Problems Chapter 5

Quantum M echanics
K. Konishi, G. Paffuti

I Problem 1

A particle of spin J=1 and unknown parity decays at rest in two identical spin 1/2 particles.

1.  Compute the orbital angular momentum of the final particles and the total spin.

2. Determine the parity of the decaying particle, assuming that in the decay parity is conserved.

3. Letussupposethat theinitia particleisinthe state | J, J;) = |1, 0). Write explicitly the final state with an unknown radial function, but with

explicit use of spherical harmonics and spin states.

Let us suppose now that one measures the spin projections of the final particles with Stern-Gerlach type apparatus, for two particles emitted in the
directions (6,¢) and (-6, p+7).
a.  Forfixed values of 6, ¢, write the normalized spin wave function of thefina state.

b.  Compute the probability that a particleis emitted in the direction 6, ¢ with s,= +1/2..
c.  Compute the probability that a simultaneous measurement of (sy(l), sy(Z)) gives (1/2, 1/2).

@® Solution

m 1
The possible values for S, L compatible with J=1 are

S-1, 0, L=0 1, 2. (1.1)

The fina particles are fermions, the fina state must be completely antisymmetric, the only possibility left is S=1, L=1, symmetric in spin and
antisymmetric in orbital variables.

m 2
The parity of the final stateis
P- (-1)-; (1.2)
then if parity is conserved P = -1.
m 3

Using the Clebsch - Gordan coefficients to sum L and S the wave function can be written as

1
o= RIr] —— (Y1106, 91 11, -1) - Y1106, 0] | 1, +1)) =

3 , .
on {Sinfe]e*® | 4L )+ Sin[e]le™? |11 )]
JU

= RI[r]

V2
-1
V2
o a
The normalized spin stateis

1
V2

Uspin = (1 L)+ et 1 y). (1.3)

o b
The probability is 1/2.

o C

The eigenstate with (s,(1), 5,(2) = (1/2,1/2) is
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b= — (1T + 2 [4)) (IT) + 1 [4)) = — (ITT) + L [T) +1 [IT) - [Li));

N

1
2
The requested probability is

Sinfe)?
| (v | Uspin) 12 = ————.

Problem 2

A deuteron d is a nucleus with charge +1, composed of a proton (p) and a neutron (n). The deuteron has spin 1 and parity +. A negative pion 7 -,

with charge -1 and spin 0, can be bound to the deuteron to form a sort of "deuterium atom". Let us suppose that this system is formed in the lowest
Bohr orbit.

1. Compute theratio between the Bohr radius of this system and the standard Bohr radius, and compute the binding energy of the system. Some
masses needed for the computation are listed below:

M. = 139.6 MeV/c% M = 0.51MeV/c?; M= 1875.6MeV/c?; M = 938.3MeV/c?.
2. Thebound system described above decays with thereaction 7~ + d -» n+ n. Both angular momentum and parity are conserved in the decay.
Discussif one can determine the intrinsic parity of the 7~ from these data.
3. Compute the angular distribution of neutronsin the final state knowing that in the initial state J,= 0.
Explain why the hydrogen atom does not decay via a somewhat analogous process, € + p —» n+v, wherev isthe (electron) neutrino.

@® Solution

m 1

The reduced mass of the systemis

129. 9 MV /2.

=
I
n

The ratio of the Bohr radius with respect the usual oneis

rg M  0.51

= = 0. 0039.
s o 129.9

The binding energy

e? e? rpg 13.6
- = eV = 3.49 KeV.
2ry 2rgrg  0.0039

m 2
The orbital angular momentum for the bound state is zero, the pion's spin is zero, then the initial angular momentum is one, the spin of the deuteron.

The states allowed by Fermi statistics for the final neutrons are
a S0;L=024.
b. S1;L=135
The only combination compatiblewith J=1is (S=1, L =1). Thefinal state then has parity -1. The parity of theinitia stateis

4

Pin=Pr(-1) = P
then parity conservation imply P, = -1. Thiswasindeed the method used to determine experimentally pion'sintrinsic parity.
m 3
The bound state isin the angular momentum state | J, J,» = | 1, 0). The same state must describe final particles. Decomposing the final statein
terms of orbital and spin states

1
o= —— (Y(6, 0] 11, -1) - Yia[6, o] | 1, +1)).

V2

The angular distribution of the decay' s productsisthen

3
Pdo - — Sin[e]?ae. JPde - 1.
8 1t
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More explicitly, thefina stateis

1
0= — (1L +1) 1L ~1ys- 1 -1y |1 +1));
V2

the probability to detect a particle in dQ without, independently of the spin, is
3 2

(|Yiale, @1 12+ Y1, 106, 0] 1?) = —Sin[e]".
8

P=1(1 1is<6, 0|92+ <1, -1]|s¢o o|¥)|? =

N | -

m 4
Theprocess € + p— n+v is perfectly alowed from the point of view of the quantum numbers: in fact, the neutron decays as

n- p+e +v wherev istheanti-netrino (betadecay). But asthis very fact shows, the mass of the neutron is larger than the sum of those of the

proton, electron and neutrino. As the mass of the hydrogen atom is smaller than the sum of the proton mass and electron mass (by Borh's binding
energy) thisprocessisforbidden by (relativistic) energy conservation.

Problem 3

Write the explicit form of the completeness relation for a system of two free identical particles.

@® Solution

For asingle particle the completeness relation is formally written as
1 - Z iy |-
i
Let us now consider a system of N particles. The completeness take the form
1=> 1wl 1, -] (3.1)
A -
We use the symbol ¢[] to denote the symmetric ket.

The sum runs on inequivalent permutations (i.e. those corresponding to effectively different states). For the continuous spectrum this would imply
some complicated excluded domains in the integrals. It is simpler to sum on al configurations. Thereare N! /(ny ! ny ! ..) of such permutations, then

itissimpler to write
nplny! ..

1:T2\wm, YR eI N (3.2)
: A

In the following we will be interested in continuum states, in this case the relative probability for two or more particles to be in the same cell of phase
spaceis negligible and we can assume n; =1 in al formulas.

In this approximation we can write, for two particles (the formulas below are valid both for bosons and fermions)
1
1= | ke ke 1)Utk ko] (3.3)
21 Jkike

Let us check thisrelation. For bosons or fermions we have
1
| U [ ki, k2 ly = — (| ku, k2 ) = | k2, k1))
V2

The scalar product between two statesis

CYla1, 9z2] ‘ U IP1 P21) = (6qipy Saops * Sayp, Sappy ) -

Using (3) we get the same result:

1

2

1
Jk (vl 2] | u[kes k2 1) CuTke, Kol |0 11, P2 1) = ) (Gay ks Sazk; * Sayks Sazka) (Gkupy Okzpy % Skypp Okzpy) =
1R2

(5% P1 6112 P2 + 6Q1 P2 5% Pl)
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Problem 4

Write the Hamiltonian and the Heisenberg equations for a system of particles interacting with a potential U[x;, X2]in the second quantization
formalism.

@® Solution

m Hamiltonian

The kinetic term of the Hamiltonian in Fock representation is

a3k n? k?
I-b:J a’[k] alk]. (4.1)
(27-()3 2m
The field operator ®[x] is defined by
a3k ,
3[x] :J alk] e'*x, (4.2)
2m?
We get easily
V2

B[X] (4.3)

In fact, by using (2)

Jdl?’x 3" [x]

The spaceintegral gives (2 7T)3 5% (k - q) and the result follows.

adk as on2K? ‘
@[x]:J J d Jdl3x a'[q]l e 9% — — afk] e'**

2m e2mn®’ 2nd

In the Fock representation the interaction term is atwo particle operator and is given by

1
W a'Tka] @' [Ka] ( ki, ka | U ks, ke alks]lalkal. (4.4)
2 Jky ko ks kg
The matrix element is
(ki ka | U ks, kg ) = Jdl3x1 ABxp et ixitkexa) Yy, x,] et (KeXa+kaxe)

Inserting this expression into (4) we get
1
H = —JdﬁxldﬁxZ@[xﬂ ®'[X2] U[X1, X2] 3[X1] ®[X2]. (4.5)
2
Inasimilar way it is easy to show that a possible externa field V(® [x] gives
V = Jdle'x@[x}@[x}V(E) [x]. (4.6)

The Hamiltonian is given by

H = Jdl3x 3" [x]

(4.7)
1

7Jd]3x1 Axo 3 [X1] 8" [X2] U[X1, X2] @[X1] 8[X2] +Jd13x 3" [x] &[x] V® [x].

2

m The Heisenberg equations of motion

We can now consider the Heisenberg representation for the fields, ®[t,x].

H H
a[t, X] =Exp[jft]@[x]Exp{—jft}. (4.8)
h h

From

[atk], a'[q]] = 2m°%&® (k-q), (4.9)
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it followsthat at equal times

[@[t, x], @[t, y]] = [@'[t, x], ®'[t, y]] = 0; [&[t, x], &'[t, y]| =& (x-y). (4.10)
Using these commutations relation a straightforward calculation gives

d n?
iﬁd—§[t, x] = [@&[t, X], H =-—aa[t, x] +VE [x]a[x] + Jdﬁy | a[t, y] 12U[x, y] 3[x]. (4.11)
t 2m

Thisis the analogue of the Maxwell equations for the @ field.

Problem 5

Consider a simplified version of the Young experiment limiting the dynamics to two single "modes" of the electromagnetic field, describing a photon
passing from the dlit 1 or 2 respectively. Use a Fock formalism to describe the photon's beam and compute the probability to measure k times a
photon through dlit 1 in a single photon experiment repeated n times. Show that the same probability is obtained by measuring k photons in a single
experiment with a beam of n photons. Describe in this model the interference.

® Solution
m  Measure of k photons

We denote by |1) and |2) the two photon states corresponding to a passage through slit 1 and 2 in Young's experiment respectively. We will
consider only one polarization state. In Fock representation we can write

1) =a; [0); [2)=a|0).
The photon's state before the screen is
1 t t
vy = — (a3 +a3) | 0). (5.1)
V2

The measure of photon through the slit 1 and 2 isgiven by a; a; and a} a,.

With single photon experiments the probability to pass through each dlit is, as expected:

1 1
(ylajar | v) = —; <y|a;azw>:5. (5.2)

Consider now the experiment repeated n times. The probability to find k times a photon through 1 is given by the binomial distribution

1 1 n-k n 1 n n

- (60 G0
2) (2 k 2 k

Let us consider now an n - photons state. The operators

1 1
a'=—— (a; + a3); a=— (a1 + az);
NP V2
satisfy the usual annihilation - creation operators algebra
[a, a'] = 1,
then the correctly normalized n - photon state (before the screen) is given by
1 n
Iny) = ——(a') 10). (5. 4)

Expanding a’ wefind

From general rules of Quantum Mechanics the probability to measure k photonsin dlit 1 (and n-k in dlit 2) is
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P 71 ; 2 tn P,
k |2n/2 (kj‘ 27"(k17 e

m Interference

We can take as approximate value of the electric field in Fock representation

E(t, Xx] = a1 e @t -kry) az el Wt -Kkra) _ gia (a1+ ap (Ejlw). (5.5)

kr i andkr yarethe optical path and the phase difference ¢ is

o=k (rz -rp). (5.6)

The measured intensity is proportional to

I« (¥ | E'E|v).
Using

1
V2

1
Elv) = (a1+aze”) (ai +a3) 10) = — (1+e') | 0)
V2

we get the usual form of the interference

1 )
l o — | 1+e*¥ |2 = (1+ Cos[o]).
2



