
Problems Chapter 13

                     Quantum                 Mechanics
                       K. Konishi, G. Paffuti

                   

Problem 1

Write the Green function for a free particle in one dimension by solving the equation (E-H)G=1 in the x representation. Verify the result by writing G
as a sum over eigenstates of H.

æ Solution

ã x representation

With E = HÑ kL2 �2 m the equation for the Green function in one dimension is

(1.1)
Ñ2 k2

2 m
+

Ñ2

2 m
 
d2

dx
2

 G@x - yD = ∆@x - yD.
The solution with a divergent (i.e. expanding) wave as boundary condition is

(1.2)G@k; x, yD = G@k; x - yD =
1

2 ä k
 
2 m

Ñ2
Exp@ä k È x - y ÈD;

with

k = ä
1

Ñ

 -2 m E ; k > 0 for E > 0.

To check the result first we remember that

Ε@xD º Sign@xD = : +1; x > 0

-1; x < 0
; Ε

¢@xD = 2 ∆@xD.
The first derivatives of G are (we omit the k argument as it is kept fixed below)

G¢@xD =
1

2 ä k
 
2 m

Ñ2
ä k Ε@xD ã

ä k ÈxÈ;

G¢¢@xD =
1

2 ä k
 
2 m

Ñ2
 I- k2 Ε@xD2 + 2 ä k ∆@xDM ã

ä k ÈxÈ
= - k2 G@xD; c.v.d.

ã k representation

The computation can be performed also in Fourier transform. From eq.(1) using the known prescription äΕ on poles (with Ε ® 0 )

(1.3)G@xD =
2 m

Ñ2
 à âk¢

2 Π
 

ãä k¢ x

k2 + äΕ - k¢2
= -

2 m

Ñ2
 à âk¢

2 Π
 

ãä k¢ x

Hk¢ - k+L Hk¢ - k-L.
Where k±are the poles with positive and negative imaginary part,  respectively. The integral can be evaluated by closing the contour in the complex

plane with a half-circle at infinity and applying the Cauchy theorem. With x > 0 the path must be closed in the half plane Im@kD > 0 while for x < 0

in the region Im@kD < 0. The integral gives immediately (Res is the residue of the integrand)

(1.4)G@xD = 2 Π ä Θ@xD Res@k+D ã
ä k+ x

- 2 Π ä Θ@-xD Res@k-D ã
ä k- x.

Using the values of the poles (remember that Ε ® 0 in all expressions)

k± � ± k2 + äΕ = ± Hk + äΕL
we have



Res@k+D = -
2 m

Ñ2
 
1

2 Π
 

1

k+ - k-

= -
2 m

Ñ2
 
1

2 Π
 
1

2 k
; Res@k-D = -

2 m

Ñ2
 
1

2 Π
 

1

k- - k+

= +
2 m

Ñ2
 
1

2 Π
 
1

2 k
;

and by substitution in (4) we recover the previous result

G@xD = äΘ@xD -
2 m

Ñ2
 
1

2 k
 ã

ä k x
- ä Θ@-xD 

2 m

Ñ2
 
1

2 k
 ã

-ä k x
=

2 m

Ñ2
 

1

2 ä k
 ã

ä k ÈxÈ.

ã Analyticity

Let us note that the analyticity properties (a cut for E > 0) and by definition of the adjoint we must have both

(1.5)Yy É GÖ@ED È  x \ =  Yy É GAã
2 Π ä EE È  x \; Yy É GÖ@ED È  x \ = Yx É G@ED È  y \ *

.

As for E ® ã2 Πä E one has  k ® - k the above relations imply

G@k; x, yD*
= G@-k; y, xD

which is indeed verified with our solution (2).

Problem 2

Write the Green function for a free particle in any dimension solving the equation (E-H)G=1 in the x representation.

æ Solution

We are looking for a (radial symmetric) solution of 

(2.1)ID + k2M G =
2 m

Ñ2
 ∆

HdL@xD.
In dimension d the Laplacian operator has the form

D =
1

rd-1
 

¶

¶r
 rd-1

 
¶

¶r
+ angular terms;

 eq.(1) has the form

(2.2)
1

rd-1
 

¶

¶r
 rd-1

 
¶

¶r
 G@rD + k2 G@rD =

2 m

Ñ2
 ∆

HdL@xD.
In x ¹ 0 by the change of variables

z = k r; G = A z1-
d

2  f@zD
eq.(2) becomes

(2.3)f¢¢@zD +
1

z
 f¢@zD + 1 -

I d

2
- 1M2
z2

 f@zD = 0.

This is a Bessel equation of order d/2-1. The request of outgoing waves selects as a solution the Hankel function H d

2
-1

H1L :

HΝ
H1L@xD = JΝ@xD + ä YΝ@xD;

J, Y being Bessel function of first and second kind. The Green function then has the form

G@rD = A Hk rL1-
d

2  H d

2
-1

H1L @k rD.
The small x behavior of the Hankel function is

HΝ
H1L@xD ~ ä YΝ@xD ~ - ä

1

Sin@Π ΝD  
x

2

-Ν

 
1

G@1 - ΝD = -ä
G@ΝD

Π
 
x

2

-Ν

,

where we used the identity

G@xD G@1 - xD =
Π

Sin@Π xD.
The small r behavior of G follows
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The small r behavior of G follows

(2.4)G ~ -ä A
GA d

2
- 1E

Π
 2

d

2
-1

 Hk rL2-d
.

To fix A we use Gauss theorem for a small sphere S of radius R enclosing the origin

à
S
Ñ
2r2-d

= à
¶S

¶

¶r
 r2-d

= Wd Rd-1
 H2 - dL R1-d

= -Hd - 2L Wd.

Wd is the solid angle in d dimensions

Wd =
2 Πd�2

GA d

2
E .

Using the Gauss theorem on the equation (1) one sees that the singular term in G must be

G ~
2 m

Ñ2
 -

1

Hd - 2L Wd

 r2-d.

One gets easily

(2.5)A =
1

ä
 
2 m

Ñ2

kd-2

Π
d

2
-1

 2
d

2
+1

; G@rD =
1

ä
 
2 m

Ñ2

kd-2

Π
d

2
-1

 2
d

2
+1

Hk rL1-
d

2  H d

2
-1

H1L @k rD.

In particular for d = 3, using

H 1

2

H1L@xD = - ä
2

Π x
ã

ä x;

one recovers the known result

(2.6)G@rD = -
m

2 Π Ñ2
 
ãä k r

r
.

Problem 3

Compute  the  Green function for  a  particle  in one dimension in a  potential  V[x] = g ∆[x]  solving (E-H)G=1 in the x representation and verify  the
result  by  considering  H  eigenstates.  Compute  the  spectral  density  g[E].  Verify  the  relation  between  g[E]  and  scattering  phases  by  computing  the
transmission and reflection coefficients.

æ Solution

The Hamiltonian for the problem is

(3.1)H =
p2

2 m
+ g ∆@xD.

The equation for the Green function G is

(3.2)
d2

dx
2

+ q2  G =
2 m

Ñ2
 ∆ Hx - yL +

2 m g

Ñ2
 ∆@xD G@0D; with E =

Ñ2 q2

2 m
.

Note that the equation is not translation invariant. In the free particle case a function  Exp[ä q |x-y|] gave rise to a singularity ∆[x-y]. The equation (2)
has two ∆ singularities in x=y and x=0.  It is then natural to look for solutions in the form

(3.3)G@x, yD = A ã
ä q Èx-yÈ

+ B ã
ä q ÈxÈ.

The derivatives give

d2

dx
2

+ q2  G @x, yD = 2 ä q A ∆@x - yD + 2 ä q B ∆@xD.
By substitution in (2) we see that the equation is satisfied for
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A =
m

ä Ñ2 q
; B =

2 Β A

2 Hä q - ΒL  ã
ä q ÈyÈ; Β º

m g

Ñ2
.

Β plays the role of a momentum scale. The final form of G is

(3.4)G@x, yD =
m

ä Ñ2 q
 ã

ä q Èx-yÈ
+

ãä q HÈxÈ+ÈyÈL

ä
q

Β
- 1

.

à Analytic properties

Our conventions for the cut in the square root function are

(3.5)Ñ q = - ä -2 m E ; E =
q2

2 m
; physical sheet : Im@qD > 0 Hfirst Riemann sheet in EL.

The function G is expressed through q then has a cut in the complex plane E. The cut is for Re[E] > 0.

The function G in (4) has  a pole at q = -äΒ.

a. If Β > 0 (repulsive potential) the pole is in the second sheet of complex plane E (Im[q] < 0) 

b. If Β < 0 (attractive potential) the pole is in the physical sheet and corresponds to a bound state with energy

E0 =
Ñ2 q2

2 m
= -

Ñ2 Β2

2 m
.

For attractive potential near the pole, (4) becomes

(3.6)G@x, yD ~
m

ä Ñ2
 
ã-ÈΒÈHÈxÈ+ÈyÈL

q + ä Β
>

É Β É ã-ÈΒÈHÈxÈ+ÈyÈL

E - E0
.

The residue at the pole gives the wave function of the bound state (see below).

à Spectral density

Spectral density is defined by

(3.7)g@ED = -
1

Π
Im@Tr@G@EDDD º g0@ED + ∆g@ED

g0 is the density of states for a free particle. The operation Tr means x=y and integration of (4). 

The integration of the first term in (4) gives the known result for g0 (see also the text):

(3.8)g0@ED = V
m

Π Ñ2 q
= V

m

Ñ

 
1

Π 2 E

.

The second term can be integrated with q ® q + ä Ε (upper side of the cut in the first sheet of E-plane) and then taking the limit Ε®0:

à
-¥

+¥

âx ã
ä 2 Hq+äΕLÈxÈ

=
ä

q
.

Substitution in ∆g gives

(3.9)∆g@ED = -
1

Π
ImB-

m

Ñ2 q2
 

1

1 - ä
q

Β

F =
m

Π Ñ2 q Β

 
1

1 +
q2

Β2

.

à Scattering phases and spectral density

In the text it has been shown that the scattering phases ∆[E] are related to ∆g by

(3.10)∆g@ED =
1

Π
 
d ∆@ED
dE

.

To compute ∆[E] we can consider the regular solution of the equation or compute the transmission and  reflection coefficients.

ã Regular solutions

In the text it is shown that even and odd solutions have respectively the asymptotic forms

(3.11)Ψe@xD ® Cos@q x + ∆eD; Ψo@xD ® Sin@q x + ∆oD.
By imposing the continuity of Ψ and the correct discontinuity in x=0, Ψ¢@0D

+
- Ψ¢@0D

-
= Ñ2 2 m g one easily obtains

4   Problems_chap13.nb



By imposing the continuity of Ψ and the correct discontinuity in x=0, Ψ¢@0D
+

- Ψ¢@0D
-

= Ñ2 2 m g one easily obtains

-2 q Sin@∆eD = 2 Β Cos@∆eD; Sin@∆oD = 0; Þ ∆o = 0; Tan@∆eD = -
Β

q
.

By a derivative

∆go@ED = 0; ∆ge@ED =
1

Π
 
m

Ñ2 q
 
d ∆e

dq
=

m

Π Ñ2 q Β

 
1

1 +
q2

Β2

,

in agreement with eq.(9). 

ã Transmission and reflection coefficients

The transmission and reflection coefficients AT and AR are found by solving the Schrödinger equation with the boundary conditions 

x < 0 : ã
ä q x

+ AR ã
-ä q x; x > 0 : AT ã

ä q x.

Imposing the continuity of Ψ and the discontinuity of  2 Β Ψ@0Don the derivative, it is found

(3.12)AT =
ä q

äq - Β
; AR =

Β

äq - Β
.

The potential is even, and in the text it has been shown that in this case one has

(3.13)∆ge = - ä
m

2 Ñ2 q
 

1

AT + AR

d

dq
 HAT + ARL; ∆go = - ä

m

2 Ñ2 q
 

1

AT - AR

d

dq
 HAT - ARL.

By substitution we get

∆go@ED = 0; ∆ge@ED =
m

Π Ñ2 q Β

 
1

1 +
q2

Β2

.

in agreement with the previous results.

As expected only the density of even states is changed. For odd states vanishing at x=0 the perturbation g ∆[x] has no effects.

à Sum of eigenfunctions

One can obtain the result (4) also by a more complex computation, from the knowledge of the eigenfunctions of the problem.

A set of eigenfunctions for our problem is (see text)

(3.14)Ψk
R@xD =

1

2 Π

 Iã
ä k x

- F@kD ã
ä k ÈxÈM; Ψk

L@xD =
1

2 Π

 Iã
-ä k x

- F@kD ã
ä k ÈxÈM.

where

(3.15)F@kD =
1

1 - ä
k

Β

; F@-kD = F*@kD; F + F*
=

2

1 +
k2

Β2

= 2 È F È2 .

These functions are normalized to ∆@k - k¢Dand  k > 0.

1. If g > 0 the spectrum is continuous, and (14) are a complete set.

2. If g < 0there is a bund state with energy and eigenvalue

E0 = -
Ñ2 Β2

2 m
; Ψ0@xD = È Β È ã

-ÈΒÈÈxÈ.

The Green function by definition is

(3.16)

G@x, yD = ã ΨΑ@xD ΨΑ
*@yD

E + äΕ - E¢
=

=
2 m

Ñ2
 à
0

¥

âk
Ψk
R@xD Ψk

R@yD + Ψk
L@xD Ψk

L@yD
q2 + äΕ - k2

-
2 m È Β È

Ñ2
 

ã-ÈΒÈHÈxÈ+ÈyÈL
Β2 + q2

 Θ@-ΒD.
The last term gives a contribution only for  g < 0 and in this case it reproduces the result (6).

In expanding the products in (16) it is convenient to consider several cases
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In expanding the products in (16) it is convenient to consider several cases

ã x, y > 0, or x, y < 0

Ψk
R@xD Ψk

R@yD + Ψk
L@xD Ψk

L@yD =
1

2 Π
 Iã

ä k Hx-yL
+ ã

-ä k Hx-yL
- F@kD ã

ä k Hx+yL
- F*@kD ã

-äk Hx-yLM.
Due to properties (15) of F[k] this expression is symmetric in k ® - k then the integral in (16) can be extended to the whole k-axis. The continuum

contribution is

Gcont = -
2 m

Ñ2
 à
0

¥ âk

2 Π
 

ãä k Hx-yL
k2 - q2 + äΕ

-
1

1 - ä
k

Β

 
ãä k Hx+yL

k2 - q2 + äΕ

.

The first integral has poles in k = ± q ± ä Ε with residues ±1�2 q respectively. The integration path is closed in the region Im[k]>0 or Im[k]<0 if

the sign of x-y is ± 1. One has in any case, as the reader can easily check

(3.17)à
0

¥ âk

2 Π
 

ãä k Hx-yL
k2 - q2 + äΕ

=
ä

2 q
 ã

ä qÈx-yÈ.

This term is the free propagator.  The second term has an additional pole in k = -ä Β  which contributes only for x + y < 0  if   Β > 0,  otherwise it

gives a contribution also for x + y > 0. The second contribution to the continuum part of G is then

Β > 0 : -ä
1

1 - ä
q

Β

ã
ä q Hx+yL

Β < 0 : -ä
1

1 - ä
q

Β

ã
ä q Hx+yL

- ÈΒÈ  
ã-ÈΒÈHx+yL
Β2 + q2

The whole expression for the continuum part becomes

Gcont =
m

ä Ñ2 q
 ã

ä q Èx-yÈ
+

ãä q HÈxÈ+ÈyÈL

ä
q

Β
- 1

+
2 m È Β È

Ñ2
 

ã-ÈΒÈHÈxÈ+ÈyÈL
Β2 + q2

 Θ@-ΒD

For x, y < 0 the computation is identical. By summing the possible contribution of the bound state we cancel the last term above and get

G@x, yD =
m

ä Ñ2 q
 ã

ä q Èx-yÈ
+

ãä q HÈxÈ+ÈyÈL

ä
q

Β
- 1

ã x,>0>y > 0, or  y>0>x

We leave to the reader the exercise to show that by using the relations (15) the same expression holds in this region, reproducing (4).

Problem 4

Compute the Green function for  a  particle  in one dimension in a  potential  V[x] = g ∆[x-a] + g ∆[x+a] solving (E-H)G=1 in the x representation.
Verify the analyticity properties in the complex E plane and compute the parameters for resonant states. Compare the results with the Gamow Siegert
approach. Compute the spectral density g[E] from G and verify the result by using the scattering phases.

æ Solution

The Hamiltonian of our problem is

(4.1)H =
p2

2 m
+ g ∆@x - aD + g ∆@x + aD

The equation for the Green function reads

(4.2)
d2

dx
2

+ k2  G =
2 m

Ñ2
 ∆ Hx - yL +

2 m g

Ñ2
 H∆@x - aD G@aD + ∆@x + aD G@-aDL.

We write

E =
Ñ2 k2

2 m
; Β º

m g

Ñ2
.

We look for a solution in the form
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We look for a solution in the form

G@x, yD = A ã
ä k Èx-yÈ

+ B1 ã
ä k Èx+aÈ

+ B2 ã
ä k Èx-aÈ.

Using

¶x È x È = Ε@xD; ¶xΕ@xD = 2 ∆@xD;
substitution in (2) gives

(4.3)

A =
m

ä Ñ2 k
;

B1 = -ä Β A ã
-2 ä k a

Iãä kÈy+aÈ HΒ - ä kL - Β ã2 äk a ãä k Èy-aÈM
I2 Β Sin@k aD + k ã-ä k aM I2 Β Cos@k aD - ä k ã-ä k aM;

B2 = -ä Β A ã
-2 ä k a

Iãä kÈy-aÈ HΒ - ä kL - Β ã2 äk a ãä k Èy+aÈM
I2 Β Sin@k aD + k ã-ä k aM I2 Β Cos@k aD - ä k ã-ä k aM;

à Analytic properties

The propagator has singularities in the k-plane at the origin, and at zeros in the denominators in (3), poles in E.

In the E-plane there is a cut on the real positive axis and poles at 

(4.4)
2 Β Cos@k aD - ä k ã

-ä k a
= 0 Þ H2 Β - ä kL Cos@k aD - k Sin@k aD = 0;

2 Β Sin@k aD + k ã
-ä k a

= 0 Þ H2 Β - ä kL Sin@k aD + k Cos@k aD = 0.

With k a = x + ä y the two equations for the poles can be written as

(4.5): y = -Β a I1 + ã-2 y Cos@2 xD
x = Β a Sin@2 xD ã-2 y

; : y = Β a Iã-2 y Cos@2 xD - 1M
x = - Β a Sin@2 xD ã-2 y

.

Let us consider the attractive and the repulsive case.

1. For Β > 0 (repulsive potentials) the solutions do not have solutions for y > 0. In fact,  if y > 0 then É ã-2 y Cos@2 xD É < 1and the equations 

imply y < 0. G has no pole in the physical sheet Im[k]>0.

2. For Β < 0 there are solutions with x=0 and y>0, y is given by

y = É Β É a I1 + ã
-2 yM; y = É Β É a I1 - ã

-2 yM.
These solutions with purely imaginary k correspond to negative energies, i.e. poles on the negative real axis in the E plane. As y>0 the solutions 
are on the first Riemann sheet.

3. For x­ 0 we note that if x is a solution, then also -x is. To look for solutions is enough to consider positive x. Instead of a long discussion let us 
give a graph of the solution for the first of eq.(5). 

0.5 1.0 1.5 2.0 2.5 3.0
ÈΒÈ

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

y

It is apparent that y < 0 for all Β. In conclusion

1. For Β > 0  G has no singularity on the physical sheet Im@kD > 0 and for Β < 0 the only singularities are poles on the axis Re@kD = 0, i.e. 

bound states with negative energy.
2. In the non physical sheet Im@kD < 0there are singularities, corresponding to metastable states. The position of these singularities is the same as 

that found in solving the same problem with Gamow-Siegert method (see prob.6 in chap11, [prob6Chap11] ). We refer to that problem for a 
more detailed analysis of the metastable states.

Problems_chap13.nb   7



à The spectral density

The spectral density is defined by

(4.6)g@ED = -
1

Π
Im@Tr@G@EDDD º g0@ED + ∆g@ED

g0 is the density of states for a free particle. The operation Tr means x=y and integration in (2). The first term gives the free particle contribution, see

also the previous problem. V is the volume:

(4.7)g0@ED = V
m

Π Ñ2 q
= V

m

Ñ

 
1

Π 2 E

.

The second term can be integrated by writing k ® k + äΕ (upper side of the cut) and then taking the limit Ε ® 0. Using

I1 = Lim
Ε®0

 à
-¥

+¥

âx ã
ä 2 Hk+ä ΕLÈx±aÈ

=
ä

k
;

I2 = Lim
Ε®0

 à
-¥

+¥

âx ã
ä Hk+ä ΕL HÈx+aÈ+Èx-aÈL

= ã
2 ä k a

 
ä + 2 k a

k
.

one gets easily

Tr@∆G@EDD =
2 m Β

ä Ñ2 k2
 

Iä HΒ - ä kL - ã4 äa k H2 a k + äL ΒM
ã4 ä a k Β2 - HΒ - ä kL2

and finally after some simplifications

(4.8)

∆g@ED = -
1

Π
 Im@Tr@∆G@EDDD =

2 m Β

Π Ñ2 k
 

I-2 a Β3 + Β2 - IΒ + 2 a Ik2 - Β2MM Cos@4 a kD Β - k H4 a Β - 1L Sin@4 a kD Β + k2M
k4 + 2 Β2 k2 + 4 Β3 k Sin@4 k aD + 2 Β4 + 2 Β2 Ik2 - Β2M Cos@4 a kD

A typical behavior of ∆g with peaks corresponding to resonant states is shown in the figure below.

1 2 3 4 5 6
ka

-1

1

2

3

4

∆gHEL Βa = 2.5

à Scattering phases

In the text it has been shown that the scattering phases ∆[E] are related to ∆g by

(4.9)∆g@ED =
1

Π
 
d ∆@ED
dE

.

To compute ∆[E] we can consider the regular solutions of the equation.

In the text it is shown that even and odd solutions have respectively the asymptotic form

(4.10)Ψe@xD ® Cos@q x + ∆eD; Ψo@xD ® Sin@q x + ∆oD.
It is sufficient to consider the positive values of x. In the two regions 0 < x < a and x > a the two solutions have the form
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Ψe = : A Cos@k xD
Cos@k x + ∆eD ; Ψo = : A Sin@k xD

Sin@k x + ∆oD ;

By imposing the continuity of Ψ at x=a and the correct discontinuity 2Β Ψ[a] for the derivative one easily obtains

(4.11)∆e = - a k + ArcTanB -2 Β + k Tan@a kD
k

F; ∆o = - a k + ArcTanB k

2 Β + k Cot@a kD F.
The spectral density is written as

∆g@ED =
1

Π
 
d ∆e@ED

dE
+

1

Π
 
d ∆o@ED

dE
=

=
2 m Β

Π Ñ2 k
 

-2 a Β + 2 a k Tan@a kD + 1

Tan@a kD2 k2 + k2 - 4 Β k Tan@a kD + 4 Β2
-

2 a Β + 2 a k Cot@a kD - 1

Cot@a kD2 k2 + k2 + 4 Β k Cot@a kD + 4 Β2
.

After some (boring) simplifications this expression is shown to be equal to equal to (8).

Problem 5 

Compute the eigenvalues for a free particle in a volume bounded by a parallelepiped with edges (a,b,c) and verify the form of the Weyl expansion.

æ Solution

In three dimensions Weyl's formula gives for the asymptotic number of the eigenvalues of a free particle

(5.1)
dN

dE
= g@ED =

1

4 Π2
 
2 m

Ñ2

3�2
V E -

S

16 Π
 
2 m

Ñ2
+

C

12 Π2
 
2 m

Ñ2

1�2
 
1

E
+ ...

V is the volume, S the surface and C the mean curvature. The last term changes if cusps are present, so we shall not consider it.

The definition of g[E] is

g@ED = â ∆@E - EiD.
It is convenient to work with the Laplace transformation of g (see text)

(5.2)Z@ΒD = à
0

¥

Exp@-Β ED g@ED âE = â Exp@-Β EiD.
Z is the statistical partition function of the system, and the high energy behavior of g[E] is related to the small Β behavior of Z[Β].

The eigenstates can be classified by three integers n1, n2, n3 and the eigenvalues of H are 

(5.3)En1,n2,n3 =
Ñ2

2 m
 

Π2 n1
2

a2
+

Π2 n2
2

b2
+

Π2 n3
2

c2
.

Using the definition of multiplication of two series it follows from (2) :

(5.4)Z@ΒD = â
n1,n2,n3

Exp@-Β En1,n2,n3D = Z1@a, ΒD Z1@b, ΒD Z1@c, ΒD;
where

(5.5)Z1@a, ΒD = â
1

¥

ExpB- Β
Ñ2

2 m
 
Π2 n2

a2
F = â

0

¥

ExpB- Β
Ñ2

2 m
 
Π2 n2

a2
F - 1 .

The sum in (5) can be estimated with the Euler-McLaurin formula:

â
0

n

f@nD = à
0

¥

f@xD âx +
1

2
 f@0D + ... O Hf¢L

In our case f[x]~ Exp[-Β x2] and the correction terms are depressed by powers of Β. A trivial integration gives

(5.6)Z1@a, ΒD > à
0

¥

ân ExpB- Β
Ñ2

2 m
 
Π2 n2

a2
F -

1

2
=

2 m

Ñ2

1�2
a

Π Β1�2  
Π

2
-

1

2
.

Inserting this result in (4) we get, at first two orders at low Β:
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Inserting this result in (4) we get, at first two orders at low Β:

(5.7)Z@ΒD >
2 m

Ñ2

3�2
a b c

J2 Π N3
 Β

-3�2
-

1

2
 
2 m

Ñ2
 

1

J2 Π N2
 Ha b + a c + b cL Β

-1.

As 

V = a b c; S = 2 Ha b + a c + b cL;
we have

(5.8)Z@ΒD >
2 m

Ñ2

3�2
V

J2 Π N3
 Β

-3�2
-

1

2
 
2 m

Ñ2
 

1

J2 Π N2
 
S

2
 Β

-1.

To get g[E] from Z[Β] we have to take the inverse Laplace transform of this result. This is easily done by noticing that

(5.9)LΒAEΑ-1E = à âE ã
-Β E

 EΑ-1
= Β

-Α
 G@ΑD Þ LE

-1@Β
-ΜD =

EΜ-1

G@ΜD.
In particular

LE
-1AΒ

-3�2E =
E1�2

GA 3

2
E =

2

Π

 E ; LE
-1AΒ

-1E = 1.

Taking the inverse Laplace transform in (8)

(5.10)g@ED >
2 m

Ñ2

3�2
E1�2 V

4 Π2
-

2 m

Ñ2
 
S

16 Π
+ ...

in agreement with Weyl's formula.

The number of states is

(5.11)N@ED = à
0

E

g@xD dx =
2 m

Ñ2

3�2
2

3
 E3�2 V

4 Π2
-

2 m

Ñ2
 
S

16 Π
 E.

Problem 6

Show that in the pole approximation for a decay state Χ for all t 

(6.1)PΧΧ@tD + â
s

PsΧ@tD = 1.

æ Solution

We use the notation of the text. The survival probability is

(6.2)PΧΧ@tD = Exp@-G t� ÑD;
where the line width G is given by

(6.3)G = â
s

 X  s È  R@ERD È  Χ \¤2 2 Π ∆@ER - EsD.
ER is the resonance energy and R[E] is the decay matrix.  

The states are classified by energy and some other quantum numbers, Α and

â
s

º â
Α

à g@Α, ED âE

 where g[Α,E] is the density of states in dE around E. Then G is written explicitly as

(6.4)G = â
Α

 X  Α, ER È  R@ERD È  Χ \¤2 2 Π g@Α, ERD.
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In the text it is shown that

(6.5)PsΧ@tD =  X  s È  R@ED È  Χ \¤2 
1 + ã-Gt�Ñ - 2 ã-Gt�2 Ñ Cos@HER - EL t� ÑD

HE - ERL2 +
G2

4

.

This expression has poles in E = ER ± ä G/2. In the pole approximation we can write (with G` E )

(6.6)â
s

PsΧ@tD = â
Α

g@Α, ERD  X  Α, ER È  R@ERD È  Χ \¤2 á âE
1 + ã-Gt�Ñ - 2 ã-Gt�2 Ñ Cos@HER - EL t� ÑD

HE - ERL2 +
G2

4

.

The first two terms in the integral can be computed with Jordan lemma as integrals in the complex E-plane closing the contour at infinity

(6.7)á âE
1 + ã-Gt�Ñ

HE - ERL2 +
G2

4

= I1 + ã
-Gt�ÑM 2 Π i

1

2 ä
G

2

=
2 Π

G
 I1 + ã

-Gt�ÑM.

The third integral can be written

á âE
2 Cos@HER - EL t� ÑD

HE - ERL2 +
G2

4

= á âE
1

HE - ERL2 +
G2

4

 Iã
ä HE-ERL t�Ñ

+ ã
-ä HE-ERL t�ÑM.

In applying Jordan lemma for t > 0 the first integral must be closed in the upper half plane (Im[E]>0) while the second in the lower half plane, then

(6.8)á âE
2 Cos@HER - EL t� ÑD

HE - ERL2 +
G2

4

= 2 Π i 
ã-Gt�2 Ñ

2 ä
G

2

- 2 Πä
ã-Gt�2 Ñ

-2 ä
G

2

= -
4 Π

G
ã

-Gt�2 Ñ

Inserting (7) and (8) in eq.(6) we have, using (4)

(6.9)â
s

PsΧ@tD = â
Α

g@Α, ERD  X  Α, ER È  R@ERD È  Χ \¤2 2 Π

G
I1 + ã

-Gt�Ñ
- 2 ã

-Gt�ÑM = I1 - ã
-Gt�ÑM.

This and (2) verify eq.(1).
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