  frame is in a (constant) gravitational field g and

satisfies a Schrödinger equation

ä Ñ 
¶Y

¶t
=

Ñ2

2 m
 
¶2Y

¶x2
- m g x Y

is unitarily equivalent to a free particle solution j[t,Ξ] in an accelerated frame 

x =
1

2
 g t2 + Ξ;

(3.18)Ψ@t, xD = j@t, ΞD ExpB ä

Ñ

 m g t Ξ +
1

3
 m g2 t3 F;

à General rigid motion

The arguments of previous section can be reversed to answer the following question: consider a sistem in arbitrary motion (L fixed), i.e.  xL[t] is the

time dependent position of "reference frame", how looks physics of a "free" particle in that system?

We have already all the bits of information to solve the problem. In a fixed ("laboratory frame") the evolution is given by a free Hamiltonian with
mouving boundary conditions. By the change of variables (1) which here can be simpified in

(3.19)

welltrasfvar2 Ht, xL ® HΤ, ΞL ; x = xL + Ξ ; t = Τ; 0 £ Ξ £ L.

we transform the model in a "usual" fixed boundary problem and, more importantly, we pass to physical coordinates Ξ which describe the motion in a
reference system comouving with the well: an observer attached to the box canonly use these kind dof coordinate. In this discussion L plays no role
and everithing we say is valid also for more realistic infinite systems.

Schrödinger equation in this system take the form  (6) which here simplify (without L factors) in
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(3.20)

welltrasfvar3

ä Ñ 
¶Ψ

¶t
= -

Ñ2

2 m

¶2Ψ

¶Ξ2
+ ä Ñ V 

¶Ψ

¶Ξ
.

Capital V, as before, denote the frame velocity. At variance with (6) Ξ has dimension of a length and, if needed the Y function in laboratory frame is

(4) without any prefactor. What we earned from previuous section is that we can get rid of the derivative term with a unitary phase transformation, i.e.

a change of variable for Ψ (13):

(3.21)

changepsiphi2

Ψ@t, ΞD = j@t, ΞD ã
ä S�Ñ; S = m V Ξ + f@tD;

f[t] is arbitrary and we can conveniently choose (see eq.(17) )

f@tD = à
0

t

dt
1

2
 m V2

with this choice the equation for j becomes

(3.22)

equationforphi1

ä Ñ 
¶j

¶t
= -

Ñ2

2 m

¶2j

¶Ξ2
+ m

dV

dt
 Ξ j

The reader can verify (22) by direct substitution of (21) in (20).  This is a quite interesting result by itself: every motion of the reference frame appears
in the form of a linear potential  dipenending from the acceleration of the frame. This is from one side in agreement with what we have seen on the
equivalence principle, on the other side it is intereting as only the acceleration matters, not for example the third derivative of the position etc.

Relation (22) can be generalized in several ways. 

Motions in d = 2 and d = 3

The generalization is quite trivial, it is just necessary to write vectors :

(3.23)

changepsiphi3

Ψ@t, ΞD = j@t, ΞD ã
ä S�Ñ; S = m V × Ξ + f@tD;

f@tD = à
0

t

dt
1

2
 m V2

The equation in the comouving frame becomes

(3.24)

equationforphi3

ä Ñ 
¶j

¶t
= -

Ñ2

2 m
ÑΞ

2
j + m

dV

dt
× Ξ j.

Gauge transformations

 From a converse point of view we can ask when  vector coupling as that in eq.(20) canbe reabsorbed in a phase, i.e. with a unitary transformation. In
the text and in other notebboks it is shown that this is possible only if the vector is a gradient, the related unitary transoformation is called a gauge
transformation. dV/dt in equation (24) now couple to the center of mass of the system.

ä Ñ 
¶j

¶t
= -

Ñ2

2
 â

i

1

mi
 ÑΞ

2
j + â

i
mi 

dV

dt
× Ξi j.

Interacting particles

Interaction of particles is described by translation invariant potentials, of the form UAxi - xjE, these terms are unaffected by the transformation (19)

so above conclusions continue to hold.

Energy conservation

It can be interesting to observe that in the comuving frame one can speak of energy conservation, i.e. H do not depend explicitely on time, only for
dV/dt = const., i.e. for uniform motions or for constant acceleration, just the two cases covered by Galilei transformations and Equivalence Principle.

à Scale transformations

Let us consider the problem of the potential well for fixed xL  ,  the only variation is in the length L and the trasformation (1) is a (time dipendent)

change of scale

(3.25)

wellscale1

x =
L@tD
L0

Ξ
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We want to show how this scale transformation is implemented in Quantum Mechanics as a unitary operator. 

For finite volumes a scale transformation is a bi more complicated than usual. Let us call L0 the initial length of the box. The Hilbert space in defined

at t=0 is L2@0, L0D, after a transformation L0 ® Λ L0= L[t] the relevant Hilbert space is L2@0, LD, i.e. has changed. This changement is not there

in infinite or semiinfinite domains. 

We can define the unitary transformation which implement a scale transformation as

(3.26)

defscaletransformation

SΛ : L
2@0, L0D ® L

2@0, Λ L0D ; SΛ Ψ = ΨΛ; ΨΛ@xD =
1

Λ

ΨBx
Λ

F.
The formulas will be simpler with L0= 1, but we retain this parameter to show clearly the dimensions of what we write.

It is trivial to verify that S is indeed unitary (preserve scalar products). It transform functions with support in [0, L0] in functions with support in [0,

L], preserving their norm:

à
0

L ΨΛ@xD¤2 dx = à
0

L

ΨBx
Λ

F 2

 
1

Λ
 dx = à

0

L0 Ψ@ΞD¤2 dΞ.

Putting Λ = Exp[Α], and defining the infinitesimal generator D for this transformation, it follows from a Taylor xpansion of (26)

Λ = ã
Α

> 1 - Α; ΨΛ@xD > 1 -
Α

2
 Ψ@xD - Α x

¶

¶x
 Ψ > Ψ@xD - Α

1

2
+ x

¶

¶x
 Ψ@xD.

(3.27)

defDwall

SΛ = ExpB-
ä

Ñ

 Α DF; D =
Ñ

2 ä
 x

¶

¶x
+

¶

¶x
x =

1

2
 Hx p + p xL.

The canonical commutations relations give 

(3.28)

commutationrelationsDxp

@D, xnD = n 
Ñ

ä
 xn = -ä n Ñ xn; @D, pnD = -

Ñ

ä
 n p = ä n Ñ p.

D  measures  the  dimension  of  operators.  Some  care  must  be  taken  using  previous  relations  in  finite  intervals,  as  products  of  operators  can  bring
outside Hilbert space, we always compute explicit matrix elements.

From the definition (26) we can easily compute how operators transform under SΛ:

(3.29)

scaletransformationxp

SΛ p SΛ
-1

= Λ p ; SΛ x SΛ
-1

=
1

Λ
 x .

The details of the (easy) derivation are left to the reader. These relations justify the name of scale transformation at the quantum level.

Consider now a Hamiltonian defined on a box L, HHLL.  Let us denote by HH0Lthe original Hamiltonian. Applying (29) to HH0Lwe find

(3.30)

scaledHwall1

SΛ HH0L
 SΛ

-1
= Λ

2
 
p2

2 m
º Λ

2 HHLL.

The momentum p appearing on the right hand side of (30) is defined on L2@0, LD so we have correctly defined HHLLthe Hamiltonian. Let us note

that  both  sides  of  (30)  have  the  same  spectrum,  the  one  of  unitary  equivalent  Hamiltonian  HH0L.  In  fact  the  eigenvalues  of  HHLL  scale  ad  1� Λ2.

Finally let us write

(3.31)

scaledHwall2

HHLL
=

1

Λ2
 SΛ HH0L

 SΛ
-1

We  see  that  apart  a  scale  factor  the  two  Hamiltonians  are  equivalent,  i.e.  solving  HH0Lwe  have  practically  solved  HHLL.  Things  change  for  time

dependent scale transformation, in fact  we now (see text) that for time dependent unitry transformations the infinitesimal generator of time transla-
tions (i.e. the Hamiltonian) has a non homogenous transformation, then the evolution generated by (31) is not unitary equivalent to the time evolution
in the box of length L0. This is the formal reason for the different form of Schrödinger equation.

Let us take a state F in L2@0, LD, we have

ä Ñ 
¶F

¶t
= HHLL

 F =
1

Λ2
 SΛ HH1L

 SΛ
-1

 F.

The function Ψ defined as Ψ = SΛ
-1 F describe the sistem in the box of length L0. Using (27)
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Ψ = SΛ
-1

 F; SΛ
-1

= ExpB ä

Ñ

Log@ΛD DF;

1

Λ2
 HH1L

 SΛ
-1

 F º
1

Λ2
 HH1L

 Ψ = ä Ñ SΛ
-1

 
¶F

¶t
= ä

¶Ψ

¶t
- ä Ñ 

¶SL
-1

¶t
 F = ä

¶Ψ

¶t
+

Λ
 

Λ
 D SΛ

-1 F = ä Ñ 
¶Ψ

¶t
+

Λ
 

Λ
 D Ψ

ä Ñ 
¶Ψ

¶t
=

1

Λ2
 HH1L

 Ψ -
Λ
 

Λ
 D Ψ = -

Ñ2

2 m Λ2
 
¶2Ψ

¶x2
-

Λ
 

Λ
 
1

ä

1

2
 x

¶

¶x
+

¶

¶x
x  Ψ

which is identical to equation (6) once made the substitutions Λ®L and vL= 0.

This derivation show that scale transformations are indeed unitary operators and that the origin of prefactor 1/ L  in (4) was indeed due to unitarity.

ProblemWellModes

Problem 4

A free particle moves in a box,  @xL, xRD.  The boundary conditions are Ψ@xL] = Ψ@xR] = 0. The boundaries can move.

1. Give a formal solution as an expansion in adiabatic modes.

2. Recover the case of rigid uniform translations as a Galilei transformation.

3. Study the time dependence of the mean energy and mean momentum on a generic state.

4. Consider the case of oscillating walls and explore the possibility of resonances.

æ Solution

ã Comments and questions

Before starting the solution let us make some comments on the questions that can be posed about this problem.

1. This for novices in QuantumMechanics this problem is the source of a typical puzzle : for a sudden perturbation we expect that the wave 
function is practiiically unchanged, but then for a compression of the box  will cut a part of Ψ, in contrast with unitarity. Clearly there is no 
violation of unitarity, simply the sudden approximation will be valid for expansions of the box but not for compressions. In the last case higher 
and higher oscillations modes are excited and the function will change quite strongly. From mathematical point of view the Hilbert space is 
defined as L2@0, LDwith zero boundary conditions. When  L1< L2, L2@0, L1D Ì L

2@0, L2Dso in an expansion the "new" Hilbert space can 

describe old functions and sudden approximation apply. On the contrary for compressions the new Hilbert space just do not have in in it all the 
old functions, in particular those with part of the support is outside the new interval. 

2. We expect that in some way the movement of the boundaries implies an exchange of energy with the environment. How does this happen in 
details? In particular the exchange is confined to the boundaries? The answer to this question is yes, as we will show below, together with a 
simple semiclassical explanation of the phenomenon.

3. Naively the Hamiltonian of the system is always a free Hamiltonian, which commute with itself and with momentum, how these quantities can 
change? We have already seen this kind of questions in other problems, and we have to show that moving boundaries implies in fact a 
Hamiltonian explicitely time dependent, through boundaries conditions.

à Formal solution

In this problem we will use the units m = Ñ = 1. 

Let xL  and xR  the left and right bounaries of the box. At the boundaries we assume Ψ@xL] = Ψ@xR] =0. The Hilbert space is L2@xL, xRD, with zero

boundary conditions. A complete basis for this space is 

(4.1)

wallbasis2

uk@x; LD =
2

L
 SinB Π k Hx - xLL

L
F; Ek =

Ñ2

2 m
 Π
2
 
k2

L2
.

where L = xR - xL. This has nothing to do with movements of the boundaries. The solution of Schrödinger equation can be always be expanded with

respect to the basis (1)

(4.2)

modeexpansionWall

Ψ@x, tD = â
k
ak@tD uk@x; LD

We note that expansion (2) automatically fulfills boundary conditions eve for mouving walls.

The only difference between fixed and mouving boundaries is in the time dipendence of coefficient functions ak. In the former case

ak@tD = ak@0D Exp@- ä Ek t� ÑD,
In the general case time dipendence of these functions is fixed by substituting the expansion (2) in the equation
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ä Ñ
¶

¶t
 Ψ@x, tD = -

Ñ2

2 m

¶2

¶x2
 Ψ.

The only non trivial point is that  functions (1) depends on t through the parameters xL and L. We have 

â
s

das

dt
us + as 

dus

dt
= â

s
-

ä

Ñ

 -
Ñ2

2 m

¶2

¶x2
 as us = -

ä

Ñ

 â
s
Es as us.

Using orthonormality of the basis we can multiply by uk and integrate, obtaining an equation of the form

(4.3)

wellequationsforak

dak

dt
+ â

s
Fks as = -ä Ek ak ;

where

(4.4)

wallequatonsforA2

Fks = à
0

L

uk ¶tus =
2 k s

k2 - s2
 
L
 

L
H-1Lk-s

+
vL

L
 I-1 + H-1Lk-sM  Hk ¹ sL ; Fkk = 0.

An easy computation show

(4.5)

wallequatonsforA2bis

Fks =
2 k s

k2 - s2
 
L
 

L
H-1Lk-s

+
vL

L
 I-1 + H-1Lk-sM  Hk ¹ sL ; Fkk = 0.

where vL = dxL /dt;   vR= dxR/dt;   dL/dt = vR- vL.

The matrix F being non diagonal, equation (3) imply transitions between different modes. Let us note some points:

The basis (1) has definite parity for reflections around the mid - point:

xM =
HxR + xRL

2
; x - xM -> - Hx - xML, i.e. x -> 2 xM - x.

under this operation

uk@x; LD ® H-1Lk+1
 uk@x; LD.

For vR = - vL (a parity preserving movement around the middle of the box) dL/dt = - 2 vL and 

(4.6)Fks = -
2 k s

k2 - s2

vL

L
 II1 + H-1Lk-sMM

i.e. only transitions between states with same parity are allowed.

For  vL  =  vR =  const.  we  have  a  rigid  traslation  of  the  walls,  then the  solution must  follows  from Galilean invariance.  This  is  indeed true,  the
reader can prove it by himself or read the proof below. 

The matrix F is antihermitian (see also text) and this assure conservation of the norm, as it is easily shown.

In principle solving exactly or approximatively eq.(3) is equivalent to solve Schrödinger equation. 

We  have  to  stress  the  following  point,  to  avoid  possible  misunderstandings.  The  functions  (1)  are  eigenstates  of  the  "instantaneous"  Hamiltonian
defined on a box of length L and left boundary xL, H[L], but are not stationary states as the time evolution in Ξ coordinates is not given by H[L]. This

point has been discussed in problem [3] and will be rewieved in a particular case in the next section.

à Rigid translation

The coefficients ak satisfy formally an "Hamiltonian" equation of the form

(4.7)

hamiltonak

dak

dt
= -

ä

Ñ

Hks as; Hks = -ä Ñ Fks + Ek ∆ks º HF + H0Lks
H  is not diagonal except if we can neglect transition matrix F,  and this is the adiabatic approximation. Only in this approximation functions uk  are

approximatively stationary. Schrödinger equation  in Ξ coordinates reads (see problem [3] )

(4.8)

modeswelleqforpsitrasf2

ä Ñ 
¶Ψ

¶t
= -

Ñ2

2 m L2

¶2Ψ

¶Ξ2
+ ä Ñ

L
 

L
 Ξ +

vL

L
 
¶Ψ

¶Ξ
+

1

2
 
L
 

L
 Ψ .
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where

(4.9)

modeschangexcsi
x = xL + L Ξ

In general the effective Hamiltonian in (8) is time dipendent and do not have stationary states at all. An exception is the rigid motion (dL/dt = 0) with
constant velocity, this case must be covered by a Galilei transformation. In this case the equation simplify in

(4.10)

modeswelleqforpsitrasf3

ä Ñ 
¶Ψ

¶t
= -

Ñ2

2 m L2

¶2Ψ

¶Ξ2
+ ä Ñ

vL

L
 
¶Ψ

¶Ξ
.

Galilei  invariance imply that functions uk  are stationary states,  then, up to a unitary transformation, they must be the same obtained by solution of

(10)  or  (7).  We now from the  general  theory  of  Galilei  transformations  that  given a  function j  in  the mouving frame the state  represented by this
function is described, in the rest frame, by

(4.11)

modesGalilei1

Y@t, xD = j@t, Ξ@t, xDD Exp@ä m VL Ξ � ÑD ExpB ä

2
m VL

2
 t� ÑF

This is in particularly true for uk:

(4.12)Yk@t, xD = uk@t, Ξ@t, xDD Exp@ä m VL Ξ � ÑD ExpB ä

2
m VL

2
 t� ÑF

The stationary eigenfunctions of  (10) are not uk but their unitary transformed form

(4.13)

modesnewUbasis
Uk@t, ΞD = uk@t, ΞD Exp@ä m VL Ξ � ÑD

as  it  is  easily  verified.  Had we used this  set  of  functions  as  basis  the  matrix  elements would be absent  of  course.  With our choice the compicated
equations for ak must reconstruct the exponential missing Ξ-dipendent phase. Let us show this as it is not obvious from (7).

A general state is written as

Y@t, xD = â
n
An un@t, ΞD Exp@ä m VL Ξ � ÑD ExpB ä

2
m VL

2
 t� ÑF.

Ξ is expressed as a function of x with (9). By definition

ak = à dΞ uk â
n
An un@t, ΞD Exp@ä m VL Ξ � ÑD ExpB ä

2
m VL

2
 t� ÑF ,

from which follows

dak

dt
=

ä

2
m
VL
2

Ñ

ak -
ä

Ñ
à dΞ uk Kâ

n
An En un ã

ä m VL Ξ�Ñ
 ã

ä

2
m VL

2 t�ÑO
To compute the sum we use Schrödinger equation for u and integrate by parts

dak

dt
=

ä

2
m
VL
2

Ñ

ak -
ä

Ñ

 
Ñ2

2 m
 à dΞ  - uk

''
- 2 ä uk

' m
vL

Ñ

+ m2 
vL
2

Ñ2
 Kâ

n
An un ã

ä m VL Ξ�Ñ
 ã

ä

2
m VL

2 t�ÑO
Last term is proportional to a and cancel exactly the first term. Using Schrödinger equation for uk

dak

dt
= -

ä

Ñ

 Ek ak - vL  ã
ä

2
m VL

2 t�Ñ
 à dΞ uk

' Jâ
n
An un ã

ä m VL Ξ�ÑN
The sum canbe evaluated inserting a complete set of  us functions,which we write as scalar product:

â
s

Yuk' É us] [us Ì â
n
An un ã

ä m VL Ξ�Ñ
 ã

ä

2
m VL

2 t�Ñ_ = Yuk' É us] as.

A simple integral shows that

Yuk' É us] =
1

L

2 k s

k2 - s2
 I-1 + H-1Lk+sM

and finally

dak

dt
= -

ä

Ñ

 Ek ak -
vL

L

2 k s

k2 - s2
 I-1 + H-1Lk+sM as = -

ä

Ñ

 Ek ak - Fks as.

with reproduces the correct equation.
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with reproduces the correct equation.

à Energy variations

We want to study the variation of the mean energy on a state as wall moves. Let us take an arbitrary state Y and expand the wave function as a series
in the basis (1)

(4.14)Y = â
k
ak@tD uk@x, LD; E@YD =

Ñ
2

2 m

Π2

L2
 â

k
ak

* ak k2.

Using (3) and the antisimmetry of F:

(4.15)

dEdt1wall

dE

dt
= -2

L
 

L
 E +

Π2 Ñ2

2 L2 m
 â

ks
k2 I- ak

* Fks as + Fsk as
*
 akM.

The terms in (3) proportional to Ek cancel in previous equation. Using the antisymmetry in k-s we can rewrite the sum in the  r.h.s. as

1

2
 â

ks
Ik2 - s2M I- ak

* Fks as + Fsk as
*
 akM = -â

ks
Ik2 - s2M ak

* Fks as.

Substituting the values for Fks we must remember that k=s terms are zero, then

-â
ks

Ik2 - s2M ak
* Fks as = - â

k¹s
2 k s :L

 

L
 H-1Lk-s

+
vL

L
 I-1 + H-1Lk-sM> ak

* as =

-â
k,s

2 k s :L
 

L
 H-1Lk-s

+
vL

L
 I-1 + H-1Lk-sM> ak

* as +
L
 

L
â

k
2 k2 ak

* ak.

Last equality has been obtained by adding and subtracting the k=s term in the sum.

The last term inserted in (15) cancels exactly the first term in that equation and we have

dE

dt
= -

Π2 Ñ2

2 L2 m
 â

k,s
2 k s :L

 

L
 H-1Lk-s

+
vL

L
 I-1 + H-1Lk-sM> ak

* as =

= -
Π2 Ñ2

2 L2 m
 â

k,s
2 k s :H-1Lk-s vR

L
 ak

* as -
vL

L
 ak

* as>
The relation can be a bit simplified  decouping the independent sums. We note that this is possible because in the last form the sum is over uncon-
strained indices k and s.

(4.16)

modesdedtwithak

dE

dt
= -

Π2 Ñ2

L2 m
 :vR

L
 ¢â

k
H-1Lk k ak¦2 -

vL

L
 ¢â

k
k ak¦2>.

From expansion (2) and from explicit form of the basis (1)

¶x Ψ@xD = â
k

2

L
 
Π k

L
ak CosB Π k Hx - xLL

L
F;

then ( remember that xR= xL+ L)

(4.17)

psileftright

Ψ'@xLD =
2

L
 
Π

L
 â

k
k ak ; Ψ'@xRD =

2

L
 
Π

L
 â

k
H-1Lk k ak .

and we have

dE

dt
= -

Π2 Ñ2

L2 m
 :vR

L
 
L3

2 Π2
 Ψ'@xRD¤2 -

vL

L
 
L3

2 Π2
 Ψ'@xLD¤2>

i.e.

(4.18)

dedtsymm

dE

dt
=

Ñ2

2 m
 9vL  Ψ'@xLD¤2 - vR  Ψ'@xRD¤2 =

The reader can verify that (18) has the correct dimensions (  Ψ¤2 has dimension 1/L in one dimension). The signs are quite intuitive: if vL > 0 we are

compressing the system and energy grows, if vR > 0 we expand the well and the energy decrease, as in a perfect gas. 
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More importantly (18) shows that the energy change for contact with the reservoir, we have no nonlocal properties  in the game. 

ã Semiclassical interpretation

Consider to fix the ideas a left boundary fixed and an expanding right wall, vR > 0, ans consider a bound state of he system. In a de Broglie approxima-

tion for Ñ Ψ' ~ p Ψ, where p is the momentum at the boundary. As an order of magnitude  Ψ¤2~ 1/L and from eq. (18) 

(4.19)

sclass1

dE

dt
> -

1

2 m
 vR

p2

L
= - m

v2

2

vR

L
;

v is the velocity of the particle. It is an easy kinematical exercize to show that a particle with positive velocity v which scatter against a wall mouving
at velocity vR lost in an energy 2 m v vR. If we have N scattering for second the energy loss will be

dE

dt
= - 2 m v vR N

In a box of length L we have N = v/(2L) scattering per second and classically

dE

dt
= - 2 m v vR N = - m v2

vR

L

which coincides as an order of magnitude with (19). The factor of 2 is due to the fact that in a stationary state only half of the particles (in a statistical
sense) are right mouving, as the classical particle considered above.

à Momentum variations

We first state the result and make some comment. Let P the mean momentum on an arbitrary state Y, then

(4.20)

dpdtwell1

dP

dt
=

Ñ2 Π2

m L3
K¢ â

k
ak k ¦2 - ¢ â

k
ak k H-1Lk¦2 O =

Ñ2

2 m
 9 Ψ'@xLD¤2 -  Ψ'@xRD¤2 =

Last equality follows from (17). Here is an example of time variation of force F = dP/dt for fixed left boundary, the right graph show the short time
regime.
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A couple of coments and an unorthodox proposal :

For  vL = vR = V we have a rigid movement and from (18) we have, as expected :

dedtdprigid

dE

dt
= V

dP

dt

As definition of p we take the usual definition, i.e. -ä Ñ ¶ /¶ x, interpreting the walls as a limit case of finite barriers.

The proof of (20) can probably be done in several ways, we choose the most direct one, i.e. multiplication of matrix elements,  just to avoid problems

with subtle definitions of operators and so on. The derivation is quite tedious but instructive and we ask the reader to try to prove (20) before reading
next paragaph.

In one dimension energy and momentum conservation determine uniquely the final state of a scattering process. We can in this way imagine the
following situation:  take the barriers as real objects of mass M and suppose they have velocities vLand vR.  If  we apply momentum and energy

conservation to the system walls + particle we have

M
dvL

dt
+ M

dvR

dt
+

dP

dt
= 0; M vL 

dvL

dt
+ M vR 

dvR

dt
+

dE

dt
= 0;

Energy ans momentum derivatives for the particle are given by equations (18) and (20).

These  two  equation,  plus  Schrödinger  equation,  determine  the  motion  of  "classical"  walls  induced  by  quantum  fluctuations  of  the  particle.  The
equations are highly  non linear, as vL and vR enter in the solution of Schrödinger equation. 

The equations canbe reduced at one equation if one assume a rigid box. In that case the velocities are equal and the two equations coincide by virtue
of (20).
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The equations canbe reduced at one equation if one assume a rigid box. In that case the velocities are equal and the two equations coincide by virtue
of (20).

à Proof of eq (20)

Consider  as  usual  a  generic  state  with  expansion's  coefficients  ak  in  the  basis  (1).  To  compute  the  effect  of  P  on  a  state  let  us  start  form  basis

functions. We can write (sum over intermidiate states)

(4.21)

poneigenstates

P È k\ = â
s

È s^ Xs È P È k\
matrix  elements are easily computed

(4.22)

poneigenstates2

Xs È P È k\ =
ä

L
 
2 ks

s2 - k2
 IH-1Lk-s

- 1M º
ä

L
Bsk

We note the similarity of matrix B with a part of matrix F, eq.(4) this is not an accident as the derivative with respect to x is almost identical to the

derivative with respect to t on the basis (1). For what follows it is convenient to keep separate the two part of matrix F, writing (always for k s):

(4.23)

defAendBforF

Fks =
L
 

L
Aks +

vL

L
Bks; Aks =

2 k s

k2 - s2
 H-1Lk-s

; Bks =  IH-1Lk-s
- 1M 

2 k s

k2 - s2
;

Consider now the meanvalue of p. From (21) and (22)

XY È p È Y\ = P =
ä

L
 â

sk
as

* Bsk ak.

The time derivative, using equation of motion (3) is

(4.24)

dpdtprovv1

dP

dt
= -

1

L
 
dL

dt
 P +

ä2

L
 â

sk
as

* Bsk HEs - EkL ak -
ä

L
 â

sk
as

* @B, FD
sk

 ak.

The first sum is treated as in the case of energy

-
1

L
 â

s¹k
as

* Bsk HEs - EkL ak = -
Ñ2 Π2

2 mL3
 â

s¹k
as

* Bsk Is2 - k2M ak =

-
Ñ2 Π2

2 mL3
 â

s¹k
as

* IH-1Lk-s
- 1M 

2 k s

s2 - k2
 Is2 - k2M ak =

-
Ñ2 Π2

mL3
 :¢â

k
H-1Lk k ak¦2 - ¢â

k
k ak¦2 >

We used the fact that even after simplifying Is2 - k2M the term IH-1Lk-s
- 1M vanishes for k=s so the sum can be extended without constraints.

Using (17) equation (24) becomes

(4.25)

dpdtprovv2

dP

dt
= -

1

L
 
dL

dt
 P +

Ñ2

2 m
 9 Ψ'@xLD¤2 -  Ψ'@xRD¤2 = -

ä

L
 â

sk
as

* @B, FD
sk

 ak.

The difficult part of the computation is the commutator [B.F]. Below we show that (A is defined in (23) ):

@B, ADsk = - Bsk Þ -
ä

L
 â

sk
as

* @B, FD
sk

 ak = +
ä

L

1

L
 
dL

dt
 â

sk
as

* Bsk ak =
1

L
 
dL

dt
 P;

i.e. the commutator cancel exactly the first term in (25) and we recover the result (20).

ã The commutator

As [B, B] = 0, in the commutator [B,F] only the term [B,A] is different from zero. the first term in B is identical to A, then commute, and the only
contribution come from the second term,  the one proportional to -1 in (23). Explicitely (we put a minus sign for convenience)

-@B, ADsk = â
m

' 2 s m

s2 - m2
 
2 m k

m2 - k2
 H-1Lm-k

- â
m

' 2 s m

s2 - m2
 H-1Ls-m

 
2 m k

m2 - k2

Here  and  below  in  the  primed  sum  terms  with  m=k,  or  m=s  are  axcluded,  they  were  zero  in  both  A  and  B.  Summing  together  the  two  termsand
isolating the m-independent part:
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-@B, ADsk = â
m

' 2 s k m2

s2 - m2
 H-1Lm IH-1Lk - H-1LsM =

= 4 s k IH-1Lk - H-1LsM 1

k2 - s2
 â

m

' k2 H-1Lm
k2 - m2

-
s2 H-1Lm
s2 - m2

.

We repeat : in the sum are exluded both m = s and m = k terms.

The sum canbe evaluated with he following trick. Consider a generic complex value z, instead of k or s. Each term is now well defined and we can
first  sum without constraints then  subtract the unwanted terms and at the end take the limit for  z  to k or  s. The complete sum is well known, you
check it also with Mathematica :

â
L=1

¥ H-1LL
x2 - L2

=
-1 + Π x Csc@Π xD

2 x2
= T@xD

For  the limit x ® k we pose x = k + z and Taylor expand:

T@k + zD =
H-1Lk
2 k z

+ -
1

2 k2
-

H-1Lk
2 k2

+ O HzL
The pole term is what must be subtracted, it is in fact the limit of the series term as x® k, of the series, S 

Spole =
H-1Lk

Hk + zL2 - k2
>

H-1Lk
2 k z

-
H-1Lk
4 k2

Then, after multiplication by k2

Limz®0 k^2 IT@k + zD - SpoleM = k2 -
1

2 k2
-

H-1Lk
2 k2

+
H-1Lk
4 k2

= -
1

2
-

1

4
 H-1Lk .

We have also to subtract the term with m = s, this is easy, and the first sum becomes

â
m

' k2 H-1Lm
k2 - m2

= -
1

2
-

1

4
 H-1Lk -

k2 H-1Ls
k2 - s2

The second sum is obtained interchanging the roles of s and k, then we have

-@B, ADsk = 4 s k IH-1Lk - H-1LsM 1

k2 - s2
 : s2 H-1Lk

s2 - k2
 -

k2 H-1Ls
k2 - s2

+

IH-1Ls -H-1LkM
4

>

The first two term after multiplication by the signs in the prefactor become

s2 J1 - H-1Lk+sN
s2 - k2

-

k2 J H-1Ls+k
- 1N

k2 - s2
= -H-1Lk+s

+ 1

while the last two terms give

IH-1Lk - H-1LsM IH-1Ls - H-1LkM = 2 IH-1Lk+s
- 1M

Summing

-@B, ADsk = 4 s k
1

k2 - s2
 IH-1Lk+s

- 1M -1 +
1

2
= -2 s k

1

k2 - s2
 IH-1Lk+s

- 1M = Bsk.

This is what announced.

à Adiabatic variations

The complicated variations in time of both E and P comes from the transition matrix F. In the adiabatic approximation these transition elements are
negligible (see text) so in this limit the only variation in time come from the factors L in front of matrix elements, see eq.(15) and (22). Energy scale

as 1�L2 and p as 1/L, then, in this limit

(4.26)

adiabaticPandE

dE

dt
= - 2

1

L
 
dL

dt
E;

dP

dt
= -

1

L
 
dL

dt
P;
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à Scale transformations

In problem [3] the unitary transformation corresponding to scale variations has been introduced

(4.27)

modesdefscaletransformation

SΛ : L
2@0, L0D ® L

2@0, Λ L0D ; SΛ Ψ = ΨΛ; ΨΛ@xD =
1

Λ

ΨBx
Λ

F.
Infinitesimal generator D and commutations relations are reported below, see problem [3] for more details:

Λ = ã
Α

> 1 - Α; ΨΛ@xD > 1 -
Α

2
 Ψ@xD - Α x

¶

¶x
 Ψ > Ψ@xD - Α

1

2
+ x

¶

¶x
 Ψ@xD.

(4.28)

modesdefDwall

SΛ = ExpB-
ä

Ñ

 Α DF; D =
Ñ

2 ä
 x

¶

¶x
+

¶

¶x
x =

1

2
 Hx p + p xL.

The canonical commutations relations are 

(4.29)

modescommutationrelationsDxp

@D, xnD = n 
Ñ

ä
 xn = -ä n Ñ xn; @D, pnD = -

Ñ

ä
 n p = ä n Ñ p.

(4.30)

modesscaletransformationxp

SΛ p SΛ
-1

= Λ p ; SΛ x SΛ
-1

=
1

Λ
 x .

Consider a system with xL=0 fixed and width L0. An expansion (or contraction)  to L[t] = Λ L0 is a scale transformation. it is easy to show, see again

problem [3] that Hamiltonians in the final box, HHLL and that in the initial box, HH1L are related by a scale transformation

(4.31)

modesscaledHwall2

HHLL
=

1

Λ2
 SΛ HH0L

 SΛ
-1

 Taking the time derivative of the previuos relation and using the definition of D we have

d

dt
 HHLL

= - 2
Λ
 

Λ
 HHLL

+ -ä
Λ
 

Λ

1

Ñ

AD, HHLLE .

The naive use of commutation relations (29) would give zero, but care must be taken in computing the commutator. On energy eigenstates

< k É AD, HHLLE É s > = H Es - EkL < k È D È s > = H Es - EkL 
Ñ

2 ä
< k x ¶x+ ¶xx s >

A short calculation shows that

< k È D È k > = 0; < k È D È s > = ä Ñ 
2 k s

k2 - s2
 H-1Lk-s

; k ¹ s.

We are exactly with the same kind of sums considered in previous derivations. We leave to the reader the proof that final result is again (16).

à Oscillations

If movement of the walls is periodic there is a possibility to produce a resonance phenomenon between particle states. The general equations for ak

coefficients:

(4.32)

wallequatonsforAoscill

dak

dt
+ â

s
Fks as = -ä Ek ak ;

are known to produce resonance for external periodic perturbation. Let us recall briefly the theory. Extracting the "free evolution", i.e. time depen-
dence due to Ekwith the change of variables 

(4.33)ak = ck@tD ExpB-ä à
0

t

Ek dtF º ck@tD Exp@-ä ∆k@tDD,
equations (32) take the form

(4.34)

transitionc

dck

dt
+ â

s
Exp@ä H∆k - ∆sLD Fks cs = 0,

well suited for an iterative solution. If we start with a system in a state Α, i.e. cΑ = 1, all other c's zero, a perturbative corrections to ck, for k  Α, is

readily obtained
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well suited for an iterative solution. If we start with a system in a state Α, i.e. cΑ = 1, all other c's zero, a perturbative corrections to ck, for k  Α, is

readily obtained

(4.35)

transition0order

dck

dt
+ Exp@ä H∆k - ∆ΑLD FkΑ cΑ = 0; Þ ck > -à

0

t

Exp@ä H∆k - ∆ΑLD FkΑ

At first order in the "small" perturbation due to F matrix only the term with s=Α has been extracted, because at zero order only cΑis not zero. Usually

the right hand side of (35) is a rapid oscillating function, keeping small the value of the integral, This is the usual perturbation theory (see text). The
exception being if in F is present a frequency which cancel the factor ∆k - ∆Α  in this case there is not depression and the amplitude for transition can

be large. If we limit to the case of one frequency and assume that approximatively the energy are fixed this happens when the external frequency is
near a difference EΒ- EΑ. We can approximatively restrict our attention to the two system level Α-Β but we can try to resolve exactly eq.(34) for this

reduced system

dcΒ

dt
+ Exp@ä H∆Β - ∆ΑLD FΒΑ cΑ = 0;

dcΑ

dt
+ Exp@ä H∆Α - ∆ΒLD FΑΒ cΒ = 0.

Consider for simplicity Ek constants and assume EΒ > EΑ . The resonant term in FΒΑ is of the form 

FΒΑ = F Exp@-ä W tD; FΑΒ = -F Exp@ä W tD; W > EΒ - EΑ.

The form of FΑΒ has been deduced from antihermiticity of the matrix F . The equations can be solved, and simplify greatly at exact resonance. For

cΑ@0D = 0, cΒ@0D = 1 :

dcΒ

dt
+ F cΑ = 0;

dcΑ

dt
- F cΒ = 0; cΒ@tD = Cos@F tD; cΑ@tD = Sin@F tD.

The system oscillated with period 2Π/F. Populations of the levels, È ck È2 become 1 with period Π/F.

In the present case the matrix F has the general form (4)

(4.36)

fksoscill

Fks = à
0

L

uk ¶tus =
2 k s

k2 - s2
 
L
 

L
H-1Lk-s

+
vL

L
 I-1 + H-1Lk-sM  Hk ¹ sL ; Fkk = 0.

Consider for instance an oscillating box with

L = L0 H1 + A Cos@W tDL
The system (36) allows resonance transtions. We can excite the system in two  different ways: take fixed one of the walls, the left for definitess, of
move both of them in opposite directions, in the last case vR = - vL, vL = - 1/2 dL/dt. In the two cases w ehave respectively

(4.37)

fksresonance

Fks =
2 k s

k2 - s2
 

W A Sin@W tD
L0 H1 + A Cos@W tDL  H-1Lk-s

;

Fks =
2 k s

k2 - s2
 

W A Sin@W tD
L0 H1 + A Cos@W tDL  

1

2
 IH-1Lk-s

+ 1M
In the first case all transitions are allowed, in the second case only transitions without change of parity. For small oscillations amplitudes, decompos-

ing the trigonometric functions, we see that the "strength factor" F is given in the two cases by the same expression, as the sum ( 1 + H-1Lk-s) cancel
the factor 1/2 in the second case:

F =
1

2
 
2 k s

k2 - s2
 
W A

L0
.

Matrices (37) allow  resonances induced by higner harmonics, in fact expanding the denominator a whole series of frequencies appear.  Another kind
of  nonlinear resonances can be induced  if the transition k ® s can be achieved by k® i®s, this would correspond to a correction to the model of two
states  system,  or  inperturbation  theory  to  higher  orders.  If  corections  are  just  induced  by  higher  harmonics  in  the  perturbation  they  are  simply
computed, for example in (37) we have, expanding the denominator

2 k s

k2 - s2
 

W A Sin@W tD
L0 H1 + A Cos@W tDL >

2 k s

k2 - s2
 
W A

L0
 Sin@WtD - A

1

2
 Sin@2 W tD + ¼

Passing from trigonometric functions to exponentials this is seen to correspond to an effective strength

F2 =
k s

k2 - s2
 
W A2

L0
 
1

2

Problem 5
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Problem 5

A particle moves in a box, [0,L].  Study the evolution of the states for a moving wall at x=L. Generalize the problem for the case of both walls moving.
Try to construct a self-consistent equation for the walls, defining a mass for them. Study the case of wall oscillations and associated selection rules.

æ Solution

à Introduction and mode expansion

The Hamiltonian is the free Hamiltonian, with boundary conditions,

(5.1)H =
p2

2 m
; Ψ@0D = Ψ@LD = 0.

From now on we use Ñ = m = 1.

Eigenfunctions and eigenvalues are:

(5.2)

wallbasis

uk@x; LD =
2

L
 SinB Π k x

L
F; Ek =

1

2
 Π
2
 
k2

L2
.

As the boundary moves L depends on t. We can always expand in the previous complete base

(5.3)

modeexpansionWall

Ψ@x, tD = â
k
ak@tD uk@x; LD

Introducing this expansion in the Schrödinger equation it is easily found (see also text and previous problems)

(5.4)

wallequatonsforA

dak

dt
+ â

s
Fks as = -ä Ek ak ;

Fks = à
0

L

uk ¶tus =
L
 

L
 H-1Lk-s 2 k s

k2 - s2
Hk ¹ sL ; Fkk = 0.

It is easily shown that from orthonormality of the basis F must be anti-hermitian.. Diagonal elements are zero for a real basis. We leave to the reader
as an easy excercise to show that these properties preserve the norm for an arbitrary  state. This for novices in QuantumMechanics is the source of a
typical puzzle: for a sudden perturbation we expect that the wave function is practiiically unchanged, but then for a compression of the box this will
cut a part of Ψ, in contrast with unitarity. Clearly there is no violation of unitarity, simply the sudden approximation will be valid for expansions of the
box but not for compressions. In the last case higher and higher oscillations modes are excited and the function will change quite strongly.

From  mathematical  point  of  view  the  Hilbert  space  is  defined  as  L2@0, LDwith  zero  boundary  conditions.  When   L1<  L2,

L
2@0, L1D Ì L

2@0, L2Dso in an expansion the "new" Hilbert space can describe old functions and sudden approximation apply. On the contrary

for  compressions  the  new Hilbert  space  just  do  not  have  in  in  it  all  the  old  functions,  in  particular  those  with  part  of  the  support  outside  the  new
interval. 

à Equations of motion and scale transformations

Equations (4) in principle (and also in practice as we will show in a numeric notebook) solve the problem. It is nevertheless interesting to approach
the problem as a solution of a differential  equation with moving boundary conditions directly, this would be imperative if,  for example,  we do not
know the explicit form of eigenfunctions for fixed boundary or if mode expansion converge slowly.

A very  simple  way to  circumvent  the  moving boundary,  in  this  case,  is  to  make a change of  variables  in the Schrödinger  equation.  For clarity we
introduce also a temporary new name for time, Τ

x�L = Ξ; t = Τ;

Now as Ξ varies between 0 and 1 we can recover whatever box. A bit of care must be taken in changing variables and for didactic reasons we report
all passages.

¶

¶x
=

¶Ξ

¶x

¶

¶Ξ
+

¶Τ

¶x

¶

¶Τ
=

1

L
 

¶

¶Ξ
;

¶

¶t
=

¶Τ

¶t
 

¶

¶Τ
+

¶Ξ

¶t
 

¶

¶Ξ
=

¶

¶Τ
-

L
 

L2
 x 

¶

¶Ξ
=

¶

¶Τ
-

L
 

L
 Ξ 

¶

¶Ξ
.

In the new variables (we put again t for the time) the Schrödinger equation becomes, with Y = 1/ L  Ψ for normalization conditions

ä Ñ
¶

¶t
-

L
 

L
 Ξ 

¶

¶Ξ
 

Ψ

L
= -

Ñ2

2 m
 
1

L2
 
¶2 Ψ

¶Ξ2
 
1

L
;

or
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or

(5.5)

wallequationInxi

ä Ñ
¶Ψ

¶t
= -

Ñ2

2 m
 
1

L2
 

¶2 Ψ

¶Ξ2
- ä 2 m L L

 
Ξ 

¶Ψ

¶Ξ
- ä m LL Ψ

 
; Ψ@0, tD = Ψ@1, tD = 0.

The problem has been transformed in a usual fixed boundary problem, alb6eit a kind of "external field" has now appeared. Once  a solution of (5) is

found, f[Ξ,t], the solution in the original variables will be Y[x,t] = f[x/L[t],t]/ L .

Let us note that 

Ξ
¶

¶Ξ
+
1

2
=

1

2
 Ξ

¶

¶Ξ
+

¶

¶Ξ
 Ξ

and write (with Ñ=1= m)

(5.6)

wallequationinxi2

ä
¶Ψ

¶t
= -

1

2
 
1

L2
 

¶2 Ψ

¶Ξ2
- ä L L

 
 Ξ

¶

¶Ξ
+

¶

¶Ξ
 Ξ  Ψ ; Ψ@0, tD = Ψ@1, tD = 0.

It is instructive to consider this change of variables as a scale transformation and apply all the machinery of unitary operators.

A scale transformation is defined as

(5.7)

p5defscaletransformation

SΛ : L
2@0, 1D ® L

2@0, ΛD ; SΛ Ψ = ΨΛ; ΨΛ@xD =
1

Λ

ΨBx
Λ

F.
It is trivial to verify that S is indeed unitary (preserve scalar products). It transform functions with support in [0,1] in functions with support in [0,L],
preserving their norm.

Putting Λ = Exp[Α], and defining the infinitesimal generator D for this transformation, it follows from a Taylor xpansion of (7):

(5.8)

p5defDwall

Λ = ã
Α; SΛ = ExpB-

ä

Ñ

 Α DF; D =
Ñ

2 ä
 x

¶

¶x
+

¶

¶x
x =

1

2
 Hx p + p xL.

The canonical commutations relations give (exceptionally we put also the right powers of Ñ )

(5.9)

p5commutationrelationsDxp

@D, xmD =
Ñ

ä
 xm = -ä m Ñ x; @D, pmD = -

Ñ

ä
 m p = ä m Ñ p.

D  measures  the  dimension  of  operators.  Some  care  must  be  taken  using  previous  relations  in  finite  intervals,  as  products  of  operators  can  bring
outside Hilbert space, we always compute explicit matrix elements.

From the definition (7) we can easily compute how operators transform under SΛ:

(5.10)

p5scaletransformationxp

SΛ p SΛ
-1

= Λ p ; SΛ x SΛ
-1

=
1

Λ
 x .

The details of the (easy) derivation are found in the Complements of chapter 7.

Consider now a Hamiltonian defined on a box L, HHLL. Applying (10) to HH1Lwe find

(5.11)

p5scaledHwall1

SL HH1L
 SL

-1
= L2 

p2

2 m
º L2 HHLL.

The momentum p appearing on the right hand side of (11) is defined on L2@0, LD so we have correctly defined HHLLthe Hamiltonian. Let us note

that  both  sides  of  (11)  have  the  same  spectrum,  the  one  of  unitary  equivalent  Hamiltonian  HH1L.  In  fact  the  eigenvalues  of  HHLL  scale  ad  1�L2.

Finally let us write

(5.12)

p5scaledHwall2

HHLL
=

1

L2
 SL HH1L

 SL
-1

We  see  that  apart  a  scale  factor  the  two  Hamiltonians  are  equivalent,  i.e.  solving  HH1Lwe  have  practically  solved  HHLL.  Things  change  for  time

dependent scale transformation, in fact  we now (see text) that for time dependent unitry transformations the infinitesimal generator of time transla-
tions (i.e. the Hamiltonian) has a non homogenous transformation, then the evolution generated by (12) is not unitary equivalent to the time evolution
in the box of length 1. This is the formal reason for the different form of Schrödinger equation.

Let us take a state F in L2@0, LD, we have (with Ñ = 1)
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Let us take a state F in L2@0, LD, we have (with Ñ = 1)

ä
¶F

¶t
= HHLL

 F =
1

L2
 SL HH1L

 SL
-1

 F.

The function Ψ defined as Ψ = SL
-1 F describe the sistem in the box of length 1. Using (8)

Ψ = SL
-1

 F; SL
-1

= Exp@ä Log@LD DD;
we have

1

L2
 HH1L

 SL
-1

 F =
1

L2
 HH1L

 Ψ = ä SL
-1

 
¶F

¶t
= ä

¶Ψ

¶t
- ä

¶SL
-1

¶t
 F = ä

¶Ψ

¶t
+

L
 

L
 D SL

-1 F = ä
¶Ψ

¶t
+

L
 

L
 D Ψ

and finally

ä
¶Ψ

¶t
=

1

L2
 HH1L

 Ψ -
L
 

L
 D Ψ = -

1

2 L2
 

¶2Ψ

¶x2
+ 2 LL

  1

ä

1

2
 x

¶

¶x
+

¶

¶x
x  Ψ

which is identical to equation (6).

à Energy variations

We want to study the variation of the mean energy on a state as wall moves.Take an arbitrary state Y and expand the wave function as a series in the
basis (2)

Y = â
k
ak@tD uk@x, tD; E@YD =

1

2

Π2

L2
 â

k
ak

* ak k2.

Using (4)

(5.13)

wallequatonsforA2bis

Fks =
2 k s

k2 - s2
 
L
 

L
H-1Lk-s

+
vL

L
 I-1 + H-1Lk-sM  Hk ¹ sL ; Fkk = 0.

(5.14)

p5dEdt1wall

dE

dt
= -2

L
 

L
 E +

Π2

2 L2
 â

k
â

s
k2 I- ak

* Fks as + Fsk as
*
 akM.

Using antisymmetry in k-s of the terms in parenthesis

â
ks
k2 I- ak

* Fks as + Fsk as
*
 akM =

1

2
 â

ks
Ik2 - s2M I- ak

* Fks as + Fsk as
*
 akM = -â

ks
Ik2 - s2M ak

* Fks as.

Substituting the values for Fks we must remember that k=s terms are zero, then

-â
ks

Ik2 - s2M ak
* Fks as = -

L
 

L
 â

k¹s
H-1Lk-s

 2 k s ak
* as =

-
L
 

L
 â

k,s
H-1Lk-s

 2 k s ak
* as +

L
 

L
 â

k
2 k2 ak

* ak.

The last term exactly cancel the first term in (14). Then  

dE

dt
= -

Π2

L2
 
L
 

L
â

k
H-1Lk k ak È2

From mode expansion:

dY

dx
= â

k
ak 

2

L
 CosB Π k x

L
F 

Π

L
 k; Y

'@LD = â
k
ak 

2

L
 H-1Lk 

Π

L
 k;

and
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(5.15)

energyloss

dE

dt
= -

Π2

L2
 
L
 

L
 
L3

2 Π2
Y '@LD È2 = -

1

2
 L
 

Y '@LD È2;
dE

dt
= -

L
 

2 m
Ñ ¶x Y@LD È2; Hin normal unitsL.

We see that, as intuitively expected, we have an energy loss when box grows and an energy gain for compressions. Eq.(15) has a nice semiclassical
interpretation. For a de Broglie wave Ñ ¶x Y@LD ~ p Ψ, where p is the momentum at the wall. 

dE

dt
~ -

L
 

2 m
 p2 Ψ È2 .

L
 

 is the velocity V of the wall,let us suppose positive for example (expansion). È Ψ È2  is the density and for one particle  È Ψ È2~ 1�L .  For the

energy loss we have

dE

dt
~ -

V

2 m
 
p2

L
= - E

V

L
.

Let us consider a classical particle of velocity v and mass m which hits the wall. An easy exercise in kinematic shows that in the scattering the particle
lost an energy 2 m v V. If there are N hits per second the energy loss will be

dE

dt
= - 2 m v V N.

In a second a particle of velocity v hits v/2L times against the wall, then

dE

dt
= - 2 m v V

v

2 L
= - 2 E

V

L
.

The factor of 2 is due to the fact that for a stationary states only half of the particles (the right movers) hits against the wall.

A different and instructive derivation of energy variation can be obtained using (12). Taking time derivative and using the definition of S in terms of
D we obtain

d

dt
 HHLL

= - 2
L
 

L
 HHLL

+ -ä
L
 

L
AD, HHLLE = - 2

L
 

L
 HHLL

- ä
L
 

L
AD, HHLLE.

The naive use of commutation relations, see (9) would give zero, but carre must be taken in computing the commutator. On energy eigenstates

< k É AD, HHLLE É s > = H Es - EkL < k È D È s > = H Es - EkL 
1

2 ä
< k x ¶x+ ¶xx s >

A short calculation shows that

< k È D È k > = 0; < k È D È s > = ä
2 k s

k2 - s2
 H-1Lk-s

; k ¹ s.

We are exactly with the same kind of sums considered in previous derivation. We leave to the reader the proof that final result is again (15).

à Arbitrary movements for both walls

The system can be trivially generalized. Let xL, xR the positions of left and right boundaries, and L = xR - xL.

Eigenfunctions and eigenvalues are:

(5.16)

wallbasis2

uk@x; LD =
2

L
 SinB Π k Hx - xLL

L
F; Ek =

1

2
 Π
2
 
k2

L2
.

The mode expansion becomes

(5.17)

wallequatonsforA2

dak

dt
+ â

s
Fks as = -ä Ek ak ;

Fks = à
0

L

uk ¶tus =
2 k s

k2 - s2
 
L
 

L
H-1Lk-s

+
vL

L
 I-1 + H-1Lk-sM  Hk ¹ sL ; Fkk = 0.

xL, and xR = xL + L are the boundaries, vL is d(xL)/dt.

Let us note some points
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Let us note some points

1. The basis (1) has definite parity for reflections around the mid-point xM = (xR+xL)/2,  x-xM -> - (x-xM), i.e. x-> 2xM-x, under this operation

uk@x; LD ® H-1Lk+1
 uk@x; LD

2. For vR = - vL (a parity preserving movement around the middle of the box) dL/dt = - 2 vL and

Fks = -
2 k s

k2 - s2

vL

L
 II1 + H-1Lk-sMM

i.e. only transitions between states with same parity are allowed.

3. For vL = vR we have a rigid traslation of the walls, then the result must follos from Galilean invariance. This is indeed true, the reader can 
prove it by himself or read the proof below. (The proof is in a closed cell).

Proof 

à Energy conservation and free walls

It is possible to compute both energy and momentum variation as the walla move. The computation proceed as in (14) giving

(5.18)

dEdtanddPdt

dE

dt
= -

vR

2
Y
'@xRD È2 +

vL

2
Y
'@xLD È2

dP

dt
= -

1

2
 I É Y

'@xRD È2 - É Y
'@xLD È2M.

We use the symbols E, P, to denote mean values in this section.  vL and vR are the velocities of left and right walls, and in terms of mode coefficients

Y
'@xLD = â

k
ak 

2

L
 
Π

L
 k; Y

'@xRD = â
k
ak 

2

L
 
Π

L
 k H-1Lk;

The derivation is proposed as an exercise to the reader, a direct proof is also given below (closed cell),

For vR = vL= V (rigid movements) dL/dt = 0, and the result is proportional to energy change and we obtain the expected relation between energy end
momentum (this is just a consequence of Galilei invariance)

dP

dt
=

1

V

dE

dt
;

dE

dt
= V

dP

dt
.

In general

(5.19)

devrel

dE

dt
= V

dP

dt
-

1

4
 vrel I É Y

'@xRD È2 + É Y
'@xLD È2M;

vR = V +
1

2
 vrel; vL = V -

1

2
 vrel;

These expressions allow to pose the following problem. Suppose that thet wo wall have a large mass M and are completely free, how they move? We
can obtain the movement by energy and momentum conservation. 

(5.20)

dedpandmovingwalls

M
d vR

dt
+ M

d vL

dt
+

dP

dt
= 0;

M vR
d vR

dt
+ M vL

d vL

dt
+

dE

dt
= 0.

These equation in principle determine the movement. The "force" acting on the walls is very complicated and velocity dependent, remember that L[t]
and vL[t] enter in the expression for the evolution of expansion coefficients ak. 

In idealized case is  when left  and right walls  are identified,the equation in this case describe a motion on a ring.  Clearly in this case vL = vR, the
length of the ring is fixed by its initial value. The simplified  equations read in this case (dL/dt = 0), and are reduced to those for P (equation for E
follows from V dP/dt = dE/dt ):
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M
d V

dt
+

dP

dt
= 0;

dak

dt
+

V

L
 â

s
Bks as = -ä Ek ak ;

Bks =
2 k s

k2 - s2
 I-1 + H-1Lk-sM; Hk ¹ sL;

dP

dt
= -

Π2

L3
J Ë â

k
ak k H-1Lk È2 - Ë â

k
ak k È2N;

Proof of (18) 

The variation of energy of the quantum state for both walls moving proceed exactly as in (14) 

dE

dt
= - 2

L
 

L
E -

Π2

2 L2
 â

ks
Ik2 - s2M ak

* Fks as.

The  only  difference  is  in  the  F  matrix.  Inserting  (4)  and  remembering  the  for  k=s  Fks  is  zero  we  have  (the  deduction  is  similar  to  that  following

eq.(14)  ):

dE

dt
= - 2

L
 

L
 E -

Π2

2 L2
 â
k¹s

ak
* as 2 k s H-1Lk-s

 

L
 

L
+

vL

L
-

vL

L
=

-
Π2

L2
 
vR

L
 È  â

k

ak k H-1Lk È2
+

Π2

L2
 
vL

L
È  â

k

ak k È2
.

We have introduced the velocity of the right wall, vR = vL + L
 

. Using expansion in the basis (1)

dY

dx
= â

k
ak 

2

L
 CosB Π k Hx - xLL

L
F 

Π

L
 k;

Y
'@xLD = â

k
ak 

2

L
 
Π

L
 k; Y

'@xRD = â
k
ak 

2

L
 
Π

L
 k H-1Lk;

then we can also write the generalization of (15):

dE

dt
= -

vR

2
Y
'@xRD È2 +

vL

2
Y
'@xLD È2

Let us now consider momentum. We can imagine that this momentum is usual momentum in presence of an infinitely high barriers simulated by the
walls, so we use usual definition for it. On a energy eigenstates

P È k > = È s > < s È P È k > ;

< s È P È k > =
1

ä

1

L
 
2 k s

k2 - s2
 I H-1Lk-s

- 1M =
ä

L
 
2 k s

s2 - k2
IH-1Lk-s

- 1M º
ä

L
 Bsk; Hk ¹ sL

We note that matrix B is a part of matrix F, the one proportional to vL. For an arbitrary state

< Y È P È Y > =
ä

L
â

ks
as

* Bsk ak.

Taking the derivative and using equation of motion for ak

dP

dt
= -

L
 

L
 P +

ä2

L
 â

ks
as

*
 HEs - EkL Bsk ak -

ä

L
 â

ks
as

*@B, FD
sk

 ak

The first sum is treated in the usual way:
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â
k¹s

as
*
 HEs - EkL Bsk ak =

Π2

2 L2
 â

k¹s
as

*
s2 - k2

s2 - k2
 2 k s I H-1Lk-s

- 1M ak =

Π2

L2
 â

k¹s
as

* k s I H-1Lk-s
- 1M ak =

Π2

L2
â

k
k ak H-1Lk È2 -

Π2

L2
â

k
k ak È2 =

L

2
Y
'@xRD È2 -

L

2
Y
'@xLD È2

dP

dt
= -

L
 

L
 P -

1

2
 I É Y

'@xRD È2 - É Y
'@xLD È2M -

ä

L
 â

ks
as

*@B, FD
sk

 ak

F matrix is composed of two parts, the second being proportional to matrix B, we pose

Fks =
L
 

L
 Aks +

vL

L
 Bks; Aks =

2 k s

k2 - s2
 H-1Lk-s

; Bks =
2 k s

k2 - s2
 I-1 + H-1Lk-sM.

dP

dt
= -

L
 

L
 P -

1

2
 I É Y

'@xRD È2 - É Y
'@xLD È2M -

ä L
 

L2
 â

ks
as

*@B, AD
sk

 ak

The commutator can be computed and gives  - Bsk and cancel exactly the first term

dP

dt
= -

L
 

L
 P -

1

2
 I É Y

'@xRD È2 - É Y
'@xLD È2M +

ä

L
 
L
 

L
 â

ks
as

*
 Bsk ak =

-
1

2
 I É Y

'@xRD È2 - É Y
'@xLD È2M.

Computation of the commutator
Only the term with -1 in B gives a contribution to the commutator:

-@B, ADsk = â
m

' 2 s m

s2 - m2
 
2 m k

m2 - k2
 H-1Lm-k

-
2 s m

s2 - m2
 H-1Ls-m

 
2 m k

m2 - k2
=

â
m

' 4 s k m2

s2 - m2
 

1

m2 - k2
 H-1Lm  IH-1Lk - H-1LsM =

4 s k IH-1Lk - H-1LsM 1

k2 - s2
 â

m

' k2 H-1Lm
k2 - m2

-
s2 H-1Lm
s2 - m2

In the sum are excluded both m=s and m=k terms.
The sum can be evaluated in the following way. First let us sum on all values but in the form (verify the sum with Mathematica ):

â
L=1

¥ H-1LL
x2 - L2

=
-1 + Π x Csc@Π xD

2 x2

For x® k pose x = k + z. Series expansion gives

H-1Lk
2 k z

+ -
1

2 k2
-

H-1Lk
2 k2

+ O HzL
The pole term is what must be subtracted, it is in fact the limit of the series term as x® k, 

H-1Lk
Hk + zL2 - k2

>
H-1Lk
2 k z

-
H-1Lk
4 k2

After multiplication by k2we have for the whole sum

-
1

2
-

1

4
 H-1Lk .

We have now to subtract the term with m = s, as a risult the first sum is

-
1

2
+

1

4
 H-1Lk -

k2

k2 - s2
 H-1Ls

The second sum is obtained interchanging the roles of s and k, then
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-@B, ADsk = 4 s k IH-1Lk - H-1LsM 1

k2 - s2
 

1

s2 - k2
 s2 H-1Lk -

1

k2 - s2
 k2 H-1Ls +

H-1Ls - H-1Lk
4

The first two term, once multiplied by the sign in the prefactor, become

1

s2 - k2
 s2 J1 - H-1Lk+sN -

1

k2 - s2
 k2 J H-1Ls+k

- 1N = -H-1Lk+s
+ 1

The two last terms:

IH-1Lk - H-1LsM IH-1Ls - H-1LkM = 2 IH-1Lk+s
- 1M

and

-@B, ADsk =
4 k s

k2 - s2
 IH-1Lk+s

- 1M -
1

2
=

2 k s

s2 - k2
 IH-1Lk+s

- 1M = Bsk

à Oscillations

If movement of the walls is periodic there is a possibility to produce a resonance phenomenon between particle states. The general equations for ak

coefficients:

(5.21)

p5wallequatonsforAoscill

dak

dt
+ â

s
Fks as = -ä Ek ak ;

are  known to  produce  resonance for  external  periodic perturbation.  let  us recall  briefly  the theory.  Extracting the "free  evolution",  i.e.  time depen-
dence due to Ekwith the change of variables 

ak = ck@tD ExpB-ä à
0

t

Ek dtF º ck@tD Exp@-ä ∆k@tDD
equations (21) take the form

(5.22)

p5transitionc

dck

dt
+ â

s
Exp@ä H∆k - ∆sLD Fks cs = 0,

well suited for an iterative solution. If we start with a system in a state Α, i.e. cΑ = 1, all other c's zero, a perturbative corrections to ck, for k  Α, is

readily obtained

(5.23)

p5transition0order

dck

dt
+ Exp@ä H∆k - ∆ΑLD FkΑ cΑ = 0; Þ ck > -à

0

t

Exp@ä H∆k - ∆ΑLD FkΑ

At first order in the "small" perturbation due to F matrix only the term with s=Α has been extracted, because at zero order only cΑis not zero. Usually

the right hand side of (23) is a rapid oscillating function, keeping small the value of the integral, This is the usual perturbation theory (see text). The
exception being if in F is present a frequency which cancel the factor ∆k - ∆Α  in this case there is not depression and the amplitude for transition can

be large. If we limit to the case of one frequency and assume that approximatively the energy are fixed this happens when the external frequency is
near a difference EΒ- EΑ. We can approximatively restrict our attention to the two system level Α-Β but we can try to resolve exactly eq.(22) for this

reduced system

dcΒ

dt
+ Exp@ä H∆Β - ∆ΑLD FΒΑ cΑ = 0;

dcΑ

dt
+ Exp@ä H∆Α - ∆ΒLD FΑΒ cΒ = 0.

Consider for simplicity Ek constants and assume EΒ > EΑ . The resonant term in FΒΑ is of the form 

FΒΑ = F Exp@-ä W tD; FΑΒ = -F Exp@ä W tD; W > EΒ - EΑ.

The form of FΑΒhas  been deduced from antihermiticity of  the matrix  F .  The equations can be solved and simplify greatly at  exact  resonance.  For

cΑ@0D = 0, cΒ@0D = 1 :

dcΒ

dt
+ F cΑ = 0;

dcΑ

dt
- F cΒ = 0; cΒ@tD = Cos@F tD; cΑ@tD = Sin@F tD.

The system oscillated with period 2Π/F. Populations of the levels, È ck È2 become 1 with period Π/F.

In the present case the matrix F has the general form (4)
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(5.24)

p5fksoscill

Fks = à
0

L

uk ¶tus =
2 k s

k2 - s2
 
L
 

L
H-1Lk-s

+
vL

L
 I-1 + H-1Lk-sM  Hk ¹ sL ; Fkk = 0.

Consider for instance an oscillating box with

L = L0 H1 + A Cos@W tDL
The system (24) allows resonance transtions. We can excite the system in two  different ways: take fixed one of the walls, the left for definitess, of
move both of them in opposite directions, in the last case vR = - vL, vL = - 1/2 dL/dt. In the two cases w ehave respectively

(5.25)

p5fksresonance

Fks =
2 k s

k2 - s2
 

W A Sin@W tD
L0 H1 + A Cos@W tDL  H-1Lk-s

;

Fks =
2 k s

k2 - s2
 

W A Sin@W tD
L0 H1 + A Cos@W tDL  

1

2
 IH-1Lk-s

+ 1M
In the first case all transitions are allowed, in the second case only transitions without change of parity. For small oscillations amplitudes, decompos-

ing the trigonometric functions, we see that the "strength factor" F is given in the two cases by the same expression, as the sum ( 1 + H-1Lk-s) cancel
the factor 1/2 in the second case:

F =
1

2
 
2 k s

k2 - s2
 
W A

L0
.

Matrices (25) allow  resonances induced by higner harmonics, in fact expanding the denominator a whole series of frequencies appear.  Another kind
of  nonlinear resonances can be induced  if the transition k ® s can be achieved by k® i®s, this would correspond to a correction to the model of two
states  system,  or  inperturbation  theory  to  higher  orders.  If  corections  are  just  induced  by  higher  harmonics  in  the  perturbation  they  are  simply
computed, for example in (25) we have, expanding the denominator

2 k s

k2 - s2
 

W A Sin@W tD
L0 H1 + A Cos@W tDL >

2 k s

k2 - s2
 
W A

L0
 Sin@WtD - A

1

2
 Sin@2 W tD + ¼ .

Passing from trigonometric functions to exponentials this is seen to correspond to an effective strength

F2 =
k s

k2 - s2
 
W A2

L0
 
1

2
.
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