Problems Chapter 13

Quantum M echanics
K. Konishi, G. Paffuti

I Problem 1

Write the Green function for a free particle in one dimension by solving the equation (E-H)G=1 in the x representation. Verify the result by writing G
asasumover eigenstates of H.
® Solution

o X representation

WIthE = (h k)2/2 mthe equation for the Green function in one dimension is

n?k?  n? d?
o
2m  2m gy?

Glx-yl=6[x-y]. (1.1)

The solution with a divergent (i.e. expanding) wave as boundary condition is

1 2m
— BExp[ik [x-y |]; (1.2)

Glk; x, y] =G[k; x-y] =
2ik Rn2

with

1
k =i—+/-2mE; k>0forE > 0.
h

To check the result first we remember that

e[x] =Signix] = {+1; x>0 e [X] = 26[X]
=29 " lo1; x<0 - '
Thefirst derivatives of G are (we omit the k argument as it is kept fixed below)
1 2m )
G[x] = —— ikelx] etk
2ik n2
1 2m .
G’ [x] = — (-Kk¥e[x]?+ 2iko[x]) e X = ~ K2 G[x]; c.v.d.
2ik n?

o Kk representation

The computation can be performed also in Fourier transform. From eq.(1) using the known prescription ie on poles (withe — 0)

s 2m ~dk’ elkx 2m ~dk’ el kx (1.3)
x] = — | — — = - —— | — . .
1 J2n k?+ie - k2 n2 J2n (k- Kk,) (k- ko)

Where k. are the poles with positive and negative imaginary part, respectively. The integral can be evaluated by closing the contour in the complex
plane with a half-circle at infinity and applying the Cauchy theorem. With x > 0 the path must be closed in the half plane | m[k] > 0 whilefor x < 0
intheregion | mk] < 0. Theintegral givesimmediately (Resis the residue of the integrand)

Gix] =2nio[x] Res[k,] e'** - 2 ri6[-x] Res[k_] etk *. (1.4)

Using the values of the poles (remember that € — 0 in all expressions)

K, = + k2% + ie = + (k + 1€)

we have
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2m 1 1 2m 1 1 2m 1 1 2m 1 1
Res[k,] = - — — =-—  — —; Res[k ]=-— — =+ — — —
n2 27 k, -k_ n2 2m1 2k n2 27 k. -k, n2 21 2k

and by substitution in (4) we recover the previous result

enkx_ i6[-X] e—ikx: eik\x\_

n? 2k n? 21k

2m1]‘ 2m 1 2m 1
n2 2k

o Analyticity

Let us note that the analyticity properties (acut for E > 0) and by definition of the adjoint we must have both
(y|GIEIIx)= (y|G[e? E] Ix); (Yy|GIEl|Ix)=(x|GEl|y)" (1.5)
AsforE— 2" Eonehas k -» - k the above relationsimply
Glk; x, y]" = G[-k; y, x]

which isindeed verified with our solution (2).

Problem 2

Write the Green function for a free particle in any dimension solving the equation (E-H)G=1 in the x representation.

® Solution

We arelooking for a(radial symmetric) solution of

2m

(a+K*)G= — oD [x]. (2.1)
h2
In dimension d the Laplacian operator has the form
1 6] o
A= —— — 19t 4 angularterms;
rd-1 or ar
eg.(1) hastheform
1 9 o 2m
— 9l G +k2GIr] = — 59 x]. (2.2)
rd-1 or ar n2

Inx # 0 by the change of variables

eq.(2) becomes
friz) + —f'[z] + |1 - ——|f[z] = 0. (2.3)

ThisisaBessel equation of order d/2-1. The request of outgoing waves selects as a solution the Hankel function H§1>1
2

HY [x] = 3, [x] + 1Y, [X];

J,'Y being Bessel function of first and second kind. The Green function then has the form

G[r] = A(kr)l’gHélfl[kr].

2

The small x behavior of the Hankel functionis

1 X\ 1 T[v] (X\7
HOY [x] ~ 1Y, (x] - - i | [ ] ,

Sin[nv] 2] T[l-v] 7T

where we used the identity
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The small r behavior of G follows

r(d4_1
G- 7]1A27}
JT

251 (k)29 (2.4)

To fix A we use Gauss theorem for a small sphere S of radius R enclosing the origin

fe]
Jvzr“‘ = J — %9 - R 2-d) R = —(d-2) Qq.
IS s Or
Qq isthe solid anglein d dimensions
27Td/2
Q4 = p
r3]

Using the Gauss theorem on the equation (1) one sees that the singular term in G must be

- 2m ,L r2-d
h? (d-2) Qq
One gets easily
12m k92 12m k942 1
A= - Gl = - (k) HY k) (2.5)
i n2  fa1, %4 i p2  2a,.%a .
2 22 T2 T 22
In particular for d = 3, using
2
HY (x] = -1 | — efX
2 T X
one recovers the known result
m elkl’
Gir] = - . (2.6)
2nn? 1

Problem 3

Compute the Green function for a particle in one dimension in a potential V[X] = g §[X] solving (E-H)G=1 in the x representation and verify the
result by considering H eigenstates. Compute the spectral density g[E]. Verify the relation between g[E] and scattering phases by computing the
transmission and reflection coefficients.

® Solution

The Hamiltonian for the problem is

2

H= —+g6&[x]. (3.1)
2m
The equation for the Green function G is
d? 2m 2 mg ) n? g2
—+q?|G= — 6 (x-y) + 5[x] G[O]; with E = ——. (3.2)
dx? 72 H2 2m

Note that the equation is not translation invariant. In the free particle case afunction Exp[i q [x-y|] gave rise to asingularity 6[x-y]. The equation (2)
hastwo § singularitiesin x=y and x=0. It isthen natural to look for solutionsin the form

G[x, y] = AetdX¥l L Betd Xl 3.3
y

The derivatives give

d2
2+q2] G[X, Y] = 2iqAS[x-y] + 2iqB&[x].
dx

By substitution in (2) we see that the equation is satisfied for
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A = m ; 8:72/3A etdvl; BE@.
in?q 2(igq - B) n?

B plays the role of amomentum scale. Thefina form of Gis

m ‘ el (IXI+1y])
G[X, y] = efd Xyl o | (3.4)
in®q 121
B
m  Analytic properties
Our conventions for the cut in the square root function are
q2
hq = -i+-2mE; E= —; physicasheet: Im[q] > O (firstRiemannsheeti n E). (3.5)
2m

The function G is expressed through g then has a cut in the complex plane E. The cut isfor Re[E] > 0.

Thefunction Gin (4) has apoleatq=-1p.
a. If 3> 0 (repulsive potential) the poleisin the second sheet of complex plane E (Im[q] < 0)
b. If 3 < O (attractive potential) the pole isin the physical sheet and corresponds to a bound state with energy

72 qZ 72 [32

Bp = — =- ——.
2m 2m
For attractive potential near the pole, (4) becomes
m e |BLUXI+IYI) ‘/3| e |BIUXI+IY])
G[X, y] ~ = ) (3.6)
i n? q+1if E-E

The residue at the pole gives the wave function of the bound state (see below).
m Spectral density
Spectral density is defined by
1
g[E] :7;Im[Tr [GIE]]] = QolE] + o9 [E] (3.7)

go isthe density of statesfor afree particle. The operation Tr means x=y and integration of (4).

Theintegration of the first term in (4) gives the known result for go (see also the text):

m m 1
9o [E] = V VAL (3.8)

mh?q h xa2E

The second term can be integrated withq - q + 1 e (upper side of the cut in thefirst sheet of E-plane) and then taking the limit e—0:

4o i
J dx @iz (g+ie) [X| _ .
. q

Substitution in g gives

1 [ m 1 m 1
6g[E] = - —Im|- = .
n R 1o ar2qp g9 (3.9)

m Scattering phases and spectral density

In the text it has been shown that the scattering phases 6[E] are related to 6g by

1 ds5[E]

S9[E] = —
7 dE

(3. 10)

To compute 5[ E] we can consider the regular solution of the equation or compute the transmission and reflection coefficients.
o Regular solutions

Inthetext it is shown that even and odd solutions have respectively the asymptotic forms

Ye[X] - COS[QX +6el; Yo[X] —» Sin[gXx+do]. (3.11)
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By imposing the continuity of i and the correct discontinuity inx=0, ¢’ [0], - ¥’ [0] _ = A% 2 mg oneeasily obtains
: ) B
-29Sin(de] =2BC0S[6e]; SinN[S] =0; = 6=0; Tan[e] = -—.
q
By aderivative
£ 0 £ 1 m dée m 1
69, [E] = 0; 69.[E] = — — = )
° ° nontq dg rnlqp g, @
/52
in agreement with eq.(9).
o Transmission and reflection coefficients
The transmission and reflection coefficients Ar and A are found by solving the Schrédinger equation with the boundary conditions
Xx<0: "9 4 Age 9% x>0: AreldX.
Imposing the continuity of ¢ and the discontinuity of 2 3 ¢ [0]on the derivative, it isfound
ig B
Ar = ;o AR= . (3.12)
iq-p iq-p
The potential is even, and in the text it has been shown that in this case one has
m 1 d m 1 d
659 = -1 — (Ar+AR); 69, = -1 — (At -AR). (3.13)
2n%q Ar+Ar dq 2n?q Ar-Az dg
By substitution we get
m 1
69, [E] = 0; 69, [E] = 5 o
T h q I6] 1+ l
/32
in agreement with the previous results.
As expected only the density of even states is changed. For odd states vanishing at x=0 the perturbation g §[x] has no effects.
m  Sum of eigenfunctions
One can obtain the result (4) also by a more complex computation, from the knowledge of the eigenfunctions of the problem.
A set of eigenfunctions for our problem is (see text)
1 ) ) 1
WRIX] = —— (¥ - Flk] e** X}, ypx] = —— (e%* - FLk] etk X)), (3.14)
V2 V2
where
1 2
Fik] = ; Fl-k] = F'[k]; F+F = = 2|F|%. (3.15)
1-1i -~ 1+ %
52
These functions are normalized to 5 [k - k’Jand k> 0.
1. If g > 0 the spectrum is continuous, and (14) are a complete set.
2. If g < Othereisabund state with energy and eigenvalue
n? 32
Eo=-—— dolx] =+ B e!PIX
2m
The Green function by definitionis
Yo [X] U5 Y]
i vy )
E+ie - F
_ _ (3.16)
2m (= URIXTURIYT + vk XD ukly]  2m B | e /AIUXIYD
= dk - 6[-B].

n? Jo g% +ie - k? n? B%+ g?

The last term gives a contribution only for g < 0 and in this case it reproduces the result (6).
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In expanding the productsin (16) it is convenient to consider severa cases

o X,y>0,0rx,y<0

— . 1 . . ) )
VEDXTURIY ]+ UkIXT i ly] = o (TP e PO - Bk et R 0 - B kg e ),
T

Due to properties (15) of F[K] this expression is symmetric in k — - k then the integral in (16) can be extended to the whole k-axis. The continuum
contribution is
2m = dk etk (x-y) 1 elk (x+y)

Gt:ont = -0 — -

w2 Jo 27 | K2-q? +ie 1_j%k2—q2+]'1€

Thefirst integral haspolesink = + q + 1 e withresidues +1 / 2 q respectively. The integration path is closed in the region Im[K]>0 or Im[k]<O if
thesign of x-y is+ 1. One hasin any case, as the reader can easily check
o dk etk (x-y) i )
i - elalxyl, (3.17)
021 k?2-¢%+ie 2q
This term is the free propagator. The second term has an additional pole in k = -1 3 which contributes only for x +y < 0 if 3 > 0, otherwise it
givesacontribution also for X +y > 0. The second contribution to the continuum part of G isthen

B>0: -1

1 _ o181 (x+y)
B<0: —Jiiqe“q(’“y) - 1Bl — 5
1—]'15 B+ q

The whole expression for the continuum part becomes
el (IXI+1yD) 2m B e lBIUXIsIyD

etd Xyl o + 6[-B]
in?q id-1 n? B+ q?

Gtont =

For x, y < 0 the computation isidentical. By summing the possible contribution of the bound state we cancel the last term above and get

‘ @i (XI41yD)
Qi Xyl

22 .

ihn°q ]1%— 1

G[X! y} =

o x,>0>y >0, or y>0>x

We leave to the reader the exercise to show that by using the relations (15) the same expression holds in this region, reproducing (4).

Problem 4

Compute the Green function for a particle in one dimension in a potential V[X] = g d[x-a] + g d[x+a] solving (E-H)G=1 in the x representation.
Verify the analyticity properties in the complex E plane and compute the parameters for resonant states. Compare the results with the Gamow Segert
approach. Compute the spectral density g[ E] from G and verify the result by using the scattering phases.

@® Solution
The Hamiltonian of our problem is
2
H= —+gé[x-a] + g&[x+a] (4.1)
2m

The equation for the Green function reads

d? 2m 2 mg
+k2|G= — 6 (x-y) + (6[x -a] Gla] +6[x +a] G[-a]). (4.2)
dx? 2 2
We write
n? k2 mg
E=- —; B= —.
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We look for asolution in the form
G[X, y] = Aeik‘x’y‘ + By elk\ma\ + By elk‘X*ﬁ\-
Using
Ox | X | = e[X]; Oxelx] = 258[X];
substitution in (2) gives
m

A = ;
ih?k

<eik\y+a\ (B—]ik) _ BQZIkaeik‘y’aw

Bi= -ifAe2ika

(2BSin[ka] +ketka) QBCbswa]fjkeﬂkﬂ' (4.3)
‘ <eik\y—a\ (/S—Jik) _6621kaeik\yAa\)
Bzz_jBAe—ana . - )
(258nuka]+keﬂkﬂ @B(hsﬂa]—jkeﬂkﬂ
m  Analytic properties
The propagator has singularities in the k-plane at the origin, and at zeros in the denominatorsin (3), polesin E.
In the E-plane there is a cut on the real positive axis and poles at
2BCoska] - ike'k?=0 = (25 - ik)Cos[ka] - kSin[ka] = 0; (4.4)
2pSinfkal + ke'k?2 =0 = (28 - 1ik)Sin[ka] + kCos[ka] = O. '
Withk a = x + 1 y thetwo equations for the poles can be written as
y=-Ba(l+e?¥Cos[2x] y=Ba (e?YCos[2x] -1) (4.5)

{x:/saSin[Zx}e’zy 7 { X=-BaSin[2x]e?y
Let us consider the attractive and the repulsive case.
1. For B> 0 (repulsive potentials) the solutions do not have solutionsfory > 0. Infact, ify > O then | e"2Y Cos [2x] | < landtheequations
imply y < 0. G hasno polein the physical sheet Im[k]>0.
2. For B <0thereare solutions with x=0 and y>0, y is given by

yo|Blafiee)i oy [slafi-e).

These solutions with purely imaginary k correspond to negative energies, i.e. poles on the negative rea axisin the E plane. Asy>0 the solutions
are on the first Riemann sheet.

3. Forx 0 wenotethat if x isasolution, then also -x is. To look for solutionsis enough to consider positive x. Instead of along discussion let us
give agraph of the solution for the first of eq.(5).

y

N S T
7a5§
-10f
-15f
20}
-25f

-30[

It is apparent that y < 0 for al B. In conclusion
1. For 3 >0 Ghasno singularity on the physical sheet | m{k] > 0 andfor 3 < O theonly singularities are polesontheaxisRe [k] = 0, i.e.

bound states with negative energy.
2. Inthenon physical sheet | m[k] < Othere are singularities, corresponding to metastable states. The position of these singularities is the same as

that found in solving the same problem with Gamow-Siegert method (see prob.6 in chapl1, [prob6Chapl11] ). We refer to that problem for a
more detailed analysis of the metastable states.
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m The spectral density

The spectral density is defined by

1
g[E] =- —Im[Tr [G[E]]] = do[E] + 69[E] (4.6)

s
go isthe density of states for a free particle. The operation Tr means x=y and integration in (2). The first term gives the free particle contribution, see

also the previous problem. V isthe volume:
m vm 1
go[E] =V =V— : (4.7)
nh?q b x2E

The second term can be integrated by writing k - k + ie (upper side of the cut) and then taking the limite - 0. Using

4o i
| 1= Li mJ dx e]’lZ (k+i e) |x+a| - -

e-0 k
|2 —Lim Aoodlx eil (k+ie) (|x+al+|x-al) - eZJika 1+2ka_
e-0 © k
one gets easily
2mp (i (B-1ik) - e*i@kK (2ak + i) B)
Tr [6G[E] ] =

i A2 k2 e4iak/327(57]-lk)2

and finally after some simplifications

1
SQ[E] = -—1Im[Tr [6G[E]]] =
7T

2mp (-2ap®+p7 - (B+2a (k?-p?)) Cos[4ak] s - k (4ap-1)Sin(4ak]p + k?) (9
nh? K k*+2p2k?+4p°kSin[4ka) +2p*+2p2 (k? - g?) Cos [4ak]
A typical behavior of 5g with peaks corresponding to resonant states is shown in the figure below.
pa=25
09(E)
at
3t
2f
1
\\/\AA\ . Kka
: // ~—2— 3 4 5 6
1L
m Scattering phases
In the text it has been shown that the scattering phases §[E] are related to g by
1 ds[E]
59[E] = — _ (4.9)
7 dE
To compute §[E] we can consider the regular solutions of the equation.
Inthetext it is shown that even and odd solutions have respectively the asymptotic form
Ye[X] - Cos[gX +be]l; Yo[X] » Sin[gx +5o]. (4.10)

It is sufficient to consider the positive values of x. Inthetwo regions0 < x < a and x > a the two solutions have the form
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ACos [k x] ASinkx]
L//e = { ; o= { . ;
Cos [K X + &e] Sin[kx + &o]
By imposing the continuity of i at x=a and the correct discontinuity 28 y/[a] for the derivative one easily obtains
k

}; 6= -ak + AAicTan| —M|. (4.11)
23 + k Cot [ak]

-2B + kTan[ak]
k

Se= —ak + ArcTan[

The spectral density iswritten as

1 d&[E] 1 dé&g[E]
59 (E] = — + = =
7T dE 7T dE

2mpa -2ap + 2akTan[ak] +1 2apB + 2akCot[ak] -1

nh?k (Tan[ak]®k2+ k2 -4k Tan[ak] +43% Cot [ak]®k?+ k2 +4 3k Cot [ak] +4 32

After some (boring) simplifications this expression is shown to be equal to equal to (8).

Problem 5

Compute the eigenvalues for a free particle in a volume bounded by a parallelepiped with edges (a,b,c) and verify the form of the Weyl expansion.

® Solution

In three dimensions Weyl's formula gives for the asymptotic number of the eigenvalues of afree particle

3/2
/ S

VVE - —
16

1/2
1

VE

V isthe volume, S the surface and C the mean curvature. The last term changesif cusps are present, so we shall not consider it.

dN 1
—=90[El = —
dE 4 72

2m C

72

2m

72

.. (5.1)

+

-

1272 | n?

The definition of g[E] is
glE] =) SIE-E .
It is convenient to work with the Laplace transformation of g (see text)
Z18) :LEXp[—BEJg[E]dJE:ZExm—BEJ. (5.2)

Z isthe tatistical partition function of the system, and the high energy behavior of g[E] isrelated to the small 8 behavior of Z[3].

The eigenstates can be classified by threeintegersni, n,, nsz and the eigenvaluesof H are

n? (n*n? 7?n3 7% n3
En,npng = — + + . (5.3)
2m a2 b2 C2
Using the definition of multiplication of two seriesit follows from (2) :
Z[B] = ) EXP[-BEn,n,n) = Zila, B] Zilb, B] Zilc, BI; (5.4)
N1, N2, N3
where
® "2 72 n2 o "2 72 n2
Zy[a, B] = Exp|- 8 — = Exp|- B8 — - 1. 5.5
! ; [ 2m a2 } ; [ 2m a? ( )

The sum in (5) can be estimated with the Euler-McL aurin formula
1

n a0
Zf[n]:Jf[x}dlx+ “f[0] +...0(f)
0 0 2

In our case f[x]~ Exp[-8 x2] and the correction terms are depressed by powers of 8. A trivial integration gives

1 :l./2a \/7
-3

aplz 2

® n? % n? 2m
Zila, 6= | anExp[-p
0 2m a?

1
i (5. 6)
2

2
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Inserting thisresult in (4) we get, at first two orders at low j:

2m¥? abc 1(2m 1
Z[8] = T] 735*3/2_7 — | — (ab +ac+ bc) st
h (27 208 (2
As
V =abc; S=2(@b +ac+bc);
we have
2m¥2 v 1(2m 1 s
Z[B] = — 73/373/2_7 —|——= 1
h (27 2B (ay)" 2
To get g[E] from Z[B] we have to take the inverse Laplace transform of this result. Thisis easily done by noticing that
Eu—l
Lp[E*] :JdlEe’BEEa’lzﬁ’o‘T[a} > LEHBH) = )
T[u]
In particular
E1/2 2
£ [p%2] - _ NI L [BY] = 1
rid] Vn
Taking the inverse Laplace transform in (8)
2my¥? 2m) S
glE] = |—| EY2 - | — +
n? 4 n? n? ) 16 7
in agreement with Weyl's formula.
The number of statesis
E 2m%2 2 Y 2m) S
N[E]:Jg[x}dx: — —B2 (7 -
0 n2 3 4 72 n2 ) 167

Problem 6

Show that in the pole approximation for a decay state y for all t

Polt] + ) Psft] = 1.
S

@ Solution
We use the notation of the text. The survival probability is

Pu[t] = EXp[-T't /h];

where the line width T is given by
r=>1¢s | RIE] | x)1?275[Ea-Es].
S

Er is the resonance energy and R[E] is the decay matrix.

The states are classified by energy and some other quantum numbers, @ and

Z = ng{a, E] dE
S o

where g[a,E] isthe density of statesin dE around E. Then T iswritten explicitly as

r=>'1¢a Br| RIE] | x){? 27g[o, Eg].

(5.7)

(5.8)

(5.9)

(5. 10)

(5.11)

(6.1)

(6.2)

(6.3)

(6. 4)



Problems_chap13.nb | 11

In thetext it is shown that

) 1+ e—Ft/h_ze—Fl/ZszDS[(ER_E>t/h1
Psx[t]1=1(s | RIE] | x) | . (6.5)

(E-Er)?+

This expression has polesin E = Eg + i I'/2. In the pole approximation we can write (with < E)

) 1+ e—rt/hize—rt/ZhQ)s[(ERiE)t/h]
D' Ps(t] =)' gla, Er] [¢ o Er| R[ER] | x)|* |dE . (6. 6)
S [

2

(E-Er)%+

Thefirst two termsin the integral can be computed with Jordan lemma as integralsin the complex E-plane closing the contour at infinity

1+ Tt/ 1 27
dE | —————| = (1+ e™/") 2 i = — (1+ e, (6.7)
(E-Er)%+ = 2iz T
4 2

The third integral can be written

JdE 20C0s[(Er-E)t /h) JdE 1 (e €80t i Rt
(E-ER)2+%2 (E-ER)2+F4i

In applying Jordan lemmafor t > O the first integral must be closed in the upper half plane (Im[E]>0) while the second in the lower half plane, then

efl"t /2h (E’Ft /2h

2Cos[(Er-E)t /h
JdlE WEEL o -2 - - Lz (6.8)
(E,ER>2+T‘TZ 211; —21‘1% T
Inserting (7) and (8) in eq.(6) we have, using (4)
2 2 -Tt /h -Tt /h -Tt /h
D'Ps(t] = )'gla, Er] {¢ o Er| RIER] | x) | (LT oz e ™) (1l (6.9)
S a

Thisand (2) verify eq.(1).



