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Problem 1

Solve the Heisenberg equations of motion for a free particle and for a particle in an external uniform field.

æ Solution

The Heisenberg equations for

H =
p2

2 m
,

read

(1.1)
d

dt
 qH@tD = -

ä

Ñ

@qH@tD, HD =
pH@tD
m

;
d

dt
 pH@tD = -

ä

Ñ

@pH@tD, HD = 0 .

From the second equation we get pH@tD = pH@0D = p. The solution of the first equation is

(1.2)qH@tD = q +
p

m
 t.

For a uniform external field

H =
p2

2 m
- F q.

The Heisenberg equations are

(1.3)
d

dt
 qH@tD = -

ä

Ñ

@qH@tD, HD =
pH@tD
m

;
d

dt
 pH@tD = -

ä

Ñ

@pH@tD, HD = F .

The second equation has solution

(1.4)pH@tD = p + F t.

By substitution in the first equation and time integration we find

(1.5)qH@tD = q +
p

m
 t +

1

2
 
F

m
 t2.

Problem 2

Solve the Heisenberg equations of motion for a harmonic oscillator in a uniform constant external field. Generalize the solution for a uniform time
dependent force F[t].

æ Solution

The Hamiltonian is

(2.1)H =
p2

2 m
+

1

2
 m Ω

2
 q2 - F q.

The Heisenberg equations of motion



(2.2)
d

dt
 qH@tD = -

ä

Ñ

@qH@tD, HD =
pH@tD
m

;
d

dt
 pH@tD = -

ä

Ñ

@pH@tD, HD = - m Ω
2
 q + F .

The change of variables 

q = Q +
F

m Ω2
; p = P;

is a canonical transformation which leaves commutators invariant and transform the equations in

(2.3)
d

dt
 QH@tD =

PH@tD
m

;
d

dt
 PH@tD = - m Ω

2 QH@tD.
These are the usual harmonic oscillator equation, the solution has been found in the text and is easily checked to be

(2.4)QH@tD = Q@0D Cos@Ω tD +
P@0D
m Ω

 Sin@Ω tD; PH@tD = P@0D Cos@Ω tD - m Ω Q@0D Sin@Ω tD.
In terms of p and q :

(2.5)

qH@tD =
F

m Ω2
+ q -

F

m Ω2
Cos@Ω tD +

p

m Ω
 Sin@Ω tD;

PH@tD = p Cos@Ω tD - m Ω q -
F

m Ω2
Sin@Ω tD.

The procedure can be generalized to the case of a time dependent force. The equations are the same:

Let us make the canonical (unitary) transformation

q = Q + fq@tD; p = P + fp@tD;
The equations of motion become

(2.6)
d

dt
 QH@tD =

PH@tD
m

+
d

dt
 fq -

1

m
 fp ;

(2.7)
d

dt
 PH@tD = - m Ω

2 QH@tD +
d

dt
 fp + m Ω

2
 fq - F@tD

If we choose fpand fq as a particular solution of the classical equations of motion, the equations for P and Q reduce to the usual harmonic oscillator

equations, then we can write at once the solution for q and p:

(2.8)
qH@tD = fq@tD + Iq - fq@tDM Cos@Ω tD +

Ip - fp@tDM
m Ω

 Sin@Ω tD;
PH@tD = fp@tD + Ip - fp@tDM Cos@Ω tD - m Ω Iq - fq@tDM Sin@Ω tD.

A particular solution of the classical equations of motion can be easily find using the method of  "variation of constants". Write

fq@tD = Α@tD Cos@Ω tD +
Β@tD
m Ω

 Sin@Ω tD; fp@tD = Β@tD Cos@Ω tD - m Ω Α@tD Sin@Ω tD;
Substitution in the equation of motion give

dΑ

dt
= -

dΒ

dt

Sin@Ω tD
m Ω

;
dΒ

dt
Cos@Ω tD - m Ω

dΑ

dt
Sin@Ω tD = F@tD.

Substituting in the second equation the first one get, as  a particular solution (with Β[0] = 0):

Β@tD = à
0

t

F@ΤD Cos@Ω ΤD âΤ

and from the first equation:

Α@tD = -
1

m Ω
 à
0

t

F@ΤD Sin@Ω ΤD âΤ.
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Problem 3

 Suppose that the system described by the wave function ΨS  at the instant t = 0  is an eigenstate of the operator f , with eigenvalue,  f0.  Show that

the wave function at time t  is an eigenstate of the Heisenberg  operator fH@-tD, with the same eigenvalue.

æ Solution

We have

(3.1)fH@-tD Ψ@tD = ã
-ä H t

 f@0D ã
ä H t

ã
-ä H t

 Ψ@0D = ã
-ä H t

 f@0D Ψ@0D = f0 ã
-ä H t

 Ψ@0D = f0 Ψ@tD.
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