Problems Chapter 3

Quantum M echanics
K. Konishi, G. Paffuti

I Problem 1
Show that the condition
2mg

Y101 - 92 [0] = - ¥[07,
h2

for a potential V[x] = - g d[x], is compatible with the continuity of the current density.

® Solution

The current density is

~ in
Jo= = (boxd" - YT oxy).
2m

At the discontinuity of the potential, x=0, ¢ is continuous while for the derivative of ¥ we have

2mg 2mg . )
A (Oxy) = - Y101, A (OxYT) = - Y [0]; with AF = Lim(F[e] - F[-€]).
hz hZ e-0
For the current :
ih ig
A = —— ([0] A (Ox¥" ) U [0] A (Ox¥)) = - — (¥[0]¥"[0] - ¥"[0] ¥[O]) = O
2m n2
I Problem 2

A particle movesin a three dimensional well
Vir] =0; (0O<x<a; O<y<b; O0<z<c); V[r] = o, otherwise

Find the eigenval ues and the eigenstates. Discuss the degeneracy for the low-lying levels, in particular for the cubic box a=b=c.

® Solution
The Hamiltonian is the sum of three independent one dimensional operators
1 2 2 2
H= —— (pZ + p2 + p2) = Ho+H + H,. (2.1)
2m
The operators H,. H,, H, commute between themselves, then can be simultaneously diagonalized. Each of them has the spectrum of a one dimen-

sional well:

2
n2 72 n2 n2 72 Ny n? 72 n2

—_ : — : —, Ng, Ny, np =1, 2. .. (2.2)
2m a? 2m b2 2m ¢2

The spectrum of H is

(2.3)

The corresponding, normalized, eigenstates are



2 | Problems_chap3.nb

8 7T Ny X Tnyy

Z//nxnynz[xy Yy, Z] Sin{

[sin[ =] sin[ 2.

For generic (non relative rational) a2, b2, ¢c? the state are non degenerate. If the ratios of the edges are rational some levels can be degenerate.

abc a c

The total number of states up to an energy E is approximately (theintegral isfor one sector of a sphere, with volume 1/8 of the whole ball):

om 132
N[E] :JdlnX dny dny ©[E- Epnyn, | ach dx dy dz @[E> x? +y? +2?] =
hzj(z X,Yy,z>0
2m 32 4 2mE)®?2 2 v
abc— —nE¥?% = — |
12 2 B 34

V =ab cisthevolume. In the problems of chap. 13 it is shown that a more accurate formulais

3/2

(2 mE) 2 Vv 2m) S
NE = —ni—r — — - | — ;
ns 3 42 n? ) 167
S=2(ab+ac+bc)isthe surface of the box.
m Note on the degeneracy
Let usconsider thecasea=b=c:
n2 2
E = (ng+ng+nZ).
2 ma?

It is easy to compute energies and degeneracies for the first few levels

(2.4)

(2.5)

(2.6)

E/EO 3 11 12 14 17 18 19 21

deg. 3

While for low energy it is quite clear the appearance of degeneracy 6 due to the permutations of 3 (different) numbers ny, ny, n, for higher energies

things are not so simple. Here is an example of the degeneracy distribution
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The total number of states N[E] follow very accurately the prediction (6), the number of levelsis proportional to E, and very closeto 5/6 E/EO:
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The problem of levels and of their number is closely related to a classic problem in number theory: find the numbers that can be written as a sum of 3
sguares. In number theory usually the value O for n; is included, and the problem has been solved by Legendre and Gauss. We quote a result, the

numbers which cannot be written as a sum of 3 squares have the form 42(8 m + 7). These are certainly excluded from the spectrum, other numbers,
built with the value O for n; are included in number theory classification and possibly excluded in the spectrum (essentially the number sum of two
sguares). These are the first numbers of these series

nExcl uded = {7, 15, 23, 28, 31, 39, 47, 55, 60, 63, 71, 79}

confronting with the first E/EQ levels we can check the statement:

E/EO0 = {3, 6, 9, 11, 12, 14, 17, 18, 19, 21, 22, 24, 26, 27, 29, 30, 33, 34, 35, 36, 38, 41, 42, 43,
44, 45, 46, 48, 49, 50, 51, 53, 54, 56, 57, 59, 61, 62, 65, 66, 67, 68, 69, 70, 72, 73, 74, 75, 76, 77};

Problem 3

If the one-dimensional square well has the parameters such that

ma?
=5« 1,

2 n?

it has a unique bound state. Compute the energy of this state approximately, in thefirst non trivial order in §, asa function of V.

@® Solution
With the notations of the figure

i
|
|
—8/2 | g2
|
______ | [ — —€
|
|
|
| Vo
|
|
|
the (even) solution of Schrédinger equation is
v[x] = ACos[gx]; |X| <a/2; Y[X] = BEXp[-a | X |];
with
hAgq =+2mM(Mp-€) ; hoa =+/2me

Matching the logarithmic derivative at x = a2 gives
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qTan{qf}:a:/qua
For small e
2mV, a mV3 a2 mV3 a2
— =1/2me = € = > E=-€e = - =~V &2
h 2 2 n? 2n?
Problem 4

Consider the limit a-0, Vo - « with aVp=f fixed, in the problem of a square well potential. Compare the result with the 5[] potential.

@® Solution

The notations are given in the figure below

|
|
|
—a/2 | a/2
|
______ | —— —
\ €
|
|
|
| —Vo
|
|
|
The potential being even, we can limit the study of solutionsto theregion x > 0.
The (even, odd) solutions of Schrodinger equation are (for x >0)
¥[x] = ACos[gx]; [x| <a/2; Wix] = BExp[-ax];
Y[x] = ASIin[qx]; [ x| <a/2; Y[x] = BEXp[-ax];
with
e = |E|; Aq=~2MmMM-€) ; ha =+2me .
The match of logarithmic derivative at x = a/2 gives
a a
qTan[qf}: a; qOot[qf]: o (4.1)
2 2
Inthelimit a>0, Vg — « with aVp=f fixed,
1 1 [ m
q-> —/2mVy = — |2 —f > o gqa - 0.
h h a
Only thefirst of the equations (1) can have alimit
a 2a  mf
qTan[q 7} - q— —
2 2 72
The only eigenvalueis, from (1)
2 22 2
mf A mf
E-ce - || — = (4.2)
n?2 ) 2m 2 n?
Inad potential - g 5[x] thereis only one bound state (see text) with energy
mg?
Es = - — (4.3)

2 n?
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The "strength” of the 6 potential is defined by

-g = 7Jd1xV[x] :7Jd1xgé[x].

For adeep well the integration over aregion including the well gives

Jdle[x} = 7Jd1xvo: -Voa - -f.

We see that the well goesinto a ¢ potential with strength f and its energy eigenvalue (2) gives the correct result (3).

Problem 5

Find the transmission coefficient for the step potential
V=0 x<0 V=V>0 x=0,

forE < Vg andE > V.

@® Solution

Particle

For E <V, thereis not transmitted wave as for x > 0 the solution is exponentially depressed.

For E >V, the solution giving atransmitted waveis

YIx] = e 4 AetKX x < 0; Wix] = Bet9%: x > 0. (5.1)
Where
hk = +/2mE hq = +/2mM(E - V)
Matching ¢’/ at x = 0 gives
1-A k -q
=q = A =
1+A k+q

R= |A|?; T:—‘B\zzl—R.
We have:
k-q2 4kq
e
k+q k+q)®

To check this result we compute B from the continuity of ¢ at x=0:

2k q |BJ? 4kq
B-1+A-= Do T= — = ; c.v.d.
k+q kK A2 (keq)?
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Problem 6

Discuss the qualitative features of the low-lying energy levels in a deep double well potential, by using the symmetry argument (parity) and the non
degeneration theorem.

® Solution

The situation is outlined below:

V[X]
20

15}

05}

-10f

-15C

In afirst approximation we have two separate wells, exactly degenerate. This cannot represents the true ground state of the model as we know that the
ground state is non degenerate and even. A good candidate for an approximate wave function is a superposition of the two separate localized solutions
describing the particle in each well:

YLIX] + URIX]
y= (6. 1)

V2
Parity invariance impose i [-x 1= yRr[X] (a better way to say this is that parity invariance allow to choose the phases in such away that y; [-X]=
YrIX] ).
The physical mechanism which alow the superposition is the tunneling between the two wells. As an effective Hamiltonian in the basis v , ¥r one
can consider
Ey -¢

H = B

€ isproportional to the tunnel probability. The ground state of H is (1). The reader can verify that H commute with
01
P ) [ )

10

which exchange ¥, ¥r and acts as parity operator in this system. The state (1) iseven.

Problem 7
A particle of mass mis confined in a potential well V[X], with
O<x=<a
; Xx <0andx >a

The particleisininthe ground state.

1. Compute the force exerted on the walls by the the particle.

2. Attimet=0theright wall (at x=a) moves suddenly to x=2a. Compute the probability to find the particle in each stationary state of the new well.
3. If thewall moves adiabatically from x=ato x=2awhich isthe final state? Compute the work done during this process.
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@® Solution

m 1

The force can be found equating the work done in an adiabatic expansion to the energy variation of the system:

oE
Fsa = -6E, F =- —.
da
For the ground state
72 p? 72 h2
E = : F = . (7.2)
2 ma? ma3
m 2

In asudden expansion the state is frozen, i.e. remains, in the short interval of the expansion,

2 X
Yo[x] = | = Sin{ﬂf] o[x] 6[a -]
a a
After the expansion energy eigenstates are given by
2 X
on [X] — Si n{nﬂ—] (7.2)
2a 2a
The requested probabilities are
1/2; n=2
2 ? 0o n-2L L>1
Po = | [ axuoixianix | - : - 2b (7.3)
0 2 _ 1 n-2L+1
7 (4-n?)

Itiseasy to check (try for example with Mathematica ) that ), P,= 1.
m 3

In an adabatic expansion the state "follows" the expansion and continues to be the ground state of the expanding well. The total energy change isthen

72 n2 72 n? 3 72 n?
AE = - = — .
2 ma? 2m4a?2 8 ma?

As expected from the definition of force, equation (1),

2a
AE = J Fla] da.
a

Problem 8

A particle of mass mis subject to the one dimensional potential

-go[x1; X< a
V[X]:{ goog] Xza
1.  Findtheimplicit equation for finding a bound state with E < 0 and the conditions on parameters (m,g) for the existence of such a state.
2. Discussthelimita— .
3. Isthereadegeneracy in the continuum spectrum?
® Solution
m 1

The potential is sketched in the following figure
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infinite barrier

x=0 Xx=a

é—potential

S

For E < 0 the general form of the solution of the Schrédinger equation is

AEXp[ax], X <0

vix] :{BExp[ax}JrCExp[fo(xJ, x>0

With a ¢ potential in X, ¥ must be continuous and the discontinuity of itsfirst derivative isfixed by Schrédinger equation:

2m . Xo+&
' [Xe'] - ¥ [Xo7] = — Lim VIX] ¢[x] dx.
hZ -0 Xo-€

In the case at hand the constraint on ¢ and its derivative are

2m
A =B+ C oa (B-C) - aA=-—gA
72
i.e
mg mg
B:[l——; = —A.
o h? o h?

At point x = athe function must vanish

y[a] = BExp[aa] + CExp[-aa] = 0

Using eq (4)

From the plots of the functions

hZ
filx] =1 - Exp[-2ax]; fa[x] =X —
gm

(8.1)

(8.2)

(8.3)

(8.4)

(8.5)
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it isevident that the possibility on anon trivial solution depends on derivative at the origin, i.e. we have an intercept if

n? n?
— < 248, = g = . (8.6)
gm 2 ma
Only in this range we can have a bound state.
m 2
Asa— oo condition (5) gives
gm
o = —
ﬁZ

which isthe known result for asimple § - potential.
m 3

There is no degeneracy in the continuum levels. To show this let us write the form of a stationary wave function for positive energy. k is a positive
number and E= 12 k2 /2 1r

Aelkx i Beikx, X <0
o= CelkX 1 DeikX, O<x<a
0, X > a

The condition y[a] = 0 gives arelation between C and D. Continuity and gap in first derivative, eq.(2), give two more condition. Three equations for 4
coefficients fix the solution up to an overall normalization factor.

Problem 9

A particle of mass m is subjected to the one dimensional potential

o, X< -a
VIx] = gd&[x];; —asx=s2a.
© X>2a

We want to study thefirst two energy levels. Let uscall _[x ], ¥, [x ]thewave functions for negative and positive x respectively.

1. Writethe matching conditions for connecting . and ¢_. Show that one of these condition gives exact results for a set of levels, those for

which ¢[0] = 0.
2. Thereareanother set of states, for which [0] 0. Using a graph show that the ground state of the system belongs to this set, and compute its
energy for g—0 and g—co.

® Solution
o 1

The vanishing of  at the external boundariesimply

Y_[x] = ASin[k (x +a)]; Y, [x] = BSink (x -2a)]

where E = 22 k? /2m. At x = 0 we have to match the functions and the derivative's gap
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v, [0] = ¢_[0] = ASinlka] =-BSin[2ka];

(9.1)
. , 2mg 2mg :
v, [0] -y [0] = . v[0] = k (BCos[2ka] - ACos[ka]) = —2A8|n[ka}. (9.2)
h h
From first conditionsit follows
Sinfka] (A + 2BCos[ka]) = 0. (9.3)
Thefirst possibility is Sin[k a = 0. In thiscase
Tn n? 72 n?
k= —; En = — ;, n=01,2... (9.4)
a 2m a2
A and B coefficients are determined, up to an overall normalization by (2)
BCos[2nn] - ACos[nn] =0, > B=(-1)"A
As Sin[k a = 0in thisclass of solutionsy[0] = 0.
o 2
The second possibility allowed by eq.(3) is
A = -2BCos[ka]j. (9.5)
Substitution in (2) gives
2 4 mg .
kCos[2ka] + 2k Cos[ka]” = - . Cos(ka] Sin[kal,
h
i.ewithé=2ka
4mga
E(2Cos[€] + 1) = —ASIN[E];, A i (9.6)
h
We can plot the two curves
fil€] = €(2Cos[g] + 1); fa[&] = -ASIn[&],
for different values of A. The graph below show curvesfor A = 0.5, 2, 5.
L 8- 8-
4L
[ 6l 6F
2+ ar 4k
20
L 27
2 ‘ ‘ 1 2
1 2 5 -2t
2L _af
One easily convince oneself that the first intersection, giving the first state in this group, corresponds to avalue of ¢ = 2kalying in the region
27 s 7
—< &<, — <k < —. (9.7)
3a 2a

Comparison with (4) show that ground state of the system is the first state of this second group, while n=1 state in (4) isthefirst excited state.

Inthetwo limits g » 0and g —» o aso A — 0, co. from the graph it is clear that as A — 0 the intersection tends to the first zero of the curve f 1 [£],

i.e. &£ = 2x/3. whilefor A - oo the intersection approach the zero of the second curve, Sin[¢], i.e. £ = . In the two limits then

JT JT
asg->0: k- —; asg-> o: k > —.
3a 2a

Problem 10

A particle of mass m and energy E < O movesin a one-dimensional potential
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Vix] = f&[x] -gé[x-al; g > 0.

1. For asingles-well (f=0) compute the ground state energy and its normalized eigenfunction.

2. Write acomplete set of conditions for the wave function withf 0 and g > 0.

3. Write the conditions for the existence of abound state.

4.  Show that for |f| sufficiently small only one bound state exists and that for (2gm a) /hz < 1 andfor f > 0 and sufficiently large, no bound
state can exist.

® Solution

m 1

For asingle ¢ potential the solution for E < 0 has the form (® isthe Heavside theta function, or step function, in Mathematica is UnitStep[x] ):

/32 hz
y[x] = Aef X gla-x] + Be?*¥ g[x-aj; E=-—— (10.1)
2m
For a ¢ potential matching conditions require continuity of  and assigned gap for derivatives:
2m ) a+e
vla'] = ylal; y'atl-yta] = — Lim V[x] ¢[x] dx. (10.2)
h2 -0 a-c
In our case
2m mg
A=B -BB-BA=—(-gA = B = —-. (10.3)
n? n?
m 2

Negative energy, normalizable, solutions must decrease at X - + co. The most general form of this solution is, with above notation (1) for E:
Uix] = Ae’*el-x] + (A e+ Bze? ) o[x]ola-x] + Bse”*o[x-a]. (10.4)

We have two set of equations of type (2), i.e. four matching conditions, two for functions:

AL = A + By Ay efa s B, eh? = Bs efﬁa; (10.5)
and two for derivatives
2 mf 2mg
B(-A + (Ac-Bp)) = . Aty -8B (Bse’BaJr Ay ef? Bge’Ba) - Bz e 2. (10.6)
h h

m 3

We have a system of four homogenous equations in four unknown quantities Ay, Az, By, Bs. The system has a nontrivial solution only if the
determinant of the coefficientsis zero, and this will determine one (or more) values for 3, i.e. energies for the bound states.
Instead of writing te determinant let us proceed by elimination of variables. let us solve for A,and B,. From (5)

mf mf
A= |1+ A, Bp= - —— A
Bh B h?
while from (6)
mg mg
A2 eBa: 783@753; BZ (E’Ba = 1-— Bg efﬁa,
B n? B n?
Eliinating the unknown A; and B; we arrive at
e?2h (9 mfﬁhz) (f m+[5h2) = f gnt.
With
B n? 2mga
X = ——; A = ;
mg n?
the previous condition take the form
f f
X+ —| (X-1) = - —Exp[- AX] (10.7)
g g
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4
Welook for solutions with x > 0.
oC For f = 0 we recover x=1, which is the solution (3).

o Forf =-g,i.e.asymmetric § potential, the condition becomes

mg mg
- —— =+ —Exp[-Ba].
B h? B h?
which has been found in[ ** ].
e¢ For smal [f| the solution is unique:
f m f mg?  mf _2mga
X =1- —e™; B:—gl—fe’A; E= - g+ ge 2o,
g n? g n? n?
For the general caselet uslook at graphs of the to sides of equation (7):
f
A=15; —=1
9
1.0
05

02 04 06 0841012 I
-0.5
-10

A=05 —=1
9
1.0
0.5
0.2 04 06 0810 12 14
-05
-1.0

It isapparent that if derivative in x = 0 of thefirst curveis bigger than derivative of the second curve then there is no solution

f f
—=-1> —A
g ¢}
This happens for A <1 and suficiently large f:
¢ 9 _ 9
1-A 2mga
B n?
Problem 11
A particle of mass m moves in the one dimensional potential (Vo> 0)
oo, X< 0
V(x] = O0; O<x=<a.
Vo, X >a

1.  Findthe condition for having only one bound state.
Find approximatively the ground state wave function for large Vg.

Suppose that the particle is confined in the lowest bound state of the system; at timet=0 the part x > 2a of the potential gets modified to 0.
Compute the rate of decay of the system i.e. the probability for unit of time to find the particle outside the potential well.
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@® Solution

m 1

infinitebarrier
Vo
Thepotential issketched
inthefigure. Theregion
x < Oisforbidden.
x=0 X=a
The solution for abound state has the form
ASin[kx], O<x <a . 2mE 2m (Vg - E)
UIx] = ; with  k = B |
BEXp[-Bx], X > a 72 72

Continuity of y'fyy at x = agivesthe constraint
B =-kCot[ka].

Defining ¢ = ka; = Bathe eigenvalue can be found by the intersection of the two curves

, , 2mVo a2
n=-¢&Ct[&]; & +n = 5 (11.1)
h
Asis evident from the graph the condition to have only one bound state is
7 2mV, a? 3
— < _— < — TT
2 72 2
m 2
For large V, the wave function for x>a canbe neglected and we have
2 TTX 7T n? 72
yixl = | = sin[—]; k- - E- (11.2)
a a a 2 ma?

m 3

If the barrier behind x = 2 ais dropped we have the following potential
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infinite barrier

x=0 X=a x=2a

A particlewhich at t = 0 isconfined intheregion 0 x acan tunnel below the barrier and escape. The penetration factor for a rectangular barrier
has been computed in the text:

4 k2 32 16 k2 7 2mVy
D = = Exp[-2pBal; k= —; B= . (11.3)

4k2/52+(k2+52)23i nh(ga]? B a n?

The number of hits per second against the barrier at x=a for a particle of velocity v isv/(2 a) the the probability of decay per unit timeis

dpP v ak 1 16k?2
W= — = —D= — — Exp[-2Ba]. (11. 4)
dt 2a m 2a g2

The number of hits per second can also be computed from the current inside the interval [0, a]. The wave function is stationary and superposition of
two opposite traveling waves:

2 eikx7 e—ikx
WIX] = — =¥+ U
a 21

The current relative to right movers, the one which hits the barrier, is the result we used in our previous formula:

ol dy, dy* a 1 nk
j= v - v, | = —2ik - .
2mi dx dx 2mi 2a 2am

I Problem 12

Consider the space divided in two regions separate by a plane. The potential energy being 0 and - Uy in the two half spaces. A plane wave impinge on

the plane with an incidence angle a. Describe the reflection and the transmission (refracted wave) of the wave. Write and verify the condition for
conservation of the number of particles.

® Solution
The Schrédinger in the two region is

Ay + K2y =0, k%P = 2mE/n?

2m 12.1
b o e (12.1)

Ay + g2y =0, g?= k%« ,
h



Problems_chap3.nb | 15

With the notations shown in the figure we look for asolution in the form

y>0: ¢ = Exp[ikir] + ARExp[ikar]; ki=k (Sin[a], -Cos[a]); k= k (Sin[a'], Cos[a']);

. ! 12.2
y <0: ¢ = ArExp[iqr]; d =g (Sin[B], -Cos[B]). ( )
Continuity for y, for the separation plane y=0 give
Exp[ikSin[a] X] + ARExp[ikSin[a’'] Xx] = ArExp[1qgSin[B] X] (12.3)
Asthe relation must hold for al x the phases must be equal:
q Sinfa]
kSinfa] = kSin[a] =qSinp] = o=0o —= —-.
k Sin[B]
With g/k = n we recognize the usual Snell reflection and refraction laws:
Sin[a]
o =0 N = . (12.4)
Sin[3]
Asthe phases are equal from eg.(3) and continuity of ¢ it follows
1+ Ag= A (12.5)
The continuity of 64 ¢, using the equality of phasesand (4) , gives
kSinfa] + KARSin[a] =qArSin[3]
which is automatically satisfied with (4) and (5): thisis obvious because we imposed (3) for all x.
The continuity of oy ¥ gives
-kCos[a] + kAgCos[a] = -qArCos[B] = Cos[a] (1-Ar) = nArCos[j]. (12.6)
Solving (5)and (6) for Agand At gives
Cos [a] - n Cos [3] 2 Cos [a]
Ar = ;o AT = ; (12.7)
Cos [a] +n Cos ] Cos [a] +n Cos [B]
the Fresnel reflection laws adapted to this case.
Let us note that it is not true the usual one dimensional relation 1 = A3 + n AZ. The unitarity instead imply
k Cos[a] = kA3Cos[a] + QA2 Cos[B] = Cos[a] = AZCos[a] + n A2 Cos [B] (12.8)

which isindeed satisfied by (7).

In fact, consider an area Sin the separation plane. The number of theincident particle per second is
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jinc SCos[a] = kSCos[a].

The number of particles reflected and refracted per second
jrert SCos[a] = k AZSCos[a]; jr1SCos(B] = q A7SCos[A].

The conservation of particle's number gives (8).

Problem 13

A particle of mass m moves in one dimension and is subject to a harmonic force - k x. Attimet = O the center of the force is suddenly shifted by xg.
The particleis assumed to bein the ground statefor t < 0.

1. Compute the mean value of theenergy att > 0.

2. Compute the probability of finding the particlein the ground state and in the first excited state of the new systematt > 0.

3. Compute the behavior at t - 0* for the mean values of Heisenberg operators x, p, X, p .

@® Solution

Fort <0andt > OtheHamiltonianis

2 2
p 1 p 1
Ho= — + —mw?x2; H = — + —mo

2m 2 2m 2

(X-%0)%; w=+k/m. (13.1)

At negative timesthe systemisin the state ygof Hy. Just after the trandlation the state is unchanged.
m 1

The mean value of H; do not changefort > 0, it is then sufficient to do the computation in thelimitt — 0*.

1
(Fi) = (o | Ho + —mw?x3- mw?xXo | Yo) = —hw + —mw?X3.
2 2 2

Weused (4o | X | ¥o) = O.
m 2

Let ¢, the eigenstates of H;. We have for theinitial state
UIX, 0] =uo(X] = ) an¢nlX]. (13.2)
n=0
Thetimeevolutionis

Uix, t] = 5 anenlx] e BN (13.3)
n=0
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The requested probabilities are time independent:

Palt] = |ape &7 2 -a2,
and can be computed on the stateatt — 0.
The wave functions required to answer the question are
mow\1/4 mo
woix] = |—| Bxp[- —x2|;
mh 2h
mo \1/4 mw ) mwyl/4 1 mw mw )
Qo [X] = | — EXp|- — (X - Xo) } e1[x] = | — —2 | — (X-Xo) EXp|- — (X =Xo)
mh 2h th NG h 2
We have

and an elementary integral gives

2
mxp2 o

mw
Po= lag|?=e 2o ; Pr= |a;|?= —xje =
2h

It isinteresting to perform the computation using creation and annihilation operators.

Let a, a'the standard operators for Hy and b, b " the corresponding operators for Hy

mo 1 mw 1
b = — (X -Xg) + 1 p; b’ = — (X-Xp) - 1 p
2h V2men 2h V2mwn

Clearly

The expansion (2) reads
\0>O:Zan|n>1; where b [ ny, = vV/n|n-1),.
n
The condition for | 0), to bethe ground state of Hyis
a|0)%=0 = (b+C)Zan\n>1 - 0.
n

Using the definition of b we get the recurrence relation

(-C) (-o"
an = apn-1 = . ag
\n At
From the normalization condition
2n
1:Z|an\2:a§Z—:aSExp[Cz} = aj = Exp[-C].
1
n n -
The probability to find the n - th state has a Poisson distribution
"
Po= | anl? = — Bxp[-C’]

The result for n =0, 1 coincides with the previous one.
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m 3

As the function do not change at t=0 the operators x and p do not have discontinuities. The same is true for x= p/m . The derivative of p instead is
discontinuous as

dp o
— = -— VI[X]
dt fob'¢
and V changes discontinuously.
o o
t <0: —V[x] =me?x ; t >0: —V[x] =mw? (X - Xo) ;
oX oX

and the discontinuity is

Problem 14

A schematic neutron interferometer is shown in the figure

The Hamiltonian describing neutron motion is

M=~17 10’24gr is the neutron mass, g~980 cm/secz. zisthe vertical direction, x the horizontal direction, the incident direction of the beam.
Supposethat att = O the plane BCED isvertical, while ABD is on the x axis.

1.  Writethe wavelength of the de Broglie wave for the incident neutron, as a function of the momentum p.

2. Assuming p? /2 V> M g z, compute the phase difference A® in the wave function between the two paths ABCEF and ABDEF, in terms of the
parameters shown in the figure. Find the condition for maximal interference

3. The plane containing the apparatus BCED is now rotated by an angle ¢ around x axis, ABD. As ¢ variesthe intensity | of the neutrons detected
at the counter F varies, showing maximaand minima. Find how many maximathere are as ¢ varies from 0 and n/2.

Takev=3 10°cm/sec for the vel ocity of the incident neutron. Neglect the small distortion in the paths due to gravitational field.

@® Solution
m 1
h 271h
A= —= ——, (14.1)
p p
m 2

The wave function acquires a different phase in the two paths ABCEF and ABDEF not for the lengths of the paths( equal) but for the variation of the
wavelength. In effect due to gravitational potential V[z] = M g z, in the horizontal paths CE and BD the wave number k = 27/2 is given by

2 M (E-Mg hp) 2 ME
kg = ———————; kpp= — = k. (14.2)
h h

Their differenceis
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Mgho\¥? Mgh
Ak =k -k |1- OJ - ° (14.3)
E k n?
The induced phase shift is
NthoL)\
A% = Lok = ———— (14.4)
2 1 h?
The maximal phase differenceisfor
N?ghoL)
A® = 27N = — (14.5)
2 nh?

m 3
As ¢ varies the height of CE path changes form hoto 0. Using the preceding formula the number of times the two paths have maximal interference
(i.e. maximal intensity in F) is

MghoLa M (hol)

N = = ~ 8.8. (14.6)
(27T>2h2 2nhv

The interference has been measured experimentally, see R. Colella, A. Overhauser, S. Werner: Phys. Rev. Lett. 34, 1472, (1975).

Problem 15

An excited nucleus (with excitation energy G) decays into the ground state by emitting a photon.
1.  Compute the energy of the emitted photon in the approximation of infinite nuclear mass.

2. Suppose now that the free nucleus of finite mass M isinitially at rest. Compute the energy of the photon, taking into account the recoil of the

final nucleus. Assume Mc?> G.
3. Assumenow, instead, that the nucleusisbounded in aharmonic potentia (e.g., acrystal lattice):

pz 1
H= — + —Mw?r?
2M 2
r isthe position of the center of mass of the nucleus. Before decaying the nucleus is in the ground state i of the above oscillator (the internal

state isin the excited state as in the previous points). Which energies are allowed for the photon in this case?
4. Justify the approximation for which the amplitude for the processis given by the matrix element of Expl[i k z], where the momentum of the

emitted photon is (0,0, %2 k). By using such an approximation, compute the probability P[Ey] for emitting a photon with energy E,, one of the
energies found in point 3 above.

This analysis shows that a fraction of absorption and re - emission of agamma ray from a nucleus occurs in arecoil - free manner, when the nucleus
isbound in acrystal solid. This phenomenon is known as the Moessbhauer effect.

® Solution
m 1
Energy conservation gives
E = G. (15. 1)
m 2

If the photon carries amomentum p = 7 k, momentum conservation imply for the nucleus a momentum -p = - 7 k. The kinetic energy of the nucleusis

n? k2
Ex= — .
2M
Energy conservation requires (as E,= p c):
n? k2 E2
kac + =G, or E,+ -G (15.2)
2M 2 Mc?
Solving iteratively for E, wefind
G
E, = G- T (15.3)
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3

By hypothesis the oscillator center does not acquire momentum in the emission process (has an infinite mass). The energy of the photon can be
affected by an excitation of the oscillator level, 0 - N, however. Energy conservation gives

G=E, +E-E; E=G-hawN N=0 1, 2... (15. 4)
N isrelated to the quantum numbers of the oscillator after the photon emission by

3

Eosc = hw |— + Ny +N2+N3| = hw
2

3
~ +NJ. (15. 5)
2

m 4

The operator Exp[i k z] shifts the momentum of the nucleus by (0,0, -7 k), thisis the effect of the momentum conservation law. Then

Pa= | Cur | e¥% 1 gg)y 2= | (N[ e**[0)|?; khc =G-nwN. (15. 6)

The reader can easily convince himself that the normalization is consistent, i.e. the sum of probabilities is unity, due to completeness of harmonic
oscillator eigenstates. The second expression in (6) refersto states of the one dimensional oscillator
2 2
p Mw
H= —+ z?,
2M 2

the only one entering in the matrix elements of an operator which depends only on z. To compute the matrix element let us write

1 h
(N| = ——o0|a"; Exp[ikz] = Exp[iC(a +a')]; C=k
V' N! 2 Mw
Using the identities
aelc(ana') ‘0> _ [a’ eic(a+a'w |0> _ ]-lcelc(a+a'> ‘O>,
a?eiCl@-2) 0y = [a2, eiCl+2)] j0) = (iC)elCl2) j0y; ...
one has
. (1o . ‘ @t e
<N‘elk2‘0> <0‘ enC(a+a) |O> _ e 2.
VN! VN!
In the last result we used Baker-Haussdorff formula, valid for [X,Y] ac-number :
(EX (EY _ eX+Y+E[X, Y]-
The requested probability is thus a Poisson distribution,
C2N
Pn= — Exp[- C]. (15.7)
N!

Problem 16

An electron (mass m and charge -€) moves in the x-y plane, subject to a magnetic field directed along z B = (0, 0, B). In the following the electron
spinis neglected. The Hamiltonian is

A isthe electromagnetic vector potential.
1.  Compute the spectrum of the Hamiltonian in the gauge A = (-B y, 0, 0) for the vector potential.
2. Do the same computation in the gauge A = (-B g B % 0).

(Laudau level: see Section 14.3 of the text for further discussions).

@® Solution

m 1

The Hamiltonian is



2m 2m 2m

H commutes with py, then we can look for H eigenstatesin the form

eix, y] = e PXyly].
Substitution into the Schrédinger equation gives for y[y]
eB 2
Py (TY-p)
— + ——— | Y[y] = EY[y].
2m 2m

Thisisthe Schrédinger equation for alinear harmonic oscillator with center in

pc
Yo= —,
eB
and frequency equal to the Larmor frequency
eB
W= —
mc
The eigenvalues are
1
En= how n+7]; n=0,1,
2

and are independent on p. This means that each level has an infinite degeneracy, labeled by p, with -co <p < c.
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These energy levels are known as Landau levels. The present discussion in fact overlaps with the one in Section 14.3 of the main Text.

|21

(16. 1)

(16.2)

We remember from classical physics that the Larmor frequency corresponds to the angular frequency of an electron moving around a circle in a

uniform magnetic field, with (the chargeis- €):

dp e
— =- —VvaB.
dt c
" 2
In this gauge the Hamiltonian takes the form
e 2 eB 2 eB 2
(p+ CA (Px = 5cy) (v +5cx)
H = = +
2m 2m 2m
To simplify the formulas we will put in the following 72 = m = eB/c = 1. In these new units
1 yy2 1 X\ 2
H= — —]l@x—f) +7[—1@y+7)
2 2 2
An elegant method of solution isto introduce complex variables
zZ = X+1y; Z =X-1y.
The commutation relations are
[z, &;] = [Z, 6;] = -1, [z, &;] = [z, 0;] = O.
We can also define the analogous of annihilation and creation operators
¢} z ¢} z
a=+2 —+7], a'= /2 ——+7J, with [a, a'] =1
oz 4 oz
An elementary computation gives for H
o 0 1 l¢] e} 1 1
H=-2— —+ _-2Zz+Z—-z— =—(a'a+aa') =a’a+ —.
o0z oz 8 oz oz 2 2

The spectrum is again the Landau levels (2).

To compute the degeneracy let us note that the Schrédinger egquation for the ground state

(16. 3)
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¢] z
aZ,Z/o=0 = [7-#7]21/0:0;
oz 4
hasinfinite solutions
m -172 m 1
Yo,m= Cmz™e “77 = Gn(x-1iy) Exp[—f (x2+y2)}; m=0,1,2... (16.4)
4

All solutions have Eg=7% w / 2, an are labeled by the eigenvalues of angular momentum (L3):
L =-1i(x0dy -yo). (16.5)
L commuteswithH and L yo, m= Mo, rr -

Excited state can be constructed by acting with a'on each function o m .

N
Unm= (a') vo, m- (16. 6)

o Remarks

a.  Inthe symmetric gauge the electron appears|ocalized in x and y, whilein the first gaugeitislocalized only iny.

b. By choosing the gauge A = (-B % (Y -VYo0),B %

c.  Thetwo solutions are related by a unitary transformation, i.e. if Y[X,y] satisfies

(X - Xp), 0) we can construct localized eigenstates around an arbitrary point (xo, Yo)-

2
(- )}
—+ — | ¥[X, ¥yl = BEY[Xx, y];
2m 2m
then it can be easily checked that
w
ox y) = Bxp[-—xy]uix v,
satisfies
2 2
(P- 5ey) (py+ 5o x)
+ (p[xr Y] = E(ﬂ[x, y}
2m 2m

The spectrum of the Hamiltonian is, correctly, left invariant by this unitary transformation. The different aspect of the degeneracy must not
be atrouble, each subspace at fixed nis an Hilbert space, the two description are the analogous of taking the plane waves basis or the
harmonic oscillator basis for 1.2



