Problems Chapter 16

Quantum M echanics
K. Konishi, G. Paffuti

I Problem 1

Write in the Born approximation the amplitude for two identical particles, subject to a spin-independent interaction. Consider in particular the
Coulomb interaction.
® Solution

Let us consider the system in the center of mass frame. We will consider a central potential.

The problem is formally equivalent to a scattering of a single particle of reduced mass u = m/2 in a potential V[r]. The amplitude in Born approxima-
tion is (ignoring the problem of the identity of particles)
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Let us now consider identical particles, electrons as an instance. The admitted states satisfying Pauli principle are
(Ip, P> +1-p, Py ); spinsinglet;
(1.2)

(Ip.-p> -1 -p, py);, spintriplet.

SN

We have to compute matrix elements of the Hamiltonian interaction between these states.

For the singlet state

u 1
Fs = - =2 ((p, -pIVI P, -p) +<(p, -PIVI -p, +p) )
2nh? 2

The matrix elements depend only on p and 6. In the second matrix element the final momentum is opposite to the first one, then 6 —» x - 6. For the
amplitude we get

7o = f[0] + f[n-06].
In the same manner for the triplet

7= fle] - f[n-0].
The corresponding differential cross section are

dos = |Fs |?do = |f[6] + fn-0]1% doi= |# |2da = |f[e] -f[n-6]|?.
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For an unpolarized beam, with 3/4 probability to bein atriplet state and 1/4 to bein asinglet state

3 1
do = —doy + —dos . (1.3)
4 4

Problem 2

Derive the eikonal approximation from the asymptotic form of Legendre polynomials (for large L and small 6):

PL[Cos [6]] ~ Jo[LO]. (2.1)

® Solution

The validity of eq.(1) has been established in the text, see Chapter on WKB approximation.

Let b the impact parameter. The angular momentumisgivenby L =k b.

At high energy the amplitude is the sum of avery large number of partial waves. Approximating the sum on L with an integral and using (1)
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Let us now consider the phase scattering. For large L the semiclassical approximation works. The semiclassical phase, computed along the classical
trgjectory, is

At high energy the trajectory canbe approximated by a straight line parallel to the z axis, with an impact parameter b. Subtracting the free phase we
get the scattering phase shift
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fle] = -jkjoobdb\]o[kbm (2% -1). (2.2)
0

which coincides with the formula given in the text.

Problem 3

Compute the scattering amplitude for an impenetrable sphere of radius R in the Kirchhoff approximation.

@® Solution

Thisis a standard problem in optics or acoustics. The solution given below is similar to the one presented in ref.[ 1], except for some adaptations for
the Schrédinger equation boundary conditions.

m The Green's formula
The Schrodinger equation reads
AY[x] + kZy[x] = 0, [X] >R y[x]=0for | X| =R (3.1)
The solution of the scattering problem can be written as
YIX] = i [X] + o[X], (3.2)

where ; is the incident wave and ¢ the scattered wave, which behaves asymptotically as a divergent spherical wave. As y; satisfies the free wave

equation, also ¢ isasolution of (1), with the boundary condition ¢ = - ; on the sphere.

Let us consider the Green's function
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1
G[x, y] = — Explik [x-y ],
[ X =y |

Thisfunction is a solution of the free wave equation except at x=y, whereit issingular:
Ay GIX, y] + K2G[X, Y] = -478[X-Y].
It follows
@lyl oy GIX, Y1 - GIX, Yyl &y ely] = -4ns[x-y]lely].

Integration on the region R external to the sphere gives

Lw[)/] Ay GIX, y] - GIX, Yl ayoly] = -4rme[X].
The left hand side can be written as
e] e] 0
o[yl 8y GIX, ¥y] - G[X, Y] &y 0[y] = —{w[y] — G[x, y] - G[X, Y] 7@[),}}.
oy ay oy

Using Gauss theorem in (6) and neglecting contribution at infinity (thisis correct as the integrand vanishes more rapidly then 1 / r 2) we get

o e}
4rotx = [ {oly] —Gix ¥l - G y) ~oly]}da
sphere oy oy

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)

(3.8)

The additional minus signin (8) is due to the fact that Gauss theorem involve the normal direction outside the region R, while in (8) we used the usual

convention considering dA directed toward the outside of the sphere, then inside R.

Formula (8) isthe well known Green's formula, here re-derived just for convenience of the reader.
m The Kirchhoff approximation
Let z bethedirection of the incident particle, z=0 the plane through the origin of the sphere and x-z the scattering plane.

The boundary condition y = 0 in the surface of the sphereimply ¢ = - ; .

The hemisphere at z<0 can be considered the illuminated zone (1) in optics language while the hemisphere for z > 0 is the shadow (S) zone. On | the

wave is reflected and approximately we can put there
Oy  OUi

an  on

(3.9)

n is the normal direction. This approximation is easily understood by considering a reflection against a plane, let say z=0, the vanishing of ¢ and the

existence of the reflected wave gives

. . . oo i
Vo= eJLkZ + o = enkZ _ e*lkZ - o -1 _ ! .
oz z=0 oz z=0
In the shadow zonein afirst approximation ¢ = 0 then
Oy oY
on on’

i.e. in the shadow zone both ¢ and its normal derivative are (approximately) opposite to the incident wave.
The scattered wave (8) can then be written as a sum of the integrals over the two zones
e[x] =
1 1

o] e} e} e}
- {uyr —6x, y) ¢ 606 vl — i ylfdA - —— | fuily] — GIxX, y] - GIx, y] — i [y]}dA
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Inthe wave region, [x| > R we can approximate the Green's function with
1
G[X, Yyl = —Exp[ikr] Exp[-ikn-y].
r
with
r = |x|; n=x/r = (Sin[e], 0, Cos[@]).

m The shadow integral

Let usfirst consider the integral over the hemisphere S. As |x[>R inside the sphere

(3. 10)

(3.11)
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e} e} e} e}
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then the flux of the vector H on aclosed surface is zero, this means that the flux through S is equal to the flux through the disk D, intersection of the
plane z=0 with the sphere, easier to compute.

With
X =r (Sinfel, 0, Cos[e]); y = (& n &); (& n) =b(Cosleo], Sinfeol);
k = k (0, 0, 1); h = normal toD (zaxis) = (0, 0, 1);

we have, from (11) and using that the normal to D is directed along z:

h - iG[x, y] = 7jieikr e—nkn-y kn-h = —i ieikr efﬁkbsin[e] Cos [¢o] k Cos [©]
oy r r

o . .
h- —uyilyl=ih-ke'kY = ike'k? 5 (0onS) > ik
oy
Then theintegral on Sis
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Then the contribution to scattering amplitude from the shadow zoneis

i (1+Cos[0]) ‘
fs= —R———J;[kRSin[e]]. (3.12)
2 Sin[e]
m Theilluminated zone

Here theintegral has to be done directly on the hemisphere. The normal is
h = (Sin[6y] Cos[wo], Sin[6] Sinlee], Cos[&o]). (3.13)
On |, with y the angle between x and h:

o 1 ) 1 . .
h- —Gix, yl =-i — e e kM"Y kn.h =-i — k" e 1kKR®SIY] | Cos[y];
oy r r
6] ) _ .
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Cos[y] = Cos[e] Cos[6p] + Sin[e] Sin[6y] Cos[v]
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Theintegral over | is
R2 Tt 27 eikr
O[X] = —— Sin[eo]dleof dpo —— Exp[i1 k RCos[6p] -1k RCos[y]] 1k (Cos[6g] - Cos [Y¥]) (3.15)
4 51 JIns2 0 r

The integral can be estimated by saddle point method. In g the saddle point is clearly ¢o = 0. In 69 we have the condition of stationary phase (with
®o=0)

e}
0= — (Cos[6g] - Cos[y]) = -Sin[6g] + Cos[6] Sin[6g] -Sin[e] Cos[6g] = -Sin[6g] +Sin[6g - 6],
06

with solution

60 = —+—. (3. 16)
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The phase at the stationary point is

i kR (Cos[6] - Cos[¥]), .o = -2ikRS n{—};
The quadratic fluctuations are, with 6p= = g + 2 +u
) 0, -1
ikR(Cos[] - Cos[y]) = -2ikRSin[—|Cos[u] - ikRCos|[—|Sinfe] | ¢? | =
2 2
e 1 e
ikR Sin{f} u? o+ 7402005[7} Sin[e]
2 2 2
Using the Fresnel integrals
® NES
JExp[iaxz]dlx = ,
- -1«
theintegral over quadratic fluctuations gives
1 1 7T 2 s
—_— = 1 — .
-1 kR kR Sin[e]

J%Sin[%’} Cos[5] Sin(e]

Finally the saddle point value of the non exponential factorsis
Z] 2]
Sin[6o] (Cos (6] - Cos[y]) - Cos[ﬂ [72 Si n[E” - _Sinie).

Then from (15) the contribution of the illuminated zone to the scattering amplitudeis

23 2 i 6 R 6
fi= —— (ik) (-Sin[e]) — Exp{—ZJikRSin[—H - - —Exp[—ijRSin{—H
4 5 kR Sin[e] 2 2 2
The full scattering amplitudeis then
R ) i (1+Cos[o]) '
fle] =- — Exp 7211kRS|n{7H s R 3 [kRSin[e]]. (3.17)
2 2 2 Sin[e]

The first term, with constant amplitude, represents the reflected wave.
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