
Problems Chapter 4

 Quantum                 Mechanics
 K. Konishi, G. Paffuti

Problem 1

Two  particle  of  spin  1/2  interact  with  a  Hamiltonian  H0  =  1/2  s1 ×s2.   List  all  the  conserved  quantities  and  write  the  energy  eigenvalues.   An

external  field  B  is  applied  to  the  system.  Let  us  assume  that  this  field  interacts  only  with  the  first  particle,  with  V  =  B×s1.  Find  the  conserved

quantities and determine the spectrum of H0 + V.

æ Solution

à Analytical solution

H0 commutes with the 3 components of total spin S = s1 + s2 . The total spin can be 0,1. Writing 

s1 ×s2 =
1

2
I S2 - s1

2 - s2
2M =

1

2
 S HS + 1L -

3

2

we find the eigenvalues  E = (1/4,-3/4). The degeneracy is (2S+1) i.e. 3 and 1 respectively. A complete set of commuting variables is S2 and Szwhere

z is an arbitrary axis. The eigenstates of H0denoted with È S, Sz\, are given by

È  1, 1 \ = uÄu; È 1, 0 \ = HuÄd + dÄuL � 2 ; 1, 1 \ = dÄd ; È 0, 0 \ = HuÄd - dÄuL � 2 ;

u and d represent up and down states for single particles.

We  can  choose  the  direction  z  along  the  external  field  B,  in  this  way  the  interaction  is  written  as  V  =  B  s1 z.  V  no  longer  commutes  with  all  3

components of total spin, as s1 z  is not rotationally invariant. The surviving symmetry is rotation around the z axis, and correspondingly Szis still a

good quantum number.

The action of s1 z on the above basis is:

s1 z È 1, 1 \ = 1�2 È 1, 1 \; sz È 1, -1 \ = -1�2 È 1, -1 \;
s1 z È 1, 0 \ = 1�2 È 0, 0 \; s1 z È 0, 0 \ = 1�2 È 1, 0 \;

The reader can check that the selection rules for the third component of a vector operator are satisfied, i.e.  

D S = 0, ± 1; 0 ® 0 forbidden; D Sz = 0.

The resulting Hamiltonian is

H1 =

1

4
+

B

2
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4
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The states 1 and 3 continue to be eigenstates, with eigenvalues 1/4 ± B/2. The submatrix involving states 2 and 4 must be diagonalized giving rise to
eigenvalue equation 

-
3

16
-
B2

4
+

Λ

2
+ Λ

2
� 0 .

Solving this equation and adding the two trivial eigenvalues of H1 (the elements (1,1) and (3,3) of the matrix), the eigenvalues are

Λ1 =
1

4
+
B

2
; Λ2 =

1

4
-
B

2
; Λ3 =

1

4
-1 - 2 1 + B2 ; Λ4 =

1

4
-1 + 2 1 + B2 .

For large B
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 i.e.  two  double  degenerate  levels.  In  this  limit  the  eigenstates  are  eigenstates  of  V,  while  H0  acts  as  a  small  perturbation.  Here  is  a  sketch  of  the

behavior of the eigenvalues as a function of B.

0.5 1.0 1.5 2.0
B

-1.0

-0.5

0.5

1.0

10 20 30 40 50
B

-20

-10

10

20

Problem 2
1. Write the components of a spinor (s = 1/2) with projection of spin 1/2 along an axis lying in the y, z plane and making an angle Θ  from the z 

axis.
2. Generalize the computation to an arbitrary axis Ζ  defined through polar angles (Θ,j).

æ Solution

à 1

The geometry of the problem is shown in figure below:

y

z

y'

z'

Θ

Consider for simplicity the double of the spin operator. We are looking for the eigenstate with eigenvalue +1 of

S = Cos@ΘD Σz + Sin@ΘD Σy =
Cos@ΘD -ä Sin@ΘD

ä Sin@ΘD -Cos@ΘD .

We can find eigenvalues and eigenvectors by diagonalizing the S, but it is instructive to proceed performing a rotation of reference frame. The rotated

frame is obtained by a clockwise rotation of Θ around x axis, i.e. Rx@-ΘD.In the new frame the state we are looking for is simply Ψ' =
1

0
. Let us

note that it is an eigenstate of Σz in the rotated frame. The state in the first frame is 

Ψ = Rx
-1@-ΘD Ψ' = Rx@ΘD Ψ' =

Cos@Θ �2D ä Sin@Θ �2D
ä Sin@Θ �2D -Cos@Θ �2D  

1

0
=

Cos@Θ �2D
ä Sin@Θ �2D .

In fact
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S × Ψ =
Cos@ΘD -ä Sin@ΘD

ä Sin@ΘD -Cos@ΘD  
Cos@Θ �2D

ä Sin@Θ �2D =
Cos@Θ �2D

ä Sin@Θ �2D = Ψ

It is perhaps useful to clarify a point: we used the relation Ψ' = Rx@-ΘDΨ which is the correct one for the components of the wave function. 

In terms of kets the transformation law reads (primed kets refer to rotated frame)

U@RD È  Σ \ = RΣ¢ Σ È  Σ \ ¢
; È  Σ \ ¢

= RΣ¢ Σ
* U@RD È  Σ \ .

The state we are looking for is È+\¢ (+ and - refers to indexes 1 and 2). This state, in the original non rotated frame is  U-1@RDÈ+\¢ i.e.

U-1@RD È +\¢
= R1 Σ

*
 È  Σ \.

The rotation matrix is

Rx@-ΘD =
Cos@Θ �2D -ä Sin@Θ �2D

-ä Sin@Θ �2D -Cos@Θ �2D ,

and it follows that

U-1@RD É +]¢
= R11

* È +^ + R12
* Ë -^ = Cos@Θ �2D È +\ + ä Sin@Θ �2D È - \

which coincides with the previous result.

à 2

The components, as shown in the previous answer, are the conjugate of first row of the rotation matrix which brings the old reference frame to a new
one in which z axis is along Ζ.  The axes directions transforms as a basis then the i-th axis will have as components, in general, the i-th row of the 3�3
rotation R. In 3 dimensions rotation matrices are real, and  we have, indicating with ei the old basis and with fithe new basis:

fi = Rij ej

The third row of the rotation matrix must be:

Ζ = 8Sin@ΘD Cos@jD, Sin@ΘD Sin@jD, Cos@ΘD<;
A generic rotation matrix is given through Euler angles, Α, Β, Γ by

R HΑ, Β, ΓL = Rz@ΓD Ry@ΒD Rz@ΑD,
with the convention used in this course. With

Rx@ΑD =

1 0 0

0 Cos@ΑD Sin@ΑD
0 -Sin@ΑD Cos@ΑD

; Ry@ΑD =

Cos@ΑD 0 -Sin@ΑD
0 1 0

Sin@ΑD 0 Cos@ΑD
; Rz@ΑD =

Cos@ΑD Sin@ΑD 0

-Sin@ΑD Cos@ΑD 0

0 0 1

.

The definitions are shown in the figure below:
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It is apparent that the choice: Α =j, Β=Θ, Γ=0 brings the third axis along the Ζ direction, as the reader can check with

(2.1)R = Rz@0D Ry@ΘD Rz@jD =

Cos@ΘD Cos@jD Cos@ΘD Sin@jD -Sin@ΘD
-Sin@jD Cos@jD 0

Cos@jD Sin@ΘD Sin@ΘD Sin@jD Cos@ΘD
.

In the spinor space the rotation matrices around the principal axes are constructed with the Pauli matrices:

Σx =
0 1

1 0
; Σy =

0 -ä

ä 0
; Σz =

1 0

0 -1
;

Rk@ΑD = ExpBä
Α

2
 ΣkF = CosB Α

2
F + ä SinB Α

2
F Σk.

The matrix R, (1) is given in spinor space by

(2.2)R = R2@ΘD R3@jD =
CosA Θ

2
E ãä j�2 SinA Θ

2
E ã-ä j�2

-SinA Θ

2
E ãä j�2 CosA Θ

2
E ã-ä j�2 .

The spinor we look for is then given by the complex conjugate of the first row of R, 

(2.3)Ψ1 =
CosA Θ

2
E ã-ä j�2

SinA Θ

2
E ã+ä j�2 .

We can check the result by considering the projection of the spin along Ζ and verifying that  Ζ.Σ Ψ1 = Ψ1:

Ζ.Σ =
Cos@ΘD Sin@ΘD ã-ä j

Sin@ΘD ãä j -Cos@ΘD ; Ζ.ΣΨ1 = Ψ1 .

The second row of R gives the opposite polarized spinor

Ψ2 =
-SinA Θ

2
E ã-ä j�2

CosA Θ

2
E ã+ä j�2 .

The use of Γ angle would give an additional arbitrary phase to the spinor, as expected.
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Problem 3

The particle L0  ,with spin 1/2,  decays  into  p + Π in the rest system.  Assume that the L0  is polarized along z axis. Write the most general amplitude

for the process and the angular distribution for the secondary particles. What are the constraints if parity is conserved? Write the expression for the
mean value of the longitudinal polarization of the proton (projection of spin along the direction of motion).

æ Solution

The kinematic is the following:

p

Π-

Θ

L0

The problem is invariant under rotations around the z axis (polarization of the L particle), so we can put j=0 for the azimuth angle. Let |L> the initial
state and S the operator which causes the transition to p, Π states, denoted by |n>. We can observe the direction of the proton (surely opposite to that
of the Π) |Θ> and, possibly the spin state (eg. along z) of the proton, Σ. The probability amplitude for the event is 

A@Θ, ΣD = < Θ, Σ È S È L > = â
n

< Θ, Σ È n > < n È S È L > .

One  is  interested  only  in  the  angular  momentum  variables  here.  The  initial  state  have  J=1/2,  Jz=  1/2,  the  same  must  be  for  |n>  states.  Quantum

number of intermediate states in the sum can be selected as L and Σ, L is the angular momentum. As L Å 1/2 must give 1/2 by angular momentum
conservation, the only possible states have L=0,1. The two angular momenta must be combined via ClebschGordan coefficients, note that Lz= 1/2 - Σ

as Jz = 1�2. The amplitude in Θ are clearly ∆Σ sz  YLm@Θ, 0D. If we call a and b the two matrix elements of S in these two states, the two possible

terms in the sum are:

f1@Θ, ΣD = a CB1, 1

2
- Σ;

1

2
, Σ,

1

2
,
1

2
F Y

1,
1

2
-Σ

@Θ, 0D;
f2@Θ, ΣD = b CB0, 0;

1

2
, Σ,

1

2
,
1

2
F Y0,0@Θ, 0D;

To the second term only sz=1/2 gives a contribution. The total amplitude is 

A@Θ, ΣD = f0@Θ, ΣD + f1@Θ, ΣD;
The (relative) probability distribution for the decay (i.e. we do not measure proton spin) is:

(3.1)P@ΘD = â
Σ=-1�2

+1�2 È A@Θ, ΣD È2 =
È  a È2

+ È  b È2
- 2 Re@a b*D Cos@ΘD
4 Π

à Parity

The two states above have opposite parity, as orbital parity is H-LL. This means that if both a and b are different from 0 parity is violated (as it is in

Nature for this decay). If we look at the angular distribution (1) 
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P@ΘD =
È  a È2

+ È  b È2
- 2 Re@a b*D Cos@ΘD
4 Π

;

this is clear. If we consider a reflection in the (x,y) plane the spin of L remain unchanged (spin is an axial vector), while momentum of the p changes
and Θ ® Π - Θ. But P[Π - Θ]­  P[Θ] if ab­ 0 so parity must be violated. 

à Longitudinal polarization of the proton

In  the  previous  problem it  has been shown that  the spinor  with positive and negative spin projection along an axis  with polar  angles  (  Θ,  j=0)  are
respectively:

(3.2)Ψ+ =
CosA Θ

2
E ã-ä j�2

SinA Θ

2
E ã+ä j�2 ; Ψ- =

-SinA Θ

2
E ã-ä j�2

CosA Θ

2
E ã+ä j�2 .

The corresponding amplitudes will be:

A± = â A@Θ, ΣD Ψ±@ΣD;
i.e.

A+ =

H-a + bL CosA Θ

2
E

2 Π

; A- = -

Ha + bL SinA Θ

2
E

2 Π

.

We see  that  for  Θ  =  0  A-  =  0,  while  for  Θ=Π,  A+  =  0.  This  is  due  to  the  conservation  of  angular  momentum:  for  motions  along  z  axis  the  orbital

momentum Lzvanishes,  and the  spin  of  the  proton  must  be in positive z direction,  i.e.  with positive longitudinal  polarization for  Θ=0 and negative

longitudinal polarization for Θ = Π. the sum over the final polarizations gives correctly the same result as before:

P@ΘD = É A+ È2 + È A- È2 =
È  a È2

+ È  b È2
- 2 Re@a b*D Cos@ΘD
4 Π

.

The mean value of the polarization will be given by the difference of counting with polarization + and - over the total events:

N+ = à È A+ È2 Sin@ΘD âΘ ; N- = à È A- È2 Sin@ΘD âΘ ;

mean Polarization =
N+ - N-

N+ + N-

.

Again this measurement checks parity conservation: mean longitudinal polarization is the mean value of a pseudoscalar, < s·p >, so must be zero if
parity is conserved.

Problem 4

A particle of spin S interacts with an external uniform magnetic field B,

H = - Μ ×B = - Β Sz.

At time t = 0 the spin is oriented along n = (Sin[Θ]Cos[j],Sin[Θ]Sin[j], Cos[Θ]) , i.e.  S·n |0\ = S |0\ .  

1. Compute the mean values XSx\ ,YSy]and XSz\at time t = 0. (Suggestion: consider an equivalent system composed by N = 2 S particles of 

spin 1/2).
2. Compute the probabilities to find the different Szvalues with a measure of Sz at t=0.

3. Consider the Heisenberg operators Sx
H@tD, Sy

H@tD, Sz
H@tD. Write and solve the Heisenberg equations of motion. From the computation extract 

the values of Xt È Sx È t\, Yt É Sy É t], Xt È Sz È t\ for  the Schrödinger operators at time t. Find the minimum value of t such that 

Xt È Sx È t\ has the initial value.

æ Solution

à 1

Let us first consider the eigenstate of S·n for a spin 1/2 particle:

(4.1)È n\ =
ã-ä j�2 CosA Θ

2
E

ãä j�2 SinA Θ

2
E .

To verify that | n\ is an eigenvector the reader can easily check that  n·Σ | n\ = | n\ . 
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For the general case with spin S in the direction n, we consider as suggested the equivalent system of N = 2S spin 1/2 particles, with parallel spin:

(4.2)È 0\ =
ã-ä j�2 CosA Θ

2
E

ãä j�2 SinA Θ

2
E

1

ã-ä j�2 CosA Θ

2
E

ãä j�2 SinA Θ

2
E

2

...
ã-ä j�2 CosA Θ

2
E

ãä j�2 SinA Θ

2
E

N

The spin operator is 

(4.3)S = â si .

The mean value of Sx is

(4.4)XSx\ = N Xn È s1 x È n\ =
N

2
 ã

ä j
 CosB Θ

2
F SinB Θ

2
F + ã

-ä j
 CosB Θ

2
F SinB Θ

2
F = S Cos@jD Sin@ΘD.

Likewise

(4.5)YSy] = S Cos@jD Sin@ΘD ; XSz\ = S Cos@ΘD .

à 2

We can write the state (2) as

(4.6)

È 0\ = ã
-ä j�2

 CosB Θ

2
F Α1 + ã

ä j�2
 SinB Θ

2
F Β1 ... ã

-ä j�2
 CosB Θ

2
F ΑN + ã

ä j�2
 SinB Θ

2
F ΒN = â

k=-N

N

ck È  S,

Sz =
k

2
 \.

where Α, Β are the up and down spinors. The vector È  S, Sz =
k

2
 \ is the symmetric combination

(4.7)È  S, Sz =
k

2
 \ =

N

{

-1�2
 â Α1 Α2 ... Β{+1 ... ΒN

of terms with { spins up and N-{ spins down, We must have

{

2
-

N - {

2
=

2 { - N

2
=

k

2
Þ k = 2 { - N; { =

N + k

2
.

The coefficients ckare

(4.8)ck =
N

{

1�2
ã

-ä j�2
 CosB Θ

2
F {

ã
ä j�2

 SinB Θ

2
F N-{

.

The requested probability is then

(4.9)Pk =
N

{
 CosB Θ

2
F2 {

SinB Θ

2
F2 HN-{L

; { =
N + k

2
.

The reader can easily check that the  probabilities sum up to 1.

à 3

The time evolution of the operators is given by

(4.10)Sx@tD = ã
ä H t�Ñ Sx ã

-ä H t�Ñ
= ã

-ä Β Sz t�Ñ Sx ã
ä ΒSz t�Ñ ; etc.

In particular Sz@tD = Sz@0D = Sz. The time evolution equations are

(4.11)

ä
d

dt
 Sx@tD =

1

Ñ

@Sx, HD = -
Β

Ñ

@Sx, SzD = ä Β Sy;

ä
d

dt
 Sy@tD =

1

Ñ

ASy, HE = -
Β

Ñ

ASy, SzE = -ä Β Sx;

ä
d

dt
 Sz@tD = 0.

From the first two equations

(4.12)S
..

x = - Β
2
 Sx ; S

..

y = - Β
2
 Sy .
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Solving and imposing the initial condition one easily get

(4.13)Sx@tD = Sx Cos@Β tD + Sy Sin@Β tD; Sy@tD = Sy Cos@Β tD - Sx Sin@Β tD.
For the average values at time t

Xt È Sx È t\ = X0 È Sx@tD È 0\ = S HCos@jD Sin@ΘD Cos@Β tD + Sin@jD Sin@ΘD Sin@Β tDL = S Cos@j - Β tD Sin@ΘD;
Yt É Sy É t] = Y0 É Sy@tD É 0] = S HSin@jD Sin@ΘD Cos@Β tD - Cos@jD Sin@ΘD Sin@Β tDL = S Sin@j - Β tD Sin@ΘD.

Problem 5

A particle  of  mass  m,  spin  1/2  and charge  e  is  bound in  a  three  dimensional  harmonic  potential.  A  weak  uniform magnetic  field  is  applied to  the
system. The Hamiltonian is

H =
1

2 m
 p -

e

c
 A

2

+
1

2
 m Ω

2
 r2 - Μ ×B ; Μ = g ΜB s =

g

2
 ΜB Σ. ΜB =

e Ñ

2 mc
.

1. With B = 0, compute the first few energy levels of the system, their orbital angular momentum and the total angular momentum.

2. Consider now a weak magnetic field, with a vector potential  A = (- B 
y

2
, B x

2
, 0). List the conserved operators, neglecting order B2effects.

3. Using previous results compute, in the weak field approximation, the energy for the first two levels of the system.

æ Solution

à 1

The Hamiltonian for B = 0 is the sum of three one dimensional oscillators, so the energy levels are

(5.1)EN = Ñ Ω N +
3

2
; N = 0, 1, 2 ...

We  have  an  orbital  degeneracy  equal  to  the  number  of  ways  to  get  N  as  the  sum  of  three  numbers  (  n1,  n2,  n3),  corresponding  to  the  quantum

numbers of the three independent one dimensional oscillators:

N = 0, deg. = 1;  N = 1, deg. = 2, N = 3, deg. = 6, N = 4, deg. = 12 ...  In general   deg[N] = (N+1)(N+2). The eigenfunctions have the form

ΨN@x, y, zD = C Hn1B m Ω

Ñ

xF Hn2B m Ω

Ñ

 yF Hn3B m Ω

Ñ

 zF ExpB-
m Ω

2 Ñ
 r2F,

Where Hiare Hermite polynomials. The parity is H-1LN, product of the parity of single oscillators.  Each eigenfunction is a product of a polynomial

of degree N times a rotation invariant exponential, then the possible angular momenta are

L = N, N - 2, ... .0 H1L.
Even / Odd sequence of L for even/odd parity levels. 

Each level has an additional doubling in the degeneracy due to spin. 

The first levels are

1. N = 0,  L = 0, J = 1/2 ;

2. N=1,   L = 1, J=3/2, 1/2 ;

3. N=2, L=2, 0, J = 5/2, 3/2, 1/2.

à 2

In weak field approximation

H =
1

2 m
 p2 +

1

2
 m Ω

2
 r2 -

e B Ñ

2 m c
 Lz -

g B ΜB

2
 Σz =

1

2 m
 p2 +

1

2
 m Ω

2
 r2 - B ΜB Lz +

g

2
Σz .

Operators L2, Lz, s2, sz commute with H.

à 3

Eigenstates of H can be classified by N, Lz, sz. The eigenvalues are

EN,Lz,sz = Ñ Ω N +
3

2
- ΜB B HLz + g szL.

Problem 6
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Problem 6

A constant electric field directed along z axis acts on a particle of mass m and charge q. 

1. Write and solve the Heisenberg equations for the position r[t] and the momentum p[t].

2. Find the operator L[t] using the results of point 1. Verify that the result is consistent with equations of motion for L[t].

3. Compute the mean value of L[t] knowing that 

Xr@0D\ = 0; Xp@0D\ = p0 x
`
; XL@tD\ = 0.

æ Solution

à 1

The Hamiltonian is

(6.1)H =
p2

2 m
- q E0 z

The equations of motion are

(6.2)p
 

=
ä

Ñ

@H, pD = q E0 z
`
; r

 
=

ä

Ñ

@H, rD =
p

m
; Þ r

..
=

q E0

m
z
` Hconstant accelerationL.

Their solution is identical to the classical solution

(6.3)r@tD = r@0D +
t

m
 p@0D +

1

2
 
q E0

m
 t2 z

`
; p@tD = p@0D + q E0 t z

`
.

à 2

By definition

(6.4)L@tD = r@tD ï p@tD.
From the solutions (3) it follows that

(6.5)

Lz@tD = Lz@0D;
Lx@tD = Lx@0D + q E0 t y@0D +

1

2
 
q E0

m
 t2 py@0D;

Ly@tD = Ly@0D - q E0 t x@0D -
1

2
 
q E0

m
 t2 px@0D.

The equations of motion for L are

(6.6)L
 

=
ä

Ñ

@H, LD.
or

(6.7)L
 
z@tD = 0; L

 
x@tD = q E0 y@tD; L

 
y@tD = - q E0 x@tD.

Lz is a constant of motion, in agreement with (5).  The equations for Lx and Lycan be integrated  using (3) and reproduce (5):

(6.8)

Lx@tD = Lx@0D + q E0 à
0

t

ât y@tD = Lx@0D + q E0 t y@0D +
1

2
 
q E0

m
 t2 py@0D;

Ly@tD = Ly@0D - q E0 à
0

t

ât x@tD = Ly@0D - q E0 t x@0D -
1

2
 
q E0

m
 t2 px@0D.

à 3

With the initial conditions given in the text the mean value of (5) give immediately:

XLx@tD\ = 0; XLz@tD\ = 0; X  Ly@tD \ = -
1

2
 
q E0

m
 t2 p0 .
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Problem 7

A particle of mass m and spin 1/2 is described by a one-dimensional Hamiltonian

H =
p2

2 m
+ V@xD; V@xD =

Σ3 + 1

4
 m Ω

2
 x2 .

1. Compute the spectrum of H and its eigenfunctions.

2. At time t = 0 the particle is in the state

Ψ@0, xD = Ψ0@xD È+\-È-\
2

;

where

È+\,È-\ up, down eigenstates of sz ; Ψ0@xD =
m Ω

Π Ñ

1�4
ExpB-

m Ω

2 Ñ
 x2F = ground - state wave function for the oscillator Hfreq. Ω L.

Determine if this state is an eigenstate of H and compute the mean value of H on it.

3. Compute the wave function at time t. At time t a measurement of szis performed with a Stern-Gerlach experiment. Compute the probability of 

finding sz = -1�2.

æ Solution

à 1

H commutes with sz  so we can classify the states with the eigenvalues ±1/2 of this operator. For up states (eigenvalues +1/2, or +1 for Σ3) H is the

Hamiltonian HΩ of an harmonic oscillator, with eigenvalues and eigenfunctions

(7.1)En = Ñ Ω n +
1

2
, n = 0, 1, ...; Ψn@xD = Cn HnB m Ω

Ñ

 xF ExpB-
m Ω

2 Ñ
 x2F.

For down states (eigenvalues -1/2, or -1 for Σ3) , the system describes a free particle of an Hamiltonian HHfreeL with eigenvalues and eigenfunctions

(7.2)Ep =
p2

2 m
, -¥ < p < ¥; Ψp@xD =

1

2 Π Ñ

 Exp@ä p xD.
à 2

The state is not an eigenfunction of H as it is not an eigenfunction of sz. The mean value of H on this state is

(7.3)XΨ È H È Ψ\ =
1

2
 XΨ0 È HΩ È Ψ0\ +

1

2
 YΨ0 É HHfreeL É Ψ0] =

1

4
 Ñ Ω +

1

2
 [Ψ0

p2

2 m
Ψ0_ =

1

4
 Ñ Ω +

1

2
 
Ñ Ω

4
=

3

8
 Ñ Ω.

à 3

The spin up part of the state evolve as an eigenstate of H:

Ψ0@xD È+\ ® ã
-ä E0 t�Ñ

Ψ0@xD È+\ ; E0 =
Ñ Ω

2
.

For the down part of the state we can write

Ψ0@xD È-\ = à
-¥

+¥

âk a@kD ã
ä k x È-\ ® à

-¥

+¥

âk a@kD ã
-ä

k2  Ñ t

2 m  ã
ä k x È-\ .

Using the general formula

(7.4)à
-¥

+¥

âz ExpA-A z2 + B zE = à
-¥

+¥

âz ExpB-A z -
B

2 A

2

+
B2

4 A
F =

Π

A
ExpB B2

4 A
F; Re@AD > 0 .

for

Ψ0@xD =
m Ω

Π Ñ

1�4
ExpB-

m Ω

2 Ñ
 x2F º N ExpA- A x2E

one easily gets
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(7.5)a@kD =
N

2 Π
 

Π

A
ExpB-

k2

2 A
F.

The free part of the wave function at x = 0 and time t is then

à
-¥

+¥

âk a@kD ã
-ä

k2  Ñ t

2 m =
N

2 Π
 

Π

A
 à

-¥

+¥

âk ã
-

k2

2 A  ã
-ä

k2  Ñ t

2 m =
N

1 + ä Ω t

.

The state is

(7.6)Ψ@x = 0, tD =
N

2

 ã
-ä Ω t�2

 È + \ -
1

1 + ä Ω t

 È - \ .

To compute the probabilities for measuring up and down components it is convenient to normalize (6) in spin space:

È Ψ\ =
1 + Ω2 t2

1 + 1 + Ω2 t2
ã

-ä Ω t�2
 È + \ -

1

1 + ä Ω t

 È - \ .

The requested probability is then

P- = È X- È Ψ\ È2 =
1

1 + 1 + Ω2 t2
.

Problem 8

Let  us  consider  the  Hamiltonian  of  Hydrogen  atom,  together  with  the  spin-orbit  interaction  term  for  the  electron  and  the  spin-spin  interaction
between electron and proton (hyperfine interaction):

Hso = A L×se ; Hss = B sp ×se .

A and B are constants.

1. Compute the degeneracy for the levels n=1, n=2 of the hydrogen atom taking into account electron and proton spin but neglecting the above 
interactions.

2. Classify the same levels by neglecting only Hss. Use the operators

L2, J2, F2, Fz; J = L + se ; F = J + sp .

3. Some of the states classified above are also eigenstates of the total Hamiltonian:  find which and compute their eigenvalues of H.

æ Solution

à 1

The energy levels are

(8.1)En = -
1

2 n2

m e4

Ñ
2
.

Taking into  account  the  spin  variables  the  total  degeneracy is  4  n2,  a  factor  n2  is  the  Coulomb degeneracy,  a  factor  2  is  due to  electron  spin  and

another factor of 2 is due to nuclear spin.

à 2

Within the degenerate subspace of fixed n, L we can write

(8.2)Hso = A L×se =
A

2
AJ2 - L2 - se

2E =
A

2
B J HJ + 1L - L HL + 1L -

3

4
F.

Taking into account the rules for angular momentum sum we can compute energies. The results for energies and degeneracies are summarized in the
following table.
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n L J F E deg.

1 0 1

2
0,1 E1

H0L 4

2 0 1

2
0,1 E2

H0L 4

2 1 1

2
0,1 E2

H0L
-A 4

2 1 3

2
1,2 E2

H0L
+

1

2
A 8

à 3

In a similar way we can write

(8.3)H = H0 + A L×se + B sp ×se = H0 +
A

2
AJ2 - L2 - se

2E +
B

2
BS2 -

3

4
-
3

4
F.

The states È L, J, F, Fz\of the previous table are not, in general, eigenstates of H, as J2  do not commutes with S2,  this happens only when the

values of L and F determine uniquely the S value. We are using the notation

S = se + sp ; F = L + S.

One gets easily the following table

n L J F S E deg.

1 0 1

2
0 0 E1

H0L
-

3

4
B 1

1 0 1

2
1 1 E1

H0L
+

1

4
B 3

2 0 1

2
0 0 E2

H0L
-

3

4
B 1

2 0 1

2
1 1 E2

H0L
+

1

4
B 3

2 1 1

2
0 1 E2

H0L
-A +

1

4
B 1

2 1 3

2
2 1 E2

H0L
+

1

2
A +

1

4
B 5
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