
Problems Chapter 6

                     Quantum                 Mechanics
                       K. Konishi, G. Paffuti

               

Problem 1

A particle of mass m moves in a radial potential

V@rD = :
¥, r < R

0, R £ r £ R + a

¥, r > R + a

.

We want to study the spectrum of the system.

1. Show that the stationary solutions can be separated in spherical coordinates and write the correct boundary conditions for the radial part of the 
wave function.

2. Find the equation which implicitly determines the energy levels at fixed L (angular momentum).

3. Solve the equation of question 2 for L=0.

4. Show that for a ` R the first excited state has energy DE = Ñ2 � m R2 above the ground state. Explain this result on physical grounds.

æ Solution

à 1

The  Hamiltonian  is  rotation  invariant,  then  the  angular  momentum is  conserved and L2,  Lz  can  be  diagonalized  with  H.  The  eigenstates  of  H are

written as

(1.1)ΨnLm@rD = Rn,L@rD YLm@Θ, jD.
The boundary conditions for RnL are

(1.2)

chap6prob0eq2
RnL@RD = RnL@R + aD = 0 .

à 2

The radial functions satisfy the equation

(1.3)

chap6prob0eq3

d2

dr
2

 RnL@rD +
2

r
 
d

dr
 RnL@rD + k2 -

L HL + 1L
r2

 RnL@rD = 0; R £ r £ R + a .

with

RnL = 0 for Hr < R, r > R + aL , and k =
2 m E

Ñ

.

Equation (3) is the free particle equation with wave number k and its general solution is

(1.4)

chap6prob0eq4
RnL@rD = A jL@k rD + B ΗL@k rD.

jL and ΗL are spherical Bessel functions, regular and singular (resp.ly) at the origin. ΗL (often donoted as nL Lis known also as 

spherical Neuman functions. 

Conditions (2) give

(1.5)

chap6prob0eq5
A jL@k RD + B ΗL@k RD = 0; A jL@k HR + aLD + B ΗL@k HR + aLD = 0.

The linear system (5) has non trivial solutions if



(1.6)

chap6prob0eq6

det
jL@k RD ΗL@k RD

jL@k HR + aLD ΗL@k HR + aLD = 0.

This equation is satisfied only for a discrete set of k, which gives the energy eigenvalues with E = Ñ2 k2 �2 m. 

à 3

For L = 0

(1.7)j0@k rD =
Sin@k rD

k r
; Η0@k rD = -

Cos@k rD
k r

;

and condition (6) gives

Sin@k RD Cos@k HR + aLD - Sin@k HR + aLD Cos@k RD = - Sin@k aD = 0,

with solutions

(1.8)kn =
Π n

a
; En =

Π2 n2 Ñ2

2 m a2
.

These solutions are identical to the solutions for a one dimensional well, as could be guessed from the equation (3) by passing to the reduced wave
functions.

à 4

For a`R the centrifugal term in H is almost constant inside the shell  R ²  r ²  R+a, therefore its contribution can be regarded as constant. The energy
levels are those of L=0 shifted by the centrifugal energy

(1.9)EnL >
Π2 n2 Ñ2

2 m a2
+

Ñ2 L HL + 1L
2 m R2

, n = 1, 2, 3, ...; L = 0, 1, 2, ...

The shifts due to the radial excitations are much higher than angular momentum excitations, as a ` R;   the first excited state is (n=1, L=1). The shift
with respect to the ground state is

DE =
Ñ2 2

2 m R2
=

Ñ2

m R2
.

The request to have two consecutive zeros for radial functions in a small interval a ` R imply that the wave number must be very high, k ~ Π/a. The
corresponding energy differences are very big and in a first approximation the particle is "frozen" in a radial shell. The energy eigenvalues then must
be given by the eigenvalues of a symmetric top, i.e. 

E > const. +
Ñ2 L HL + 1L

2 m R2
,

as we have found indeed.

  These conclusions can be obtained in a more formal way as follows. Put x = k R, y = k a. As discussed above we have to perform the limit a®0 with
(k a) fixed. This is also confirmed by the fact that a series expansion in a of the condition (6) gives

0 =
a H-a + RL

k R3

which has no solutions in k. For large k, x = k R is large, then we can use asymptotic expansion of spherical Bessel functions:

jL@xD ~
Π

2

IL + L2M CosA L Π

2
- xE

2 Π x2
-

2

Π
SinA L Π

2
- xE

x
;

ΗL@xD ~
Π

2
-

2

Π
CosA L Π

2
- xE

x
-

IL + L2M SinA L Π

2
- xE

2 Π x2
.

Substitution in (6) gives

-2 L H1 + LL y Cos@yD + IL2 H1 + LL2 + 4 x Hx + yLM Sin@yD
4 x2 Hx + yL2 = 0.

The leading solution  y = n Π corresponds to the eigenvalues of the one dimensional shell. Writing y = n Π + Ξ , x = y R/a, and expanding Ξ we can
easily get
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The leading solution  y = n Π corresponds to the eigenvalues of the one dimensional shell. Writing y = n Π + Ξ , x = y R/a, and expanding Ξ we can
easily get

Ξ =
a2 L H1 + LL
2 n Π R2

;

The eigenvalues follow

k =
1

a
n Π +

a2 L H1 + LL
2 n Π R2

; E =
Ñ2

2 m
 k2 >

n2 Π2

2 m a2
+

L HL + 1L
2 m R2

+ O@aD2

in  agreement  with  previous  results.  As  already  noted,  the  first  two  terms  have  simple  physical  interpretations.  The  first  term represents  the  radial
excitations,  which are  just  those inside a one-dimensional infinite well  of width a.   The second term represents rotational modes at  fixed radius R,
which are given by the centrifugal energy only.  

prob1nInfinity

Problem 2

Compute the limit of radial hydrogen wavefunctions as n ® ¥.

æ Solution

We work in atomic units. Radial eigenfunctions are given by (we use Mathematica notation for Laguerre polynomials)

(2.1)

prob1radialeq

R@n, L, rD = Z3�2 2

n2
 

Hn - L - 1L!

Hn + LL!
 
2 Z r

n

L

ã
-

r

n LaguerreLBn - L - 1, 2 L + 1,
2 Z r

n
F

They satisfy the radial Schrödinger equation

(2.2)

prob1radialequation

d2 R

dr
2

+
2

r

dR

dr
-

L HL + 1L
r2

 R + 2 En +
Z

r
 R = 0; En = -

1

2 n2
.

We see that the large n limit of (1), Ras must be a regular solution of (2) with E =0, the large n limit of the eigenvalues:

(2.3)

prob1radialequationas

d2 Ras

dr
2

+
2

r

d Ras

dr
-

L HL + 1L
r2

 Ras +
2

r
 Ras = 0.

The general solution of this equation is 

C1 

BesselJB1 + 2 L, 2 2 Z r F
2 Z r

+ C2 

BesselYB+1 + 2 L, 2 2 Z r F
2 Z r

as the reader can check using DSolve in Mathematica  or by making the substitution r = x2/(8Z),  R = f[x]/x in (2). Regularity at origin imply C2= 0.

To fix C1we have to match the normalization of equation (1). From the definition of Laguerre polynomials, see notebook [*], it follows

Ln
ΛH0L =

n

Λ

then, as r ® 0

R@n, L, rD ® Z3�2 2

n2
 

Hn - L - 1L!

Hn + LL!
 
2 Z r

n

L Hn - L - 1L!

H2 L + 1L! Hn - 3 L - 2L!

For large n the Stirling formula gives

Hn - L - 1L!

Hn + LL!
®

1

n

1+2 L

;
Hn - L - 1L!

Hn - 3 L - 2L!
®

1

n

-1-2 L

;

thus for small r and large n

R@n, L, rD ®
2 Z3�2
n3�2

H2 rLL
H2 L + 1L!

The Taylor expansion of the Bessel function starts with
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The Taylor expansion of the Bessel function starts with

BesselJB1 + 2 L, 2 2 Z r F
2 Z r

®
1

2 Z r

2 Z r
2 L+1

 
1

H2 L + 1L!
=

H2 ZrLL
H2 L + 1L!

;

from which we have finally

(2.4)C1 =
2 Z3�2
n3�2 ; Ras@n, L, rD =

2 Z3�2
n3�2

BesselJB1 + 2 L, 2 2 Z r F
2 Z r

In terms of Laguerre's polynomials what we have proved can be stated as (see also [1]):

(2.5)LBn, Α,
x

n
F

n® ¥
nΑ x-Α�2

 JΑB2 x F

æ References
prob15ref1
[1] I.S. Gradshteyn, I.M. Ryzhik: Table of integrals series and products, Academic Press; (1965).

prob1nInfinity

Problem 3

Explain  the  n2 degeneracy of the Hydrogen energy levels, by making use of the fact that the Lenz vector 

A =
r

r
-

1

Z
 
1

2
 Hp ì L - L ì pL

commutes with H. 

æ Solution

The  degeneracy  n2  is  due  to  a  higher  symmetry  peculiar  to  the  Coulomb  interaction.  The  additional  conserved  quantity  is  known  from  classical

mechanics, and is called Lenz vector [1].  In atomic units:

(3.1)A =
r

r
-

1

Z
 
1

2
 Hp ì L - L ì pL

A is hermitian: 

I¶ijk pj LkM*
= ¶ijk Lk pj = - ¶ikj Lk pj = -H p ì LLi .

Let us also note the identity

¶ijk Lj pk = ¶ijk pk Lj + ä ¶ijk ¶jka pa = -H p ì LLi + 2 ä pi Þ A =
r

r
-

1

Z
 Hp ì L - ä pL.

By a systematic use of the identity [A B,C] = A[B,C] + [A,C]B it is simple to find

B1
2

 Hp ì L - L ì pL, 1

r
F = ä 

r

r3
 Hr×pL -

1

r
 p +

r

r3
;

Br
r
,
p2

2
F = ä -

r

r3
 Hr×pL +

1

r
 p -

r

r3

From which  the conservation of A for a Coulomb potential with charge Z follows:

@A , HD = BA , p2

2
-

Z

r
F = 0.

With some more work with commutators one can verify the correct commutation relations with angular momentum (as any vector) and the commuta-
tion relations among different A components:

(3.2)

AlgebraVettoreLenz

ALi, AjE = ä ¶ijk Ak; AAi, AjE = -
2 H

Z2
 ä ¶ijk Lk

Consider now the subspaces of the Hilbert space with fixed energy. In this subspace we can diagonalize simultaneously, for example, L2  and Lz  , as

usually done in any central  potential, or Lz  and Az  . But Az  and L2  do not commute so, for fixed Lz  there must be a degeneracy. A complete set of

commuting variables is given by H, Lz , Az.
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Consider now the subspaces of the Hilbert space with fixed energy. In this subspace we can diagonalize simultaneously, for example, L2  and Lz  , as

usually done in any central  potential, or Lz  and Az  . But Az  and L2  do not commute so, for fixed Lz  there must be a degeneracy. A complete set of

commuting variables is given by H, Lz , Az.

Starting from algebra (2) it is easy to find the negative energy spectrum. Defining u = A Z/ -2 E  we have

ALi, LjE = ä ¶ijk Lk; ALi, ujE = ä ¶ijk uk; Aui, ujE = ä ¶ijk Lk.

This is the algebra of the group SU(2)ÄSU(2) as is evident introducing

j1 =
1

2
 HL + uL; j2 =

1

2
 HL - uL

which, from previous relations, satisfy

Aj1,i j1,jE = ä ¶ijk j1,k; Aj2,i j2,jE = ä ¶ijk j2,k; Aj1,i j2,jE = 0.

The irreducibles representations are well known and we have 

j1
2

= j1 Hj1 + 1L; j2
2

= j2 Hj2 + 1L; j1, j2 Î N �2 .
Using

L×u = u×L = 0 ; Þ j1
2

= j2
2

= L2 + u2 = -1 -
Z2

2 E
;

and denoting by j the common semi-integer value j1= j2 it follows

E = -
Z2

2 H2 j + 1L2 = -
Z2

2 n2
; n = 2 j + 1 = 1, 2, ...

i.e. the known spectrum. The degeneracy is given by the eigenvalues of j1,z, j2,z, i.e.

H2 j1 + 1L H2 j2 + 1L = H2 j + 1L2 = n2 ;

as expected. 

It is possible to show that eigenvalues of  j1,zand j2,zare exactly related to parabolic quantum numbers n1and n2

j1,z =
1

2
 H m + n1 - n2L; j1,z =

1

2
 H m - n1 + n2L; Þ uz = n1 - n2 Þ Az =

n1 - n2

n
.

While energy is related to the sum  Hn1 + n2 + È m È +1Lthe eigenvalues of Lenz vector is related to the difference of n1and n2.

æ References

ref1Parabolic
[1] One of the first deductions of the spectrum ot the hydrogen atom within Quantum Mechanics was due to Pauli, which used exactly the algebraic 

relations used in this section, W.Pauli: Zs. f. Phys. 36, (1926) 336. For a more recent review  see for example D.Park, Z. Phys. 159, (1960), 155.

prob2paraboliccoordinates

Problem 4

Solve the Coulomb problem in parabolic coordinates  (Ξ, Η, j)  defined by

x = Ξ Η Cos@jD; y = Ξ Η Sin@jD; z =
1

2
 HΞ - ΗL;

æ Solution

à Definitions

Parabolic coordinates (Ξ, Η, j) are defined by

x = Ξ Η Cos@jD; y = Ξ Η Sin@jD; z =
1

2
 HΞ - ΗL;

Ξ = r + z; Η = r - z; j = ArcTanBy
x

F; r =
1

2
 HΞ + ΗL;

x,y,z  are  Cartesian  coordinates,  r  and  j  radius  and  azimuthal  angle  (rotation  around  z  axis).  Line  element  and  Jacobian  between  parabolic  and
cartesian coordinates are easily seen to be
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ds
2

= h1
2
 dΞ

2
+ h2

2
 dΗ

2
+ h3

2
 dj

2
=

Ξ + Η

4 Ξ
 dΞ

2
+

Ξ + Η

4 Η
 dΗ

2
+ ΞΗ dj

2
;

J = g = h1 h2 h3 =
Ξ + Η

4
;

From the general expression for laplacian in a curvilinear orthogonal system Hu1, u2 u3L
Df =

1

h1 h2 h3

 ã ¶

¶u1
 
h2 h3

h1
 

¶f

¶u1
;

it follows that

D =
4

Ξ + Η
 

¶

¶Ξ
 Ξ 

¶

¶Ξ
+

4

Ξ + Η
 

¶

¶Η
 Η 

¶

¶Η
+

1

Ξ Η
 

¶2

¶j2

The range for these coordinates is

0 £ HΞ, Η L £ ¥ ; 0 £ j £ 2 Π

à The Schrödinger equation

The Schrödinger equation for a Coulombic system (a nucleus of charge Ze and an electron of charge -e) in atomic units (Ñ = m = e = 1) is

-
1

2
 

4

Ξ + Η
 

¶

¶Ξ
 Ξ 

¶

¶Ξ
+

4

Ξ + Η
 

¶

¶Η
 Η 

¶

¶Η
+

1

Ξ Η
 

¶2

¶j2
 Ψ -

2 Z

Ξ + Η
 Ψ = E Ψ,

or

¶

¶Ξ
 Ξ 

¶

¶Ξ
+

¶

¶Η
 Η 

¶

¶Η
+

Ξ + Η

4 Ξ Η
 

¶2

¶j2
 Ψ + Z +

Ξ + Η

2
 E  Ψ = 0.

The  system  is  invariant  under  rotations  around  z  axis,  so  eigenstates  are  of  the  form  F[Ξ,Η]  Exp[ä  m  j].  We  look  for  a  solution  by  separation  of
variables

Ψ = f1@ΞD f2@ΗD Exp@ä m jD
By substitution, after division by Ψ, we have

1

f1
 

d

d Ξ
 Ξ 

df1

d Ξ
-
m2

4 Ξ
 f1 +

E

2
 Ξ f1 +

1

f2
 

d

d Η
 Η 

df2

d Η
-
m2

4 Η
 f2 +

E

2
 Η f2 + Z = 0.

The first term depends only on Ξ, the second only on Η, since their sum is constant there must be two constant Z1 and Z2 such that

(4.1)

HydrogenParabolic1

d

d Ξ
 Ξ 

df1

d Ξ
+

E

2
 Ξ -

m2

4 Ξ
+ Z1  f1 = 0;

d

d Η
 Η 

df2

d Η
+

E

2
 Η -

m2

4 Η
+ Z2  f2 = 0;

Z1 + Z2 = Z.

If  we  look  for  normalizable  solutions,  the  two  differential  equations  (1)  are  eigenvalue  equations  with  eigenvalues  Zi.  These  eigenvalues  depend

parametrically on E (changing E the equations change), The last constraint fixes E.

The two equations have the same structure, so let us consider only the first. We look for a regular solution as Ξ®0, of the form ΞΑ. The term linear in Ξ

and the constant are negligible in this range:

0 > Ξ f1
''

+ f1
'

-
m2

4 Ξ
 f1 Þ Α HΑ - 1L + Α -

m2

4
= 0 Þ Α = È m È �2.

For large Ξ, for an exponential depressed function, the dominant terms are

0 > Ξ f1
''

=
E

2
 Ξ f1 Þ f1 = expB- -2 E  Ξ �2F.

As expected bounded solutions only exist for E < 0.  Previous asymptotic behavior suggests the change of variables

f1@ΞD = Ξ
ÈmÈ�2

 Exp@-Ε Ξ �2D F@ΞD; with : Ε = -2 E .
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Substitution in (1) gives

Ξ
d2 F

d Ξ2
+ H È m È +1 - Ε ΞL 

dF

dΞ
+ Z1 -

È m È +1

2
 Ε  F = 0.

or, with z = Ε Ξ

(4.2)

hydrogenParabolic2

z
d2 F

d z2
+ H È m È +1 - zL 

dF

dz
+

Z1

Ε
-

È m È +1

2
 F = 0.

This equation is of hypergeometric type, its solutions are confluent hypergeometric functions. The only solution regular at the origin and bounded not
growing to fast at infinity (in such a way that Exp[-Ε Ξ/2] F is bounded) corresponds to integer numbers for the second parenthesis. 

(4.3)
Z1

Ε
-

È m È +1

2
= n1; 0 £ n1 Î N.

In this case (2) is the defining equation for generalized Laguerre polynomials Ln1

m HzL. 
Exactly the same conclusions can be drawn from equation for Η, obtaining

(4.4)
Z2

Ε
-

È m È +1

2
= n2; 0 £ n2 Î N.

The last constraint in (1) implies

(4.5)
Z

Ε
= È m È +1 + n1 + n2 º n ³ 1; Þ -

Z2

2 E
= n2.

For a fixed value of n clearly  -(n-1) ²  m ²  (n-1), as n1  and n2  are nonnegative. The number of ways in which the sum of two non negative integers

numbers (here n1  and n2) can give a fixed number k is N[k] = k+1. The number of states for fixed n, i.e. the degeneracy of the level is (we separate

m=0 from m 0,  in the last case ± m gives the same contribution)

deg@nD = N@n - 1D + 2 â
m=1

n-1

N@n - 1 - mD = n + 2 â
m=1

n-1 Hn - mL = n2

as expected.

The normalized wave functions are

(4.6)

HydrogenParabolicWaveFunctions

Ψn1 n2 m@Ξ, Η, jD := fn1 m@ΞD fn2 m@ΗD 
ãä m j

2 Π

;

fn1 m@ΞD = 21�4
 ¶

n!

Hn + È m ÈL!
H¶ ΞLÈmÈ�2

 ã
- ¶ Ξ�2

 Ln
ÈmÈH¶ ΞL

where, as before, ¶ = 1/( n1 + n2 + m +1) and the scalar product is

à Ψn1 n2 m * Ψk1 k2 m' 
Ξ + Η

4
 âΞ dΗ dj = ∆n1 k1  ∆n2 k2  ∆m m'

The normalization constant in (6) is easily computed remembering that the functions

n!

Hn + È m ÈL!
 HxLÈmÈ�2

 ã
-x�2

 Ln
ÈmÈHxL

are an orthonormal set and using the recurrence relation for Laguerre polynomials

x Ln
ΑHxL = -Hn + ΑL Ln-1

Α HxL - Hn + 1L Ln+1
Α HxL + H2 n + Α + 1L Ln

ΑHxL.

Problem 5

A particle of mass m moves in a radial potential g0 ∆(r - R)/4Π R2. Compute for small R the continuum eigenstates and the possible bound states.
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æ Solution

We use natural units Ñ = m = 1. The Schrödinger equation for the reduced radial wave functions j is

(5.1)

chap5prodeltaeq1

-
1

2
 
d2

dr
2

 j +
g0

4 Π R2
∆ Hr - RL +

L HL + 1L
2 r2

 j@rD =
k2

2
 j@rD.

Where E = k2 �2. We look for continuum solutions corresponding to scattering states, i.e. regular solutions with asymptotic behavior

j ~ SinBk r - L
Π

2
+ ∆LF.

For small R only s-waves (L=0) are involved in the scattering process so we limit ourselves to this case.

In the region r > R and r < R the solution can be conveniently written

(5.2)

chap5prodeltaeq2
j+@rD = A HSin@k rD + Tan@∆D Cos@k rDL; j- = B Sin@k rD.

Continuity and integration of (1) in a small region around r~R gives the condition

1

2
 

j+
¢ @RD

j+@RD -
j-

¢ @RD
j-@RD =

g0

4 Π R2
, Þ k 

Cos@k RD + Tan@∆D Sin@k RD
Sin@k RD + Tan@∆D Cos@k RD -

Cos@k RD
Sin@k RD =

g0

2 Π R2
.

Expanding for small R 

1

g0
= -

1

2 Π R
-
k Cot@∆D

2 Π
.

To define a sensible theory we can define a renormalized coupling (see complement of this chapter):

(5.3)

chap5prodeltaeq3

1

g0
+

1

2 Π R
=

1

g
.

In terms of this coupling

(5.4)Tan@∆D = -
k g

2 Π
.

à Bound states

With E = -Μ2 �2 the Schrödinger equation has a regular solution (bounded at infinity):

(5.5)j+@rD = A ã
-Μ r; j- = B Sinh@Μ rD.

Condition (2) gives

-Μ - Μ
Cosh@Μ RD
Sinh@Μ RD =

v

2 Π R2
.

The expansion for small R gives

1

v
= -

1

2 Π R
+

Μ

2 Π

and the same renormalization (3) gives

(5.6)Μ =
2 Π

g
.

A bound state exists only for g > 0.

Let us note that the normalized wave function in the region r > R is

j+@rD = 2 Μ Exp@- Μ rD.
By continuity the inner part of the wave function is
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j-@rD = 2 Μ Exp@- Μ RD Sinh@Μ rD
Sinh@Μ RD £ 2 Μ Exp@- Μ RD; r £ R.

The contribution to the norm  of this part goes to 0 as R ® 0

à
0

R É j-@rD È2 âr £ I2 Μ ã
-2 Μ RM R.

This means that for small R the wave function j+ is correctly normalized and the system does not depend on any unrenormalized parameter.

---------

These results, both for the scattering phase amplitude and for the bound state, reproduce the results obtained in Complement Section 20.12  with a cut

off  in  the momentum space,  after  identifying  L  =  1
R

.     g0   represents  the "bare" or  "unrenormalized"  coupling constant;   g   is  the renormalized

coupling constant, in terms of which physical quantities are expressed.  The cutoff  ( L,  1
R

) and bare quantities disappears from the theory at the end.

These are typical characteristics of renormalizable quantum field theories in four dimensions, used to describe the elementary particles.

æ Reference  

R.  Jackiw,   "Delta-function potentials  in  two- and three-dimensional  quantum mechanics",   Beg Memorial  Volume,   eds.  A.  Ali  and P.  Hoodbhoy
(WorldScientific, Singapore, 1991).
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