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                     Quantum                 Mechanics
                       K. Konishi, G. Paffuti

                

Problem 1

A particle of spin J=1 and unknown parity decays at rest in two identical spin 1/2 particles.

1. Compute the orbital angular momentum of the final particles and the total spin.

2. Determine the parity of the decaying particle, assuming that in the decay parity is conserved.

3. Let us suppose that the initial particle is in the state È J, Jz\ = È 1, 0\. Write explicitly the final state with an unknown radial function, but with 

explicit use of spherical harmonics and spin states.

Let us suppose now that one measures the spin projections of the final particles with  Stern-Gerlach type apparatus, for two particles emitted in the
directions (Θ,j) and (Π-Θ, j+Π).

a. For fixed values of Θ, j, write the normalized spin wave function of the final state.

b. Compute the probability that a particle is emitted in the direction Θ, j with sz= +1/2 .

c. Compute the probability that a simultaneous measurement of IsyH1L, syH2LM gives (1/2, 1/2).

æ Solution

à 1

The possible values for S, L compatible with J = 1 are

(1.1)S = 1, 0; L = 0, 1, 2 .

The  final  particles  are  fermions,  the  final  state  must  be  completely  antisymmetric,  the  only  possibility  left  is  S=1,  L=1,  symmetric  in  spin  and
antisymmetric in orbital variables.

à 2

The parity of the final state is

(1.2)P = H-1LL ;
then if parity is conserved P = -1.

à 3

Using the Clebsch - Gordan coefficients to sum L and S the wave function can be written as

Ψ = R@rD 1

2

 HY11@Θ, jD È  1, -1 \ - Y1-1@Θ, jD È  1, +1 \L =
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-ä
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The normalized spin state is

(1.3)Ψspin =
1

2

 Iã
ä j

 È  ¯¯  \ + ã
-ä j

 È­­  \M.
ã b

The probability is 1/2.

ã c

The eigenstate with IsyH1L, syH2LM  = (1/2,1/2) is



Ψ1 =
1

2
 HÈ­\ + ä È¯\ L HÈ­\ + ä È¯\ L =

1

2
 HÈ­­\ + ä È­¯\ + ä È¯­\ - È¯¯\ L;

The requested probability is

È  X  Ψ1 É Ψspin \ È2 =
Sin@jD2

2
.

Problem 2

A deuteron d is a nucleus with charge +1, composed of a proton (p) and a neutron (n). The deuteron has spin 1 and parity +. A negative pion Π -,

with charge -1 and spin 0, can be bound to the deuteron to form a sort of "deuterium atom". Let us suppose that this system is formed in the lowest
Bohr orbit.
1. Compute the ratio between the Bohr radius of this system and the standard Bohr radius, and compute the binding energy of the system. Some 

masses needed for the computation are listed below:

MΠ- > 139.6 MeV�c2; Me- > 0.51 MeV�c2; Md > 1875.6 MeV�c2 ; Mp > 938.3 MeV�c2 .
2. The bound system described above decays with the reaction Π- + d ® n + n . Both angular momentum and parity are conserved in the decay. 

Discuss if one can determine the intrinsic parity of the Π- from these data. 

3. Compute the angular distribution of neutrons in the final state knowing that in the initial state Jz= 0.

4. Explain why the hydrogen atom does not decay via a somewhat analogous process,  e- + p ® n + Ν ,  where Ν is the (electron) neutrino. 

æ Solution

à 1

The reduced mass of the system is

Μ =
MΠ- Md

MΠ- + Md
> 129.9 MeV�c2.

The ratio of the Bohr radius with respect the usual one is

rB
¢

rB
>

Me

Μ
=

0.51

129.9
= 0.0039.

The binding energy

e2

2 rB
¢

=
e2

2 rB

rB

rB
¢

=
13.6

0.0039
eV > 3.49 KeV.

à 2

The orbital angular momentum for the bound state is zero, the pion's spin is zero, then the initial angular momentum is one, the spin of the deuteron. 

The states allowed by Fermi statistics for the final neutrons are

a. S=0 ;  L = 0, 2, 4...

b. S=1 ;  L = 1, 3, 5

The only combination compatible with J = 1 is  (S=1, L = 1).  The final state then has parity -1. The parity of the initial state is

Pin = PΠ H-1L{

= PΠ

then parity conservation imply  PΠ = -1. This was indeed the method used to determine experimentally pion's intrinsic parity.

à 3

The  bound state is in the angular momentum state È J, Jz\ = È 1, 0\. The same state must describe final particles. Decomposing the final state in

terms of orbital and spin states 

Ψ =
1

2

 HY11@Θ, jD È  1, -1 \ - Y1-1@Θ, jD È  1, +1 \L.
The angular distribution of the decay' s products is then

P âW =
3

8 Π
 Sin@ΘD2 âW. à P âW = 1.

More explicitly, the final state is
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More explicitly, the final state is

È Ψ\ =
1

2

 JÈ  1, +1 \L  È  1, -1 \S - È  1, -1 \L  È  1, +1 \N;
the probability to detect a particle in âW without, independently of the spin, is

P = ÈX  1, 1 ÈS XΘ, j È Ψ\ È2 + ÈX  1, -1 ÈS XΘ, j È Ψ\ È2 =
1

2
 I É Y11@Θ, jD È2 + È Y1,-1@Θ, jD È2M =

3

8 Π
 Sin@ΘD2.

à 4 

 The process  e- + p ® n + Ν is perfectly allowed from the point of view of the quantum numbers:  in fact, the neutron decays as 

n ® p + e- + Ν   where Ν�   is the anti-netrino (beta decay).  But as this very fact shows, the mass of the neutron is larger than the sum of those of the

proton, electron and neutrino.  As the mass of the hydrogen atom is smaller than the sum of the proton mass and electron mass (by Borh's binding
energy)  this process is forbidden by (relativistic) energy conservation. 

Problem 3

Write the explicit form of the completeness relation for a system of two free identical particles.

æ Solution

For a single particle the completeness relation is formally written as

1 = â
i

Èi\XiÈ.
Let us now consider a system of N particles. The completeness take the form

(3.1)1 = â ¢

Λ1..

È  Ψ@Λ1, ...D \X  Ψ@Λ1, ...D È.
We use the symbol Ψ[] to denote the symmetric ket.

The  sum runs  on  inequivalent  permutations  (i.e.  those corresponding to effectively different  states).  For the continuous spectrum this  would imply
some complicated excluded domains in the integrals. It is simpler to sum on all configurations. There are N! /(n1! n2! ..) of such permutations, then

it is simpler to write

(3.2)1 =
n1! n2! ..

N!
 â
Λ1..

È  Ψ@Λ1, ...D \X  Ψ@Λ1, ...D È.
In the following we will be interested in continuum states, in this case the relative probability for two or more particles to be in the same cell of phase
space is negligible and we can assume ni=1 in all formulas.

In this approximation we can write, for two particles (the formulas below are valid both for bosons and fermions)

(3.3)1 =
1

2!
 à
k1 k2

È  ΨBk1, k2 D\X  Ψ@k1, k2D Ë
Let us check this relation. For bosons or fermions we have

È  Ψ @  k1, k2 D\ =
1

2

 HÈ  k1, k2 \ ± È  k2, k1 \L;
The scalar product between two states is

X  Ψ@q1, q2D Ë Ψ @  p1, p2 D\ = I∆q1 p1  ∆q2 p2 ± ∆q1 p2  ∆q2 p1M.
Using (3) we get the same result:

1

2
 

à
k1 k2

X  Ψ@q1, q2D È  ΨBk1, k2 D\X  Ψ@k1, k2D Ë Ψ @  p1, p2 D\ =
1

2
I∆q1 k1  ∆q2 k2 ± ∆q1 k2  ∆q2 k1M I∆k1 p1  ∆k2 p2 ± ∆k1 p2  ∆k2 p1M =

I∆q1 p1  ∆q2 p2 ± ∆q1 p2  ∆q2 p1M

Problem 4
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Problem 4

Write  the  Hamiltonian  and  the  Heisenberg  equations  for  a  system  of  particles  interacting  with  a  potential  U@x1, x2Din  the  second  quantization

formalism.

æ Solution

à Hamiltonian

The kinetic term of the Hamiltonian in Fock representation is

(4.1)H0 = à â3k

H2 ΠL3  aÖ@kD Ñ2 k
2

2 m
 a@kD.

The field operator F[x] is defined by

(4.2)F@xD = à â3k

H2 ΠL3  a@kD ã
ä k x.

We get easily

(4.3)H0 = à â
3x F

Ö@xD - Ñ
2
 

Ñ2

2 m
 F@xD

In fact, by using (2)

à â
3x F

Ö@xD - Ñ
2
 

Ñ2

2 m
 F@xD = à â3k

H2 ΠL3  à â3q

H2 ΠL3  à â
3x aÖ@qD ã

-ä q x
Ñ2 k

2

2 m
 a@kD ã

ä k x

The space integral gives H2 ΠL3 ∆3 Hk - qL and the result follows. 

In the Fock representation the interaction term is a two particle operator and is given by

(4.4)HI =
1

2
 à
k1 k2 k3 k4

aÖ@k1D aÖ@k2D X k1, k2 È  U È  k3, k4 \ a@k3D a@k4D.
The matrix element is

X k1, k2 È  U È  k3, k4 \ = à â
3x1 â

3x2 ã
-ä Hk1 x1 +k2 x2L

 U@x1, x2D ã
ä Hk3 x1 +k4 x2L.

Inserting this expression into (4) we get

(4.5)HI =
1

2
 à â

3x1 â
3x2 F

Ö@x1D F
Ö@x2D U@x1, x2D F@x1D F@x2D.

In a similar way it is easy to show that a possible external field VHEL[x] gives

(4.6)V = à â
3x F

Ö@xD F@xD VHEL@xD.
The Hamiltonian is given by

(4.7)

H = à â
3x F

Ö@xD - Ñ
2
 

Ñ2

2 m
 F@xD +

1

2
 à â

3x1 â
3x2 F

Ö@x1D F
Ö@x2D U@x1, x2D F@x1D F@x2D + à â

3x F
Ö@xD F@xD VHEL@xD.

à The Heisenberg equations of motion

We can now consider the Heisenberg representation for the fields, F[t,x]. 

(4.8)F@t, xD = ExpBä
H

Ñ

 tF F@xD ExpB-ä
H

Ñ

 tF.
From 

(4.9)Aa@kD, aÖ@qDE = H2 ΠL3 ∆
3
 Hk - qL,

it follows that at equal times
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it follows that at equal times

(4.10)@F@t, xD, F@t, yDD = AF
Ö@t, xD, F

Ö@t, yDE = 0; AF@t, xD, F
Ö@t, yDE = ∆

3
 Hx - yL.

Using these commutations relation a straightforward calculation gives

(4.11)äÑ
d

dt
 F@t, xD = @F@t, xD, HD = -

Ñ2

2 m
 D F@t, xD + VHEL@xD F@xD + à â

3y È  F@t, yD È2 U@x, yD F@xD.
This is the analogue of the Maxwell equations for the F field. 

Problem 5

Consider a simplified version of the Young experiment limiting the dynamics to two single "modes" of the electromagnetic field, describing a photon
passing  from the  slit  1  or  2  respectively.  Use  a  Fock  formalism  to  describe  the  photon's  beam and  compute  the  probability  to  measure  k  times  a
photon through slit 1 in a single photon experiment repeated n times. Show that the same probability is obtained by measuring k photons in a single
experiment with a beam of n photons. Describe in this model the interference.

æ Solution

à Measure of k photons

We  denote  by  È1\  and  È2\ the  two  photon  states  corresponding  to  a  passage  through  slit  1  and  2  in  Young's  experiment  respectively.  We  will

consider only one polarization state. In Fock representation we can write

È 1\ = a1
Ö É 0 \ ; É 2] = a2

Ö É 0 \ .

The photon's state before the screen is 

(5.1)È Γ\ =
1

2

 Ia1Ö + a2
ÖM È  0 \.

The measure of photon through the slit 1 and 2 is given by a1
Ö
 a1 and a2

Ö
 a2.

With single photon experiments the probability to pass through each slit is, as expected:

(5.2)X  Γ È  a1
Ö
 a1 È  Γ \ =

1

2
; X  Γ È  a2

Ö
 a2 È  Γ \ =

1

2
.

Consider now the experiment repeated n times. The probability to find k times a photon through 1 is given by the binomial distribution

(5.3)Pk =
1

2

k

 
1

2

n-k

 
n

k
=

1

2

n

 
n

k
.

Let us consider now an n - photons state. The operators

aÖ
=

1

2

 Ia1Ö + a2
ÖM; a =

1

2

 Ha1 + a2L;
satisfy the usual annihilation - creation operators algebra  

Aa, aÖE = 1 ,

then the correctly normalized n - photon state (before the screen) is given by

(5.4)È n Γ\ =
1

n!

 IaÖMn È  0 \.

Expanding aÖ we find 

È n Γ\ =
1

n!

 â
k=0

n 1

2n�2  
n

k
 Ia1ÖMk Ia2ÖMn-k

 È  0 \ = â
k=0

n k! Hn - kL!

n!
 
1

2n�2  
n

k
 È  HkL1, Hn - kL2 \ =

= â
k=0

n 1

2n�2  
n

k
 È  HkL1, Hn - kL2 \.

From general rules of Quantum Mechanics the probability to measure k photons in slit 1 (and n-k in slit 2) is
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Pk
¢

= È  
1

2n�2  
n

k
È2 =

1

2n
 
n

k
= Pn .

à Interference

We can take as approximate value of the electric field in Fock representation

(5.5)E@t, xD = a1 ã
-ä HΩ t - k r1L

+ a2 ã
-ä HΩ t - k r2L

= ã
ä Α

 I a1 + a2 ã
ä jM.

k r1 and k r2are the optical path and the phase difference j is

(5.6)j = k Hr2 - r1L.
The measured intensity is proportional to

I µ X  Γ È EÖ
 E È  Γ \.

Using

E È Γ\ > I a1 + a2 ã
ä jM 

1

2

 Ia1Ö + a2
ÖM È  0 \ =

1

2

 I1 + ã
ä jM È  0 \

we get the usual form of the interference

I µ
1

2
 È  1 + ã

ä j
 È2 = H1 + Cos@jDL.
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