Problems Chapter 14

Quantum M echanics
K. Konishi, G. Paffuti

I Problem 1

Compute in dipole approximation the lifetime of the excited state 2p of hydrogen atom. Why does spin not affect the computation?

® Solution
In thefirst part of the problem we neglect spin.

A 2p state has angular momentum 1 and parity -1, the ground state 1s has angular momentum O and parity +1, the transition 2p—1s is allowed
(electric dipole transition).

In the text (see also the complements to chap.14) it is shown that the amplitude for atransition b—aty is, in dipole approximation
e X . Wba .
M =—g<a:f Ip-A[X] by i) = —anauf | A[O] | ). (1.1)
i, f aretheinitial and final states of the radiation field. b,athe initial and final states of the atom. In the process 2p— 1s+y the relevant radiation matrix

element is the onefor the creation of a photon, with momentum k and polarization A, starting from the vacuum:
cl4probleq2

47c?h
(k, A | A[0] | 0) = ex. (1.2)
2w
Thefactorsin (2) takes care of our normalization convention for the photon states:
(ke 2|k, 2y = @m°68% (k-K') 65,5 (1.3)
and of the CGS units.
The Fermi golden rule gives directly the probability of the decay per unit time:
27 wha , 2nc?n d3 k
dr = —— — | dap - €] | & (Ep - Ea- hw) : (1.4)
h c? w 2m?

With k = w/c we can easily integrate the ¢ factor and obtain the probability of decay per second and solid angle of the y:

cl4probleg4
3
Wha

dr = | dap - € |2 do. (1.5)

2nhcs

In (5) we have the product

IDe 12 =DDee; DO=<(ald |b).

Inthe general casethe matrix €; ¢ isthe density matrix for the photon
i € - pi(f). (1.6)

To compute the width of the state we have to sum over the final photon's polarizations, or equivalently take the average and multiply by afactor 2 (the
number of independent polarizations). The matrix element for the unpolarized photonsis

cl4probleq?

<5ij*ni nj); np= ——. (1.7

)
o}’ =
k|

N | -

In fact the matrix (7) is amultiple of the identity matrix in a plane orthogona to the direction n of the photon, describing a mixed state with probabil -
ity /2 on two orthogonal directions perpendicular to n. By substitution and summing on final polarizations:
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3 3
Wha ) . Wha .
dr=720ij QD,dezimj—ni nj)QD,de.
2rncd 2nncd

The angular integral on the photon' s direction is easily done by using

1
Jdeéij:“'ﬂéij; Jdeni n; :47T7§ij.
3

The resulting width is

cl4probleq8
2 wp 4 o
a a
r:fdr=74ﬂ7qq*=f DD. (1.8)
3 2nhct 3 nct

The formula (8) verify theimportant property: the width is equal for all statesin the 2p level. The simplest check isto write explicitly
DO =<b|(di|a)ald) |b).

The operator enclosed in parenthesis, (di | a) (a | dj) is clearly invariant under rotations, as such its matrix elements do not depend on the
particular 2p state considered. The reader can easily check that the same proof works for every decay, once the summation on the fina state | a) is
performed.
Due to invariance we can choose an arbitrary 2p state to compute I, forinstance | 2 p, L, = 0). From the Wigner-Eckart theorem (selection rules
on the dipole operator) in the matrix element

D =<1s|di)[2p, L;=0),

only the z component of the dipole is different from zero. With the known wave functions

_ -r/a _ 1 -r/a. _ 1 1 L -r/2a _ 1 1 _ a-T/2a .
Yis = 2e Yoo = e % Y2p 0= — — —e Yo = — —— —e Cos [0];

Jad rad Jaz 2Ve @ Jaz 4V2n 2

weget, withd, =ez =er Cos O]

1 r2 28

1
D, = eJerlr do — — — 3238 Cps[p]? = ea;
a® 452 @ 352
and finally
217 wga 17 wga e2?
r= — e?a?= —oa?—; a= —. (1.9)
311 58 311 c3 Ac

Using the explicit value for the transition frequency

13 e? n?
Eb-Ba=fwpa= - — —; a=—;
24 a me?
we have
21% _mc2 1 o "
T = {— o® — ~0.63GH; t© = —=1.5910" sec. ; Texp = (1.60+0.01) 107 sec.
3 h T
o Spin

In the dipole approximation the interaction hamiltonian commutes with the spin. Thusif @, 8 denote the spin states

cl4probleql0
Meo = (1s, BIH |2p, a) = M. (1.10)

In the definition of I we have to sum over the final states
dr = Z | Mgo |2 da.
2
The spin independence (10) imply that only the term « = 8 is different from zero and one recovers the previous result.

This property works for all quantum numbers commuting with H, , for instance the nuclear spin.

If we include the spin in the definition of eigenstates of unperturbed Hamiltonian, i.e. we take into account the spin-orbit interaction, the property (10)
continues to hold but the states now will be written as a superpositions of different spin states, as
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W) = Dcal2p, a).

This is true both for the decaying state and final states. For instance we have to specify if the 2p state is 2 py,, or 2 p3,,. For example, the total
transition probability for 3s»2p transition is

T3ss2p = I'[3S > 2pa1y2] + T'[3S>2p32].

Problem 2

Let us consider an ensemble of hydrogen atoms in a 2p state, polarized along an axis, let us say the z axis. Compute the angular distribution of
emitted photons in the transition 2p—2s and their polarizations.

® Solution
In previous problem it has been shown that the decay probability per second, per sterad and for a given photon polarization is
cl4prob2eql

3

Wha
dr =

" S | dap - €} |2 do. (2.1)
mThc

If we do not measure the final polarizations we have (see previous problem)

3 3
Wha ) Wha
drzizpij qDl*de: (6ijfni nj)QD,*de.
2rncd 2nncd
3
4 wpa
r = — .
3 ncd

Let us now take into account the polarizations. Let us suppose that some z axis has been defined and choose a (x,y) plane to fix our reference frame.
With the polar and azimuthal angles 6, ¢ the photon directionis

n = (Sin(e] Cos[¢], Sin[6] Sin[e], Cos[O]).

The following computations can be done or by decomposing the dipole operator in spherical components and applying the Wigner Eckart theorem or
by parametrizing the 2p states as follows. The three possible 2p states have awave function (misthe eigenvalue of L,):

X+ iy

V2

m=0: zf[r]; m==z1:

fr].

Thisiseasily checked using the spherical harmonics. We have immediately:

D-(2s|d; [2p, 0); <(2s|dyx|2p, 0)=(2s]|dy|2p, 0O) = O;
(2.2)

1
(2s|d; |2p, 1) = 0; (2s|dc|2p, 1) = —D; (2s|dy|2p 1) =i
V2 V2

Let us note that

(25 |dy+idy|2p, 1) = 0; (2s|de-idy|2p, 1) = +/2 D20

in agreement with selections rules on angular momentum. If we call ey, ey, e, theunit vectorsaong the three axes, the previous relations can be

also written as
cl4prob2eq3
D
(2s|d|2p, 0) =De,; (2s]d|2p, 1) = — (e +iey). (2.3)
V2
The angular distribution of photons for decay of polarized states take now the form
3 3
Wh Wh 3 de
dri(2p, 0) »1s] = 2 ([d|?- 1d-n|?)da = . Dz(l—Oos[e]z)de:F——Sin[e]z; (2.4)
2nncd 2nncd 2 4n
3 2
wh 1 3 do (1+Cos[o]
dri2p, 1) »1s] = ° 1-— (nf+nd)|do = r——g. (2.5)
2nncd 2 2 4 2

Integrating both expressions gives I as result, confirming the independence of the total width from the decaying state.
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Photon polarization

To study the photon polarization let us consider a reference system (¢, 17, { ) where £ is directed along n, and the £ axis is on the plane z-n. One get
easily the three associated unit vectors:

e-=n = (Sin[e] Cos[e], Sin[e] Sin[e], Cos[O]);

€rnr €y .

e - — - (Sin[e], -Cos[], 0); (2.6)
‘eg/\ e, |

e: - e, ~e. - (-Cos[6] Coslo], -Cos[0] Sin[e], Sinfe]);

One can consider as an instance rectilinear polarizations, likee: = €. , €, = e, or circular polarizations, as

1 1
e,= — (e +iey); e = — (e -ie,).
V2 V2
1. Inthedecay (2p,0) » 1swe have seenthat d = D e, then for the amplitudes

e;-d = DSin[e]; e€;,-d=0.

The photon has arectilinear polarization in the z-n plane and the probability of the decay is proportional to the square of the amplitude, i.e. D?

Sin[e] %in agreement with our previous results.
This decay corresponds classically to an oscillation along z axis.

2. Inthedecay (2p,1) - 1sthe dipole matrix element is given by (3) and we have the two amplitudes

D

A = (e)"d=— (e -ie,;) (ex +iey) = > (1+Cos[O]) e'?;

(2.7)
(1-Cos[o]) et .

A = (e)*d = (ec +ie,) (ex -iey) =

NI ON| O

D
2
The probabilities, with C a common factor, are

(1- Cos[e])";

&~ Q

D2 2
P, =C— (1+ Cos[©]); P.=C
4
The angular distribution, summing over the final photon polarizations, is

P=P. +P «1+Cos[o]?;
in agreement with the previous results. The probabilities P. give, for agiven measure, the probability to detect a+ or - polarization. We can
define amean polarization degree by

P, -P_ 2 Cos [9]
£ = = .

P, +P. 1+ Cos[0]?
Classically ¢ gives the degree of lliptic polarization, in quantum mechanics we measure or +1 or -1 for the polarization, & is recovered asa
statistical average.
L et us note that for the particular angle 6=0 the photon has afixed polarization +1, thisis in agreement with conservation of angular momentum:
the +# component of the atom in 2p state has been taken by the photon.
Classically thiskind of decay corresponds to a dipole rotating anticlockwise in the (x,y) plane, the reader can compare this process with the
description of the light polarization in the Zeeman effect.

Problem 3

Use the Wigner-Eckart theorem to write the hyperfine spitting structure for a level with arbitrary L, S The nucleus has spin |.

@® Solution

In the text the hyperfine interaction Hamiltonian is computed:

cl4prob3eql
8 1 1

V=A|—1-S6r]-(-S-3(-n)yn-S) —+ —1-L|=Vs+V. (3.1)
3 r3 3
Heren =r /r. Thefirst term, Vs contributes only to the s-levels shifts, asy[0] 0 only in this cases. The last two terms, V, give contribution only for
L 0. Infact, thelast term being proportional to L is zero on s-states. The second term is proportional to the rank 2 symmetric and tracel ess tensor

Xi Xj
T:5ij -3

r2

Thistensor transforms as an L = 2 spherical tensor, therefore on s states the selections rule on the angular momentum implies ( L=0|T|L=0)= 0.
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The hyperfine interaction is small even with respect to the fine structure interaction. The typical scaleinvolved isthe atomic radius ~ ag. Using

lelhn leln
A~ puppug;, U= v Hp = ;  (Bohr'smagneton and the nuclear Bohr magneton), m, = proton mass.
2mc 2myc

one easily estimates

A m e
6E ~ — = — o2 —,

as M as

The hyperfine splitting is depressed by a factor m, / m ~ 10 3with respect to the fine structure energies. In this situation the unperturbed states on
which V acts can be taken as the eigenstates of J, J,, L,S, diagonalizing the fine structure interaction. The degeneracy of such levelsis (23+1)(2-

I+1), taking into account the nuclear spin orientation.

The Hamiltonian (1) does not commute with JL,S, but being a scalar commutes with the total angular momentum (the electron angular momentum

plus the nuclear angular momentum):

F=1+1J. (3.2)

For fixed L,S,J, | we will have a series of states with quantum numbers F, F,. Each of these level will have a degeneracy (2F+1) and as usua the

numbers of terms will be, be the rule of addition of angular momentum
[J-1 ] < Fs< 1 +J; numb.terms = (2J+1)ifJ=1; 21 +1ifl =J.
Let us now compute the eigenvalues as afunction of F.
m L=0
Thefirst term is easy to compute by using the identity (valid within amultiplet)

cl4prob3eq01

1 1
lS=—(FP-12-8)= — (F(F+1) -1 (1 +1)-S(S+1)). (3.3)
2 2
Then for S - states
AE=B . (F(F+1) -1 (I +1) -S(S+1)),
where
8 7t 5
B:A?ZI/[O} ; A:gegNUpUB-

The g' s are the gyromagnetic factors of the electron and nucleon.
m L>0
For these states | et us start by considering the second termin (1):

1
— 1 S (Sni n; 75”‘).
r3

To angular variables only the symmetric tensor gives a contribution. By the Wigner-Eckart theorem this contribution must be proportional to the

symmetric traceless tensor constructed with L, i.e. (in amatrix sense within a given multiplet):

cl4prob3eq3

(3min-6ij)=co(BLiL+3LL-2L%¢;). (3.4)

We note that, both classically and as an operator :

1
niLi = =X L= —Xe€ijkX px = 0;
r r
thus by left and right multiplication by Lj and L; eq.(4) takes the form
cl4prob3eq4
L% = cQ(3LPL%+ 3L L LiL - 2L%L3) = cq (LPL+3Li Ly Li Ly). (3.5)

Using the commutation relations for angular momentum one has

. .2
1 1
Li Lj Li Lj :L2L2+Ji€ijkLkLi Lj:L2L2+E€ijkLk[LivLj} = L2L2+?6ijk6iijkLm: L2L27L2.

We used the identity



6 | Problems_chapl4.nb

€ijk €jm = 2 Skm-
For cq then we have, from (5):

1 1

Co = - = - .
4L (L+1) -3 (2L-1) (2L +3)

The effective interaction V| in (1) thus takes the form

A (2L%1 -S-3¢( -L) (-8 -3(S-L) (I -L)
V= — +1 -LJ|. (3.6)
r3 (2L-1) (2L +3)

The Wigner-Eckart theorem implies that within amultiplet, in matrix sense, we can assume

L=c.J; S=csld. (3.7)

Multiplication by J givesimmediately (expressing L -J etc. asin (3) ):

JJ+1) +L(L+1) -S(S+1) JJ+1) +S(S+1)-L (L+1)
CL= ;o Gs= . (3.8)
23 (J+1) 23 J+1)
Also
JJ+1) -S(S+1) - L (L+1)
Cis = L.-S = .
2
and finally we have for V_
cl4prob3eq9
A 2L (L+1)cs- 6¢CLscL
Vi = —1 -3 +CL|. (39)
r3 (2L-1) (2L +3)
With

FF+1) -3 (J+1) -1 (1 +1)
2

we can write the energy splitting in each multiplet.

For S = 1/2 the previous formulas can be simplified. For each | we can have J=L + 1/2. By direct substitution the reader can easily verify that in both
cases the parenthesisin (9) has the value:

1 L(L+1)
() =2L(L+1) = )
2J (J+1)  J(J+1)
therefore we can write
v AL(L+1)I S AL((L+1) F(F+1) -3 J+1)-1 (I +1)
SEFEI IR 133 +1) 2

The actual values of the splitting depends on the integral of 1 / r 3 with the radial part of the wave functions.



