Problems Chapter 9

Quantum M echanics
K. Konishi, G. Paffuti

I Problem 1
Consider the Hamiltonian H = Hg + Hy, where
p? 1 w
Ho= — + —mw?x% H=g— (Xp+px); geR, |g]| <1
2m 2 2

1. Compute the spectrum of H.

2. Apply perturbation theory, with H, as a perturbation, up to second order in g and compare the results with that of 1.

@® Solution

=l
We can get rid of the perturbation by a unitary transformation
p->P+yX X- X (1.1)
This transformation leaves invariant the commutation relations
[X, P] =[x, p] = 1h.

The unitary operator implementing the transformation is
Y

U=Exp[—j1—x2}; p>P=UpU; x> UxU = x. (1.2)
2h

The transformation law (2) can be easily checked in Schrédinger picture

LY X2 h . X2 h
UpUyixl=e & —ocle 2 W[X]) = [YXY[X] + — Ox¥[X]
i i
The Hamiltonian changes with
2 w ¥ 1 7/2
H[x, p] > H = UH[x, p] U = Hix, p+yXx] = — + |g—+ —) (Xp+ pX) + —mw?+ — + guy| X2
2m 2 2 2 2m
With y = - g m w the mixed term cancels and we have
p2 1
H= — + —mo? (1-9%) x2% (1.3)
2m 2
Thisis anharmonic oscillator with frequency
Ww=wA1-g%. (1.4)
For | g | <1 the spectrumisdiscrete and
1
En:wx/l—gzﬁn+f]; n=0,1, 2, 3... (1.5)
2

For | g| > 1 the system in unstable (has no ground state) and the spectrum is continuous.
For |g| = 1 the system is equivalent to afree particle.

We leave to the reader to check that the situation is exactly the same for the classical version of the system. Let us note that the system is not a
dissipative system, as a naive concept of "force” - V/ x =-m w?x - g w p could suggest.
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2

The perturbation expansion is easily computed using annihilation and creation operators

h mw A
X = (a+a'); p=-i (a-a");
2 Mw 2
Theterm x p + p X reads
1
Xp +pPX = —nh (azf aTz).
1
Let us consider for instance the ground state. The first order correction vanish, at second order
1 "2 guw\? ) 2 A Qw2 g2
6Ep=) (O [ H ) <n| H|0)-=- ——] cola’l2y¢2a®0)=-— || =-nw—;
n Ey - En 2hw \ 2 w \ 2 4
in agreement with previous result:
hw hw g?
E = 1-¢%2 =— |1 - —+«
2 2 2

Problem 2

A harmonic oscillator with mass m and frequency w is subjected to an external perturbation. Compute the corrections to first and second order in
perturbation theory to energy eigenvalues for the following perturbations:

1 5 1 3 1 4
V=: o010 —92095 —030°% —040".
2 2 2
® Solution
m Hamiltonian and operators
The unperturbed Hamiltonian is
p> 1
= — + —mw? g
2m 2

Matrix elements for perturbations can be computed or performing integrals with Hermite polynomials or using the decomposition in annihilation and
creation operators:

h mow h 1
q = (a+a); p=-i (a-a'); H=nw aTa+—J. (2.1)
2 mw 2 2
Using ket[n] for the state |n)
a |n) =+n+1 |n+ly; a\n>:x/?‘nfl>; (2.2)
and the decomposition (1) it is easy to show that
5 o\1/2
q|ny = [ n+1 |n+1) ++/n \n—1>)
2 Mw
h
qz‘n>: [ (n+1) (N+2) |n+2) + (2n+1) |[n)++/n(n-1) \n—2>)
2 muw
o )32
o’ |n) -
2mow

[\/(n+1) (N+2) N+3) | n+3) +3(M+1)%2 |n+1)+3n%2 |n-1)++/n(n-1) (n-2) \n73>)
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n 2

a*[n) - (\/(n+l) (N+2) (N+3) (N+4) |n+4) + (4n+6)~/(N+1) (N+2) |n+2)+

2 muw

(6n2+6n+3) [Ny +(4n-2)+n(n-1) \n72>+\/n(n—1) (Nn-2) (n-3) \n74>]

Interactions g2?and q*produce afirst order effect on levels. This effect can be read from diagonal matrix elements of these operators

1 h 1
En - g {n @ |n) -6 n+f];
2 2 mw 2
1 3( n \?
ABy = —ga(n|g*|n) = 94— (1+2n+2n?).
2 2 (2mw

Operators q and g3 produce a shift at second order. The first order contribution is zero by parity conservation and this is confirmed from absence of
diagonal elements intheir matrix elements. At second order the shift in energy levelsis

1
AE<2>:Z<WO\V\S>H<5| V| o).

Only afinite number of intermidiate states contribute to the sum.

Operator q

JER g2 [ (njg|n-1)? <nqn+1>2] 1 i
- g2 N
En—Enfl En—En+1

Thisresult is obvious, alinear term in q canbe reabsorbed by a translation of the quadratic potential:

1 1

91 0%
—mw?g® +91q = — mw? =t
2 2

2

1
q + - =
2

2

mw muw

Operator g3
The only contributions different from zero are

1 ((nfa®n-1) 12 | (n[a®[n+1)2 [(n]a®|n-3) 2 |(n[g®[n+3)]?
AEéZ):—gg + + + =
4 En - En1 En - Ena1 En - Ens En - En.3

93 PR
S (30n2+30n+11).
4hw (2mw

Operator q*

The only contributions different from zero come from transitions to intermidiate states n, n+2, n+4. A computation similar to the one above gives, for
second order contribution:

4
(68n°+102n%+118n +42).

3 h

4hw

AE? -

2 Mw

Problem 3

Consider the proton as a small uniformly charged sphere of radius R. Compute how the hydrogen levels are affected by this hypothesis.

@® Solution

Hamiltonian

Inside an omogeneous sphere of radius R and charge e the electrostatic potential is

Vsph[rJ =@

3 1r2]

while outside is identical to usual Coulomb potential V. The difference between the to potential can be considered as a small perturbation to e/r
potential
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e 3 1r2 1
Hl[r]:*e(vsph**Jifez _— = — = — r<R (31)
r 2R 2 R 1
The perturbation is radial, so energy corrections are computed by
R
AEnL:JHl [r] Ry [r]?r?ar. (3.2)
0
Using radial wave functions (ag is the Bohr radius)
2¢ % e % (2 - ;:
Ris[r] = 32 v Res(r] =
ag 22 a¥?
it follows, upto order (R/ ag) 3,
2 (Ry2e? 2 [R\)? 1 (Ry2¢€? 1 (R)2
AEps = — | —| — = — | —| a.u.; AEpg = — | — = — |—| a.u
5 lag ap 5 lag 20 ap ap 20 apg

Energy shift for states with higher L are depressed, since radial wave functions decrease asr -. For p states we expect AE ~ (R/ag)* a. u., asis
easily confirmed for example computing the correction to 2p state:

e 2w r e’ R 1

Rplr] =—————; 0Ep= —— +O[R]® =

26 ag/z 1120 ag 1120

R4

ag
A different approach

Let uscal e p the charge density of the nucleus, or in general Z e p for a nucleus with Z protons. If V is the electrostatic potential we can write the
generic energy shift as

Ze
vV - —
r

Ze
= -ewtonzjdﬁr [V— —
r

AE:—eJdler/[r]}z (3.3)

Last approximate equality take care of the fact that V differ from Z/r only at very small distances, and clarify that in practice only s-states are affected
by the perturbation. Using the identity

1= —Ar"
6
and integrating by parts eq (3) can be rewritten as
1 Ze
AE = —e|w[0}}2Jd13r —r2a |V - —|=
6 r
1 2
—e |y[0]}? —Jdl3r r? (dnep - Zedns[r]) = —nZje? {y[0]}? (r?).
6 3

The measure of AE would be adirect measure of mean square radius of the (charge of the) nucleus.

Problem 4

Suppose that Coulomb potential has a behaviour 1 / r 1+¢ with & < 1. Compute the effect on hydrogen levels and derive a bound on & comparing the
2p-2sinduced energy gap with the observed Lamb shift correction. The theory agrees with experiment at leat up to 6E/h = 10* kHz.

® Solution

Hamiltonian and perturbation

In this problem we will use atomic units |eJ= =m = 1. We can consider the difference between the supposed Coulomb law and usual -1/r law as a
perturbation

H - -

1 1)
r1+£ r

Energy corrections are given by the mean value of H on eigenfunctions of hydrogen atom. Radial wave functions for 1s, 2s, 2p states are, in atomic
units:
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e’ /2 (2 r) e’ /2 r
Ris[r] =2e’; Rslr] = ———— Roplr] =
2+/2 26
A simpleintegration gives (energies in atomic units)
1 1
AEjs=2°T(2-¢€) -1; nEps=— ((e2-e+2)T(2-¢)-2); 4aEp=— (T(4-¢) -6).
8 24

I' isthe Euler Gamma function. For small £ a Taylor expansion gives

€ €
AEs g - AEzp ~ —a.u = —Ry.
12 6

The agreement between theory and experiment for the computed Lamb shift between 2 s1,, and 2 p;,, levelsimply the bound
e < 6-10°kHz h /Ry = 1.8.107™,
It can be useful to note the following conversion factors (h is Planck constant, i.e. 2 r )

Ry Ry 1.09737x10’
—~ = 3289841.9680 GHz; — = -
h hc Met er cm

1.09737x10°
. (4.1)

Problem 5

Compute the effect of an electric field on the levels of a charged harmonic oscillator. Compute the induced electric dipole and verify the Feynman-
Hellmann theorem.
® Solution

Hamiltonian and perturbation

Thisis the simplest model for studying the effect of an electric field on a quantum system. Let us denote by & the external electric field and by e the
charge of the oscillator. The Hamiltonian is

p2 1 p> 1 es 2 1 e%2¢?
H —+ —mw?’q> -esq= —+ —mw? |q - —| - — (5.1)
2m 2 2m 2 mew? 2 mw?
The change of variable
es
P-p: Q-0q- —
maw?
isaunitary (and classically canonical) transformation, then the physics do not change and we can consider as Hamiltonian
P21 1 e?2g2
H= —+ —mi?Q@F- — ; (5.2)
2m 2 2 me?
which differ from unperturbed hamiltonian only by an additive constant. All levels are shifted by the same & dipendent constant
1 e?¢?
AE = - — . (5.3)
2 muw?

The reader can check the result in perturbation theory as an exercise (see aso prob.[1]). Let us make some comments on this seemingly trivia
exercise.
@ Theunperturbed system isinvariant under parity, g - - g and the system, as must be well known by the reader, has no dipole moment in stationary
states.
@ The perturbed system is not parity invariant and the system has a dipole in stationary states (classically an induced dipole). The Hamiltonian (2) is
invariant under the transformation Q — - Q, which is not the parity of the system. By this symmetry the mean value of Q on stationary states of (2)
is zero. On exact stationary states, i.e. eigenstates of (2), we have the induced dipole (use the definition of Q):
es e?s
Wldlw =ew|qlv =ew|Qw +e<w‘ — |v)- —.
mw?

mu?

@ The coefficient of propotionality between induced dipole and external field has dimension of a volume and is called polarizability of the system.
In our case
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@ Interaction lower energy of the system, see (3), and is written in the same form as classical dipole induced interaction:

1 e?¢? 1
= - —aég?

AE = - —
2 mw? 2

We can verify in this simple system Feynman - Hellmann theorem, which readsin this case

OnE oH
— = (v —|v). (5.4)
o8& lels}
Thel.h.s. of (4) is-a & Ther.hs.is:
oH e?s
M—M - e AW = - — - -as,
o0& muw?
verifying the theorem.
Problem 6
Solve the two-level system
-Ey -6
H = = - o0-B
Eo + [ A E ] Eg o

and compare with the results of perturbation theory as B— 0 . Discuss how the phases of eigenstates depend on B.

® Solution

m Exact solution

Our problem has only two states, conventionaly denoted by | +48nd | -The constant Ey given in the text of the exerciseis just an additive constant to
the energy and will be disregarded from now on. The Hamiltonian can be considered in aform

o) (27)

; .1
0 E -5 0 (6.1)

H=H+V;, H= (
and studied exactly or with perturbation theory. The eigenvalues are trivialy found solving the quadratic equation det(A - H) = O, but as an exercise
we want to follow another more instructive path. System (1) can be considered as the Hamiltonian of a spin 1/2 interacting with a magnetic field.
Magnetic interaction for spin 1/2 is described by -u 0B where y is the magnetic moment, B the magnetic field and o the Pauli matrices. With the
substitution B — u B our system isindeed a magnetic Hamiltonian. If we write

. 01 0 -i 1 0
_ -ig. - _~5.RB . . _ . _
6 =7re', H=-0-B; Ox [10], oy (]’1 OJ' Oy (0_1). (6.2)
we have
H- E1 (A Cos [o] —J'lASin[w])J
N (ACos[p] + 1ASINn[e]) -E1 '

and we can identify the components of our magnetic field with

B, - aCos[¢]; By =ASin[e]; B,=E; B= |B|=+/a2+E. (6.3)

In our magnetic analogy the perturbation treatment would consist in adding a transverse magnetic field of strength A to a magnetic field E;along z
(the direction of the magnetic field is what identify z direction). In this language it is clear that we can choose the x direction along the transverse field
and put ¢ =0, i.e. kill y-component of B field. From now on we adopt this convention and write Ac R instead of §. Let us note that we can also
choose ¢ = x, than have in effect both positive and negatives vaules for A. A priori the two choices are distinct and this will have some consequence
below.

The reader now has 3 choices, he can forget this discussion and assume from the beginning a real Hamiltonian, or he can read the note at the end of
this subsection to understand for a generic system (without a real magnetic field) what it means the choice ¢ real. The third (better) choiceisto try to
understand by himself the question.

Intherea form H isgiven by

Ey A

Cos [6 Si o
Hz_(AfEl)z‘oxBx—ozBZ:_B s[e] Sin[o]

Sin[e] -Cos[O]
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A
By = BSin[o]; B,=BCos[o]; Sin[e] = —; B=AE+a? (6. 4)

X

and it is apparent that we can diagonalize the Hamiltonian by bringing z axis along B. The rotation of reference frame is an anticlockwise rotation
around y axis, i.e.

6 e ) Cos {g] +Sin [g}
R:Exp[i—oy} :005[—} +ioys|n[—} - . ; (6.5)
2 2 2 -sin|[7| cos|?]
2 2
In the rotated basis the Hamiltonian will be diagonal, and in effect the reader can check that
RHR' = -Bo,. (6.6)
The new basis vectors will be
Cos |2 -Sin|Z Cos | 2 -Sin|2
1
) =R e = | {29] {j} [0] _ {j L ole) =R o) - {j} . (6.7)
+S|n[f} Cos{—} Sln[—} Oos[—}
2 2 2 2
N.B. We remember that basis vectors transform as the inverse rotation, see notebook [**] for more details.
The reader can verify directly that
Hlg)=-B|g)y;, Hje = B]Je); (6.8)

yand|e) arer tively the ground state and the excited state of the system with energy eigenvalues ¥ B = ¥ +/ E? + a2
lg espectively theg Sy’ gy eg 1

The choice of initial phases
The reader can skip this subsection in afirst reading.

The thesis is that we can always choose the phases of our statesin such away that § isreal. Thisis trivialy true in the sense that if we choose as basis
vectors

la) = e i0/2 | +); ‘b) S Y | =) (6.9)
the Hamiltonian haa the same diagonal matrix elements
(a|H|ay =(+|H|+) = -Ex; <b\H\b> =(-|H|-) = E;
and real off diagonal elements
@[H[b) = e (+|H[-)=-a <(b|H|a)=e " (-[H|[+)= -2

The choice of the phase of basis functions can always been made by a unitary transformation so the physicsis not changed. Let us note that | a) and |
b) are obtained from | +) and | -) states by the unitary transformation Exp[-i ¢/2 o, ]:

|a)y = EXp[-19o0,/2] | +); | by =Bxp[-i9o;/2] |-);
and thisis exactly how arotation of an angle ¢ acts on spinors in the magnetic analogy.

From a physical point of view we can state the same conclusions with a different perspective. In two dimensions we have only 4 independent
hermitian matrices, the identity and the four Pauli matrices, each matrix canbe written as a linear superposition of these matrices. The "maximal
abelian set" of observables, neglecting identity, is formed by only one element, one of the Pauli matrices, by convention let us choose o, . Our states
are labeled by eigenvalues of this observable, nothing else, and in effect the two states| and| +fpr example belong to the same eigenvalue of o, .
To pass from rays to vectors in Hilbert space we have to make a choice for phases, and this meansto choice| a@r | +Yo. avoid misunderstandings
this does not means that we can change the phases in such a way that every linear combination | y=c;| + c,| Hasrea coefficients: once we
have choosen a phase for basis vectors this choice is valid for every linear combination.

There is one more subtle point. When we write o~ matrices in the usual form we have in effect done a choice of phases, for example oy has purely
imaginary elements, how this combine with the above freedom in phases? In effect when we have stated in the main text that the usual representation
of spin 1/2 is The representation of SU(2) of dimension 2 it was understood up to unitary tansformations. Which means again that we can aways
choose the phases in such away the o- matrices have the usua form. Now if we do a unitary transformation on a basis which satisfy usual convention
on the phases we obtain again a representation with the correct phases. In effect the only point is the state | Wvhich is defined, without additional
phases, as (ox- ioy)/2| +f we perform aunitary transformation both matrices and states change. Under the transformation R = Exp[-i ¢ o, / 2] for

example:
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oi - % = Rogj RT
and under a unitary transformation all linear relation, and commutation relations, remain invariant, in particular the new | -tate, which is| bjs
obtained by applying the new sigmamatrices, %, to| a@nd everything worksin exactly the same way.

In effect after the transformation we had to write  instead of o for matrices and spin operators, but as these operators on the new basis have the
same matrix elements as old operators inthe old basis we use the same symbols, asis aways more or less implicitily done.

m Non degenerate perturbation theory

Simple perturbation theory on non degenerate levels can be applied for A < E;. In absence of perturbation -B Sin[6] oy ground and excited state are |
+yand | -As{+ | ox | +)=0=(- | ox | -) correctionsto eigenvalues start from second order and we have

1 1 A2
DBy = ~Ep + 82 (+ | ox | -) (=lox|+) = -E |1+ ——
2E 2 B
1 1 a2
AEg = Ep + 02 (+ | ox | -y —— (= | ox | +) = E1 |1 + — —
1 2 E2

These results are in agreement with Taylor expansion of exact results (8), as for small A

B=+E+22 =F

The eigenstates have afirst order correction. Using the general formula

1+ - —
2 B

) 1
5 |ny = [s) (s|V][n),
N
we havefor first order eigenstateswith V =- A oy:

A
lg)= [ +) +
2E

S
=)= 1)+ = |5 e= |- - — = [=) - — |+
3 2

which arefirst order expansion of (7).
m Degenerate perturbation theory

AsE; -» 0, andingeneral for |[E; | « A previous formulae do not apply and in this regime we have to switch to degenerate perturbation theory. To
see exactly wy perturbation theory on degenerate levelsis different let us consider the exact solution (7). As Tan[6] = A / E;we see that the vaule of 6
in the degeneration limit E; - Odepends on the sign of A

n/2; if A/E >0

lime =
{—n/Z; if A/E1 <0

E;1 -0

Accordingly for ground state, as an example

(1) + [-n/2 =|s); if s>0
lim |g) =
B0 (1o - 1-n/v2

i.e. when we switch off the perturbation A we do not know in advance which state of the two dimensional space spanned by | +) and | -) correspond
to ground and excited state.

States| 9ns| Adiagonalize the degenerate hamiltonian but we seethat | @ not analyticin A, precisely is discontinuous for A =0. A similar thing
happens for eigenvalues. In the degenerate limit eigenvalue are + |A| which are continuous but not derivablein A = 0.

This picture has some relevant consequences. If we imagine to vary smoothly the external field, the eigenvectors follow the variation except if we
pass through the singular point E; = 0, A = 0, where there is an abrupt change. This is wy adiabatic theorem does not work if in the evolution the
system goes through a degeneracy point.

‘A>; if A<0

This breaking of adiabatic theorem is even more clear if we switch on the y component of the magnetic field. In the general case

By = BSin[o] Cos[e]; By=BSin[o] Sin[e]; B,= BCos[6]; B =+/E+a%;

As aready noted the y component can be reabsorbed by an anticlockwise rotation of ¢ around z axis of the reference frame. After rotation the new
unperturbed eigenstates will be

L o o , .
|+ = R[] \+>:Exp[—ngoz} \+>:Exp{—15] | +y: |- = Expl+ie/2] |-). (6.10)

For these states everything works as before the only difference being that now A, the modulus of transverse field, is necessarly positive. In the
degerate limit
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1 . , 1
@) = — (| + |5) = —
V2 V2

The ground state has now a continuous range of variation, not only a double determination as before. Which of the infinite set corrspond to the true
ground state depends on the actual value of ¢.

Exp[-i 7]
Exp[+i |

The general solution, see (7), is

\g>:COS{§} | +) +Sin{§] | -y =

Oos{ ] Exp[-i

] EXp[H'L

” (6.11)

We note that | g) change its sign as ¢ varies from O to 2r, like spinor (we remember that in principle our system has nothing to do with areal spinor).
This effect is a particularly simple form of Berry phase.

N|O N O
NS NS

Sin{

Consider a system in which we vary adiabatically the transverse field around a circle, i.e. ¢ varies from 0 to 2x. In principle we can locally adjust the
phase of our eigenstates in such a way that the ground state follows the variation of the field, why we obtain an additive minus sign after acicle? Let
us consider the infinitesimal variation of the state under a change of a set of parameters 2

e}
Q| — [P (6.12)
O A
if we can reset to zero expression (12) with a change of phase, then we can choose our phases in such away that they follow variations of external
field. In the present case our parameters are 6 and ¢ and we have from (11)

o @] i
Q| — [9=0; (9| — |19) = -——Cos[o].
06 le)0} 2

Consider now atotation of the transversefield at fixed 6. To reabsorb the phase variation we would need a change of phase

1
|9) - Exp[ia] | 9); ale] = 5008[61 ,

but the function « is not monodromein ¢, i.e. is not afunction, so it is not allowed, and we cannot reabsorb the phase variation in a closed loop by a
global defined @. The amount of phase change under a cyclic variation of externa condition is substantially the Berry phase of the system.

Problem 7

A two-level system as that of problem [6] can be considered as a simplified model of an ammonia molecule, NHs;. The Nitrogen position with respect
the the plane of 3 hydrogen atoms corresponds, classically, to two equivalent configurations. Define a parity operator for this model and discuss its
property. Sudy the effect of an electric field on the system.

® Solution

m Description of the model

An ammonia molecule can be described by three coplanar hydrogen atoms, (x,y) plane, and a nitrogen outside the plane. The system admits a
specular configuration obtained by a reflection across (x,y) plane, i.e. z—-z, then a second position for nitrogen atom, classically equivalent to the
first one, exists. Classicaly the two position are separated by a potential barrier, and are local minima of the potential energy. Tunnel effect allow a
mixing between these two configurations. The situation is described pictorially inthe folowing figure:
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Uizl
10-

05+

—15‘ o ‘—10‘ o ‘—05‘ - L ~_ ‘05‘ o ‘.0‘ o ‘15

-05°L

Neglecting tunnel effects an effective Hamiltonian for the system can be taken as

o520

The basis states correspond to classically localized states, | +4gnd | -)Pis the operator which exchange these states, i.e. parity. Tunnel effect produce
an amplitude different from zero for the transition between the two states and can be added to H, in the form of off diagonal terms

Eo -2
H:[—A EoJ' (7.2)
Thisisexactly the Hamiltonian considered in previuos exercize, with E; = 0, and the two eigenstates are
o)== ISy ley= = - A 7.3
Sz [+) + | =)= |9 *ﬁ(\+>*\*>):| ; (7.3)

Let us notice that for a one dimensional problem we now that ground state is symmetric, then in effect | @5 the ground state. This state is even under
parity, Pl @| g@yhile excited stateis odd.

@ A question for the reader: the sign of A depends onthe choice of the relative phase between | +énd | -$tates. How this is consistent withthe
assertion that ground state for a one dimensional potential must be symmetric?
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m Electric field

The charge distribution in configurations | +énd | s asymmetric, due to greater electronegativity of Nitrogen. Classicaly this that these states
possess an electric dipole. We can describe this effect with

d=<(+]ez|+y; -d= (-|ez|-); (-|]ez|+) =0; (7.4)
We note that the first equality is a definition, while the other two equalities are a consequence of our model.

Let us assume that our states are (relatively ) real, e.g. are approximate real solution of one dimensional Schrodinger equation. The parity operator P
must actsonzasPzP1= Pz P =- z (we used P?= 1), then

(-1z|-)=(+|PzP[+) =-(+]2Z2]|+) = -d
For the third equality,using reality of matrix elements:
(-1z]+)=(+|PzP|-) = -(+]Z|-)=--|zZ2]+))"=-(|z2|+) = (-]z]|+ =0

Let us note that states | +) and | -) are not eigenstates of Hamiltonian (2) so the general theorem about absence of electric dipole moment on stationary
states do not apply. If we neglect tuneling the states are eigenstates of (1) but the system is degenerate and again the theorem does not apply.

If we switch on an electric field &, thisfield will couple with dipole mpoment and the Hamiltonian becomes

-d& -A
H = . 7.5
g 7L (7.5)
The Hamiltonian (5) isidentical to that of problem [6] and we can write at once anergy levels and eigenstates:
Cos| | -sinl3] s
E=E 7 \a2+d?&%; |gs) = : | eg) = : Tan[e] = —. (7.6)
Sin H Cos [5] de

Equation (6) explain in a simple way how in quantum mechanics we can have approximatively a linear Stark effect, which mimics the classica
interaction - d . In the limit of large fields with respect the transition matrix element, or energy splitting, d& > A, we have § - 0 and

E=E ds; \9>a:((1)]; \e>a:(01);

We have classical linear dependency on electric field wich mimics a permanent dipole of the system. Eigenstates are "frozen" toward classical
localized states. In these states, see eq.(4)

(s |€z |gs)=d; (es|ez|es)=-d.

In effect permanent static dipole, polarizability etc, are defined in the limit of vanishing extenal field. Let us assumed & —» 0%, then 6 —» 7/2 and we
have

1 d2¢?
E=FE7+|A + — ; (7.7)
2 A
1 ds ds
\ga>=7[[1+ ] | +) + 1_7) \*>],
NP 2 2
1 ds ds
\es>:—(1— |- - [u— |+>];
NE 24 2.
From eq.(7) we see that Stark effect isindeed quadratic with polarizations
d? d?
E-E-=-—as& Og= —; Oeg= ——.
2 A A

We note that for excited states polarizability has a negative sign, so the atoms behave at the opposite of usual dielectrics (they are repelled in an
external gradient field).

These result are confirmed by taking the mean value of the dipole operator on exact eigenstates inthe limit of small field:

d?2 d2
(s | €2 | Qs) = — &; (eg|ez|eg) = -——&.
A A

Problem 8

Sudy the effect of an electric field (Lo Surdo-Stark effect) on the n=2 states of hydrogen atom, neglecting the effects of spin.
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Solution
m General properties

In the non relativistic approximation the n=2 level of hydrogen atom has degeneration 4, (we neglect spin degrees of freedom): there is one 2s state
and three 2p states. Let us choose as quantization axis (z axis) the direction of the electric field £ The Hamiltonian is

p2 eZ
H- — - — -ezs (8.1)
2m r

e is the electron charge. H is invariant for rotations around z axis, then L, can be diagonalized simultaneously with H. In perturbation theory thisis
reflected by the fact that the term e z & has no matrix elements between states with different eigenvalues of L.

The Hamiltonian is also invariant under reflection R across a plane containing z axis, ex. y — - y. Classically the porjections of angular momentum
along z change sign under this operation, the same is true in quantumtheory. In angular coordinates this symmetry is equivalent to ¢ — - ¢ and with
our choice of phase for spherical harmonics

YN, -o) = (-1H"Y™©, 9); > ®|n L m= (-1)"|n, L -m). (8.2)

As H commutes with R the states with opposite m (eigenvalue of L,)will remain degenerate even in presence of the perturbation. The same
conclusion can be drawn using time reversal symmetry and the relation

Y0, 9) = DY, 9)
m Perturbation theory

Perturbation theory on n = 2 level is atypical example of degenerate perturbation theory and we have to diagonalize matrix elements of the perturba-
tion on the subspace spanned by states 2s, 2p. We have seen some selection rules in previous section, to this we add that z is odd with respect parity,
so only matrix elements between different parity can be different from zero.

Denoting the stateswith | 2s) 2p,mwhere misthe eigenvalue of L, at first order the selection rule on L, imply the following form block diagonal
form for perturbation:

0 (2s|z|2p,0) 00 0ao00o0
es (2p, 0|z |2s) 0 00 C o es a0o00@o0
0 0 00 0000
0 0 00 0000

We see that energy of states| 2g, 1) are left unchanged by the perturbation, its only effect isamixing between| 2gnd| 2p,@tates. Wave functions
for these states are

1 r r
Y2s = Reo Yoo = 7EXD{——} 1- —
a%2-/8 1 2a 2a
1 1 r r 3
Y2p,0 =Re1 Y0 = — —EXP{*—} — Cos [6];
a’? 5./ a 2a 4

aisthe Bohr radius. An easy integral gives
(2s | -e&z |2p, 0) =3eca.

Therlevant part of the perturbation to be diagonalized is just the 2x2 matrix

01
3e5a(1 O)
Eigenvalues and eigenvectors are
1 1
Ea=-3esa; ya= —— (U2s - ¥2po); Es=+3e8a dg= —— (V25 + U2p0).
V2 V2

We have alinear Stark effect due the degeneracy of the n = 2 level. States yaand g are not parity eigenstates and admit a dipole moment. Fromprevi-
ous matrix elements it follow

a | Z | ¥a) = +3a; (Y| z | ¥B) = +3a.
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Problem 9

A particle moves in a one-dimensional potential U. Let us suppose that we know all eigenfunctions for this system and that a perturbation V[x] acts
on the system. The computation of the first order correction to eigenvaluesis, in usual cases, reduced to an integral. The computation of first order

correction (1) to wave functions involves generically a sum over infinite terms. Show that the problem of finding i (¥’ can be recast in the form of

solving an inhomogenous partial differential equation. Set ¢ @ = f [x] (@ [x] for first order eigenfunctions and write an equation for f. In
particular consider the case of a central potential and a perturbation in the form of a constant electric field. This method of solution is known as
Dalgarno-Lewis method.

® Solution
m The method

The complete stationary Schrodinger equation for this problem has the form:

n2
-— Ay + Uy + Vy = Eu.
2m
Let ypa given eigenstate solution of the unperturbed equation, with eigenvalues E,. Let us suppose that the level is non degenerate or that V is
diagonal with respect quantum numbers used to classify the eigenstates of the degenerate subspace belonging to eigenvalue Ey_ In these cases the first
order correction to energy and eigenstate are given by

er= [ Tuo 12 Vax: ua- fax

1
ﬁ<5|v\0>: (9.1)
s#0 -

f sis the generic name for eigenfunctions. In genera is very difficult to compute exactly the infinite sum in (1), in this problem we study a method
which reduce this problem to a solution of a differential equation, usually easier to manage. Having computed v, perturbation theory alows an easy
computation of second and third order corrections to energy levels.

let uswrite y = Yo + Y1and E = Ey + e; with ypand e; of first order in the perturbation. Neglecting second order quantitiesin V and using the fact
that o satisfies unperturbed equation, Schrodinger equation for ¢ can be written as

72
*zfAdf1+Ul//1+Vw0:€1lZ/o+E0W1§ or (Hy- Ep) d1= (e1-V) o (9.2)
m

This is an inhomogenous equation for 4. Let ¢ one particular solution of this equation, as the operator Hy - Ey has anontrivial kernel of dimension
1 (we assume non degeneracy) then the general solution is of the form

Y1 = ¢ + Cip.
In perturbation theory the correction to a state is fixed by requiring (y1 | ¥o) = 0, thisfixes the constant and the solution is
1= ¢ - (o | &) do- (9.3)
The equation (2) can be simplified with the position y; = f 4. Expanding the derivatives and using equation for yowe have:

n? n?
-— Yot - —vf vy + (V-€1) ¥ =0. (9.4)
2m m

This eguation does not contain explicitely the unperturbed potential U.
m Electric field and central potential

Consider now the particularly important case of a central potential U[r] and a perturbationdue to an electric field V = - e £ z . We want to compute
corrections to the wave function of fundamental state. yois spherically symmetric and the perturbation can mix only to stateswith L =1, L, = 1,

odd states, i.e. functions of the form z ®[r]. Thefirst order correction e is zero for parity. We then put in the general equation (4)

f =zF[r].
Using (the prime denote a derivative with respect to r)
Xi s Xi , , z z -
6 Yo= —Uo, O (zF) = 63F +z —F, > woai(zF):wo[—F+zF'];A(ZF):4—F +zF ;
r r r r
the eguation for F becomes
n? z y n? Yy (2
——47F+zF)-——(7F+ZF']-eaz=O;
2m r m Yo \r
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[1 2 o
] +es—=0. (9.5)

—F' + —F
Yo

2 r
This equation isvalid for any central potential, but clearly ¥, depends on the problem at hand.

m Electric field and central potential

Consider now the particularly important case of a central potential U[r] and a perturbationdue to an electric field V = - e & z . We want to compute
corrections to the wave function of fundamental state. yis spherically symmetric and the perturbation can mix only to stateswith L =1, L, = 1,

odd states, i.e. functions of the form z ®[r]. Thefirst order correction e, is zero for parity. We then put in the general equation (2)
f = Cos[O] F[r]; 1= Cos[o] F[r]yolr]. (9.6)

In polar coordinates the Laplace operator is (£ is the angular momentum operator)

2 12
A= — 8 +0% - i and £Cos[6] = 2 Cos[O]
r r

Cos#] is proportional to Yiothen £2 Cog[d] = 2 Cog[6] and equation (2) takes the form (with e; = 0)

n? n? 2 o . 2
Cos[0] F|— Yy + (BEo - U) yo| + —Cos[e] | —F Yo+ 2F yYp+doF - —Fiyg|+e&r Cos[e] Yyp=0
2m 2m r r2
Using Schrddinger equation for yo
1. F F bo . eem
-F + — — |+ —F + r = 0. (9.7)
2 roor2 Yo n?

This equation is valid for any central potential, but clearly ¥ depends on the problem at hand. Solving this equation we can compute y; and second
order correction to energy issimply an integral

€2 = (o |V|¥1) = —e& Yo | T Cos[O] | Y1) = - 5 darr2 g3 F(rir.

In the last formula we have used the equality (Cos [6]%) = 1/3.

m Higher orders

Stark effect contain only even powers of angular momentum, and even power of electric field in energy shift, for parity reasons. Equation (6) then
generalizes as
o= do+ Cos[O] Filr]yolr] + (P2[Cos[0]] Faalr] + Faolr]) o+ ... (9.8)

Pyis Legendre polynomial, £2 P_ = - L (L + 1) P, By substitution in (2) and using Schrédinger equation for i, we have now, up to second order
and remembering that ; = 0 :

n? 2 o . 2 n? 2 o . 6
— Cos [9] —Flllfo+2Fll/J0+d/0F17—Fll/J0 +—P2[—F221L/0+2F2221/0+WQF227—Fzzl[/o
2m r r2 2m r r2
w2 (2 o .
+2— — Foo o+ 2Fqdg + o Fyo| + €61 CoS[O] Yo + €61 Cos[O] (Cos[O] Fi[r] yo) + €20 =0
mi\r
We can use

2P,[Cos[o]] + 1

Cos [0]° =
3
to separate different angular momenta, obtaining, equating similar ordersin &:
1.1 1 Yo . eem
—F +—F - —F1+ —F{| + r = 0;
2 r r2 Yo n?
1.1 3 bo | 2 esm
—Fpp+ —Fpp— — Fopg+ — Fopp | + — rF=0; (9.9)
2 r r2 bo n?
1.1 vy 1esm m
7F20+7F20+—F20 + — rFp + e —=0
2 r Yo n? n?
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Problem 10

Use results of problem [9] to compute the approximate polarizability for a particle moving in a one dimensional potential well of width a, with the

conditionay <« 1, wherey =~/2m| E | /n% |, [E]isthe binding energy.

® Solution
m Unidimensional case

Outside the potential well the unperturbed wave function behaves as
o = ABXp[-x | X |] (10.1)

The condition a y < 1 imply a slow variation inside the well and yo~ A for [x| a In this conditions the contribution to electrostatic energy inside
the well canbe neglected and the wave functioncanbe taken everywhere in the form (1). In this approximation A =~/ x .

We look at first oder corrections to g due to a perturbation - e & x, & is an externa electric field. If we write y; = f it has been shown in
problem [9] that f[x] satisfy the differentia equation

1 . 4 . mes 1 . mes
—f + —f + X =0 = —f -—xe[x]f +
2 Yo n2 2 A2

x = 0. (10.2)

With g[x] = Sign[x]. A particular solution of this equation is the odd function:

1 meé

X  x%2e[x]
f[x] = -

— +
2 n? X X

The odd function f yis automatically orthogonal to the even function o, then the first order correction to ground state is

2

1 mes €[X]

X X
= — 4+
x? X

Y [X] =

2 2
We can compute second order Stark effect with
AE = (o |V | Y1) = —e& (o | X | ¥1).

Performing theintegral we have for energy shift and polarizability:

m Three dimensional well

In the same approxiamation the wave function of the ground state can be taken as

1 1
Vo = \[2x —Exp[-xr] (10.3)
r Va4
We put ;= Cog6] F ¥, see problem [9], and F must satisfy
1. F F Yo . e&m me e Fr] F[r]
—-F + — — |+ —F + r =0= r- -xF[r]+ =0. (10. 4)
2 r r2 Vo 72 72 r2 2
If we look for a polynomial solution we find
mee r2
Flr] = —
xh? 2
and
mse r?
Y1 = Cos [O] — Yo.
n 2x

The second order energy shift is
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me2e? 1 1 me?e? 1 me? e?
— (%o | (r Cos[o]) r?Cos (6] o) = - — — a-=

AE = - .
n? 2x A T 4 72 x4

Problem 11

Use results of problem[9] to compute the polarizability for the ground-state hydrogen atom. Give an estimate of the contribution of continuum states.

@ Solution
Polarizability

The polarizability « is defined through the expression for energy shift in a constant electric field &:

1
AE = - — o &2, (11.1)
2

For parity conservation in unperturbed Hamiltonian, the first order correction to energy level is zero. The second order correction is computed by the
general formula

AE = (Yo | €8z | Yu); (11.2)
where ypand i are respectively the unperturbed wave function and its first order correction.

In the following we use atomic units, with e = 4=m=1. To come back to usua unitiesit is sufficient to note that the adimensional expansion parameter
is (aisthe Bohr radius).

7 =esca/(e?/a).

The wave function of ground state hydrogen atom is

o = 2Exp[—r]/x/4n. (11.3)

To compute ¥ we use the results of problem [9]. With

Y1 = Cos[O] F[r] vo (11.4)
F must satisfy, in atomic units,
1. F F vy 1., F F ,
0=|-F'+ ———|+ —F+6r=|-F' + ——-—|-F +6r (11.5)
2 r r2 Vo 2 r r2
A particular regular solution of this equationis
1
Fir] =&r + —r?2|.

Inserting this solution in (4) we have ;. This function is orthogonal to yybehaving as a angular momentum 1, then no more computations are
necessary.

1
Yy = Cos[e] & |r +7r2] bo. (11.6)
2
Inserting in (2) we obtain easily
9
AE = - — &%
4
and for the polarizability
9 9
a= —; o = —a® (usual unities) (11.7)
2 2

Contribution of continuum states

From

f(ls|z|n)?

AE:SZZ

n#ls Eis - En
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(11.8)

it follows
{(1s|z|n}?
a =2 Z
En - E1s

n#ls
We see that all terms give a positive contribution to @. Angular momentum and parity conservation imply that to the sum only discrete p-states and

Itiseasy to give an upper bound to o considering the lowest possible denominator: E; ,- E; s= 3/8 and using completeness:
16
.

continuum states can contribute.
Z{<1s\z|n>}2 = — (1s ]z |1s)
3

a <
nzls

A lower bound is obtained inserting only the |2p;m=0) state into the sum
16 )
a>—|{(1s|z|2p; 0)}°.

The angular part of 2 p state wave functionis Y10 [6, ¢]then previuous angular integral is
do 1

JYOO Y1p Cos [0] dQ = Jf \/3 Cos[e]?= ——

4 /3

16 )
a> — {(1s|rjf2p; 0)|

where( || r2p; 0) standsfor reduced matrix element, i.e. matrix element between radial waves functions. From

1
Ris=2Exp[-r]; Rep= rExp(-r /2]
26
we have
214 2 219
[Asqr2p; 0)% = — —; o> —— = 2. 95
38 3 311
Previous computations extend immidiately to all np discrete states, which are the whole discrete contribution to «
2 = 2
dgise = — )~ H(Lsrinp; 0)1%
3.21- =
n
The radial integrals can be computed,
, (n _ 1>2n—5
[(Is{ritnp; 0)* = 2%n’ :
<n N 1>2n+5
and the series evaluated numerically
2 = 2 (n-1)2n-5
adgisc = = )| 2°n’ " - 3.663
3n:21—i (n+1>2n+5
n2

this means that continuum contribution is
oc=9/2 - ogisc = 0. 837.

We leave to the reader the following exercise : let us approximate continuous states by plane waves, show that the extimated continuum contribution
will be 7/3, i.e. abad approximation in excess of the true result.

Problem 12
Spin interactions split n=2 degenerate levels of hydrogen atomin two levels (2 51,2, 2 p1,2)and 2 p3,2. Sudy the effect of an electric field (Lo
(2S1,2, 2p1,2) issplit dueto radiative corrections (Lamb shift), the separation

Surdo-Sark effect) taking into account this separation. The level
being about 10°% eV. Which are the effects of this separation on the Lo Surdo-Sark effect?
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® Solution
m Orders of magnitude
In problem [8] we have studied an idealized form of Lo Surdo - Stark effect on hydrogen atom, neglecting spin effects, fine structure etc. In this
problem our aim is to be more close to reality and see quantitatively the interplay of different interactions.
We remember some numbers, a.u. stands for atomic unit, Ry for Rydberg, eV for electron Volt and A Egs for fine structure energy splitting. ais the
Bohr radius:

la.u. =2Ry = 27.21eV; AEs =cfa.u. =10%a u. =2.710%ev; a =5.2910°cm (12.1)

If we measure the electric field in Volt/cm the typical energy involvedis

F=e£a~52910°eV &
We see that up to field of the order of 10° - 10°Voltscm the fine structure is much bigger than electric field effects, so the previous problem was
quite unrealistic for small fields.
Another energy scale is given by the separation induced by radiative corrections on 2 s, ,,and 2 py,, levels. Infrequency this separation is about
1057 MHz in energy

6Eiamp = 1.05710%°h = 4.3710%ev

This means that up to field of 103Volts/cm this splitting is higher than electric field effects, i.e. the levels appear not degenerate. If we put real
numbers for fine structure of n=2 level we find in effect only 1 order of magnitude between Lamb shift and fine structure, 5E| 4, ~ 0.1 AEgs (n=2).

In real life things are complicated by the width of the states, which we neglect in this problem, and by hyerfine structure, i.e. splitting due to nuclear
magnetic moment.

m Fine structure

In this section we take into account the fine structure but neglect Lamb shift, so the solution is reasonable only for & > 10%Voltsem.

Level n=2 of hydrogen atom consists of 8 states, taking into account the spin of the electron. We know, see text, that spin orbit interaction commute
only with total angular momentum j =L + S. A level with agiven L (S= 1/2 is understood for a single electron) split according to the values of j, with
L-S] j |L + S. Compatible quantum numbersareE, j , j ;, and in a perturbative analysis a state can be identifyed by | n,l;, j ,), n being the
principal quantum number and L the angular momentum of the unperturbed state. As we work exclusively with n=2 states we omit this number inthe
notation of states, which can be denoted by

s_1+1> L1 .3 1,3
1S5 25) 0 IR G Ey) . IR g (250 5]

The accidental degeneracy s - p survives spin orbit and relativistic corrections and 2 s1,, 2 py,2 levels remain degenerate. Radiative corections
produce an energy shift A, between these two states. If we call A the fine structure splitting between 2 p3,,and 2 p;y,, the energies of the levels
above can be written, in order

E2p,, + (AL, O, Ap).
In what follow we neglect the common energy factor and consider only splittings.

m Selection rules

@ Asdiscussed on problem [8] the Hamiltonian in presence of an external electric field, directed along z by convention, is invariant under the

reflection R:y — -y, or the azimutha angle ¢ - - ¢, and this imply a degenracy for levels with oppositej . In effect we discussed the ssimmety
only in absence of spin, but the operation R can be implemented also on spinors without major changes. Even in presence of € the levels have a
double degeneracy and we can limit ourselves to the study of positive| ,, i.eto four states.

z commutes with j ,, so states with different j , cannot mix viafirst order perturbation,i.e. state| 18/2,3/2) is separated from other states.

z is behaves like a component of a vector, i.e. is odd under parity. This, and the previous point, imply that the only possible matrix element for |
3/2,3/2) (the diagonal one) vanishes. We are left with only three mixing states, | 4/2,3/2) ,| @/2,1/2) ,| [8/2,1/2) and for parity only s-p
matrix elements can be different from zero.

m Matrix elements
We know from problem [8] that the only orbital matrix element different from zero was
(2s | -esz |2p, m=0) = 3esa. (12.2)

to compute the full matrix of perturbation we have only to write decomposition of states into orbital and spinpart, i.e. use Clebsch-Gordan coeffi-
cients. Denoting by v rthe orbital part of thestateand by | -gnd| the spinors, we have
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2 1
PG ) = S Vel [ e 10
1 2
‘p > %> = g pr,l [-) + g Z1//2p,0 [+); ‘S; %, % = sz,O |+>;

Using (2) matrix elements for the perturbation, both Stark and Hyperfine splitting, are given by (the order of rows is the one in which states are
written in previous equation):

Ag 0 —ﬁx
V = 0 0 X ; where x = +/3 esa. (12.3)
—\/Z_X X Ap

Solutions of the secular equation det(V-1) = 0, gives energy levels.

Let us now consider different regimes

X » A » AL (i.e. 8 » 10°V/cm)

In this regime approximatively we have to solve

-2 0 -vV2 x
det 0 ) X =0 = -2%+3x%2x=0; ix:(o, ++/3 x):(O, +3esa) (12. 4)
V2 X X B

We recover the result of problem [8]. Remembering the decoupled and unaffected |p;3/2,3/2) state and the doublingj ; — - ; we have 4 states at
energy O, 2 states at energy 3 eSa and 2 states at energy - (3 € e a). The doubling in the degeneracy with respect to problem [8] is due to spin. We
have as expected a linear Stark effect.

X « AL « A (i.e. 8 « 108V /cm)

It is auseful exercise to compute approximate eigenvalues of (3) using perturbation theory to this matrix, x - terms elements are the perturbation, §V.
There are no diagonal elements, so first order effect is zero, and correction start from x2. At second order consider for example the first state. We
have asiswell known

2 x2
AEy = (1] 6V |n)

(N |8V |1y = 1|8V |3) 3|18V]|1) =
1~ En 1 - B3 AF - AL

Ei = AF + AF; (12 5)

For the other two levels we have respectively

1 2

AL Ag - AL

2
AEp = - —; AE3 = X
AL

2

i BE3= AL+ AEs.

AL « X « A

This caseisabit academic asfor n=2 levelsA_ ~ 0. 1 Ag but can be auseful exercize for the reader. Neglecting A the matrix (3) becomes

Ag 0 —\/?x
V = 0 0 X ; (12.6)
7\/2_x X 0

The last two states, |p;1/2,1/2) and |s;1/2,1/2) are degenerate and we have to apply for the submatrix 2x2 degenerate perturbation theory. Eigenstates
nd eigenvalues are obvious

1 1
| Ay = — (12) + [3)); eig. +x; [B) = — (|2) - [3)); eig. -x.
V2 V2
Inthe new basis, [1) |,A) |,B) the matrix V reads
Ag =X X
V = -x x 0
x 0 -x

Now we can apply non degenerate perturbation theory to first state, i.e. formula (5) obtaining

X2
Ei= A + 2 —.
A



20 | Problems_chap9.nb

Then, as expected, the two degenerate states |p;1/2,1/2) , |s;1/2,1/2) have alinear Stark effect, while the third state, here |p;3/2,1/2) has a quadratic
Stark effect.

Inthe figure below we present energy levels as a function of x / Ag, with AL= 0.1 Ag. We note that linear Stark effect is quite precocius and start at
about x / Ap~0.6.

X/Ag

A useful exercise that we leave for the reader is to consider Stark effect as the leading term and fine structure as a perturbation, i.e. compute higher
ordersin (4).

Problem 13
Parabolic coordinates (£, n, ¢) are defined by

1
X =+/&n Cos[el; ¥y =+/&n Sinfe]; z = E(&—n);

In notebook problems [ NB-6.4-ParabolicCoordinates.nb] it has been shown that the Schrodinger equation for a hydrogen atom is separable in
these coordinates. Sudy the Lo Surdo - Sark effect in parabolic coordinates. Compute first and second order effect for an arbitrary state.

® Solution

m The Schrddinger equation

In this notebook we will use atomic units, z=m= |e| = 1.

In notebook [*] the results obtained here are derived within Mathematica and extended to an arbitrary order in perturbation theory.

In notebook [*] the Schrédinger equation for a coulombic potential has been solved in parabolic coordinates. We report here the basic connection
formulae between cartesian and parabolic coordinates and the for of the laplacian:

1

X =4/&n Coslel; y =+/&n Sin[«o};z:£<§—n>;
y 1

E=r+2z;, n=r-2 q):ArcTan[f}; r = —(§+n), (13.1)

X 2

4 5 5} 4 9 5} 1 82

A = — | & — | + — | —+ — —.

E+n os\ a¢ E+n on\ an &n 0¢?

The range for these coordinatesis

and volume element is

n
dé dn de.

Interaction with an electric field &, directed along z by convention, is decribed by an interacion - ez € = + |e| z &. We put F for the product |e] € ain
atomic units (ais the Bohr radius) and write the interaction Hamiltonian as (see eg. (1) )

F
V- (- (13.2)

Using (1) the Schrodinger equation takes the form:
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1 4 5 5, 4 5 5} 1 & 22 F
-— — & —| + — [n - — V- Y+ —(&-my = Ey
2 \g+n o0&l a¢ g+n onl on En 8¢? E+n 2
or
5} ol 5} 5} E+n & F £+
2. 2,2, _w+[zf—(.§27n2)+ v - 0. (13.3)
o | oa¢ on\ an 4&n 0¢? 4

The sistem is invariant under rotation around z axis, then one of the "good" quantum numbers will be m, the eigenvalue of L,. We look for a solution
with separate variables, in the form

Y= f1081f2[n] Exp[i me]. (13. 4)
Substitution in (3), after division by ¢, gives
1(d df ; 113 E F 1 (d df , 113 E F
— | — B 77f1+7§f177§2f1 + — 7[U7J77f2+77’]f2+7772f2 +Z = 0.
fioldeg d& 4 & 2 4 fo ldn dn 4n 2 4

Thefirst term depends only on &, the second only on n, since their sum is constant there must be two constant Z; and Z, such that

d df ; E n? F
— [éf Pl — - =&+ 7| f1=0;
del d¢ 2 4¢ 4
d df , E 13 F (13.5)
— [n— tl=n-—+ —n?+ Zp| o= 0;
dn dn 2 4n
Zy + Zp = Z.
We can simplify abit these equations by the change of variables
Z; F
e=+-2E; x=€& y=€en B =— F= —. (13.6)
e e3
d df 4 1 n? F
—x — | 4 |m=x-— - —x%2+ By|f1=0;
d x dx 4 4 x 4
d df 1 e F
—[y—z)Jr—f ——+7y2+/52 fo=0; (13.7)
dy dy 4 4y
z
Bi+ Bz2= —.
€
Asis apparent from (7) the spectrum depends only on |m|, and, as we know from general arguments, states +m will be degenerate.
The procedure to find eigenvalues, as in the case & = 0, is the following
1. Find, for each #, eigenvalues 31, 32, these will depend parametrically on #.
2. Substitutein the last constraint in (7) and find € (i.e. energy) as afunction of #.
m Perturbative solution at first order
At zero order the solution of equations (7) has been found in notebook [*]. Normalizability of the solutions impose
[ mj| +1 | mj| +1
B1=Ng+ T? B2 =Ny + T? = Bi+Bz =Ni+Nz+ (| m|+1) =n (13.8)
then
Z Z 1
B1+B2 = — = € = — = E=-— (13.9)
€ n 2 n?
Atfixedn,0 |m| n-1 and with fixed n and m, one of the two numbers, e.g. n;, canvary as0 n; n-|m|- 1, the other being fixed by (8).
Normalized eigenfunctions are given by
n! X X
froomx] = | ———— xIm2 Exp{ff] LM (x) =cp, m x M2 Exp{ff} L™ (x)
(n+|[mjp) 2 2 (13.10)

Ff nmfn, mdX = 6nyn,-
0
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We will comment below on the normalization coefficients.

The perturbative calculation is done independently on the two equations in (7), each of them is a kind of Schrodinger equation in which 3; has the
role of energy eigenvalue. It is sufficient to do coputations for 31, the other one is obtained by ¥- - 7.

To compute perturbative corrections we need matrix elements of x2. We start from recursive relation
XLPx) = —(n+ m) LY (%) — N+ D)L, (0) + 2n+ m+ 1) LT(x). (13.12)

Denoting the diagonal matrix elementby ( f, | x~2 | f), using (11) to right and left functions, and inserting normalization coefficients, we have
immediately (by orthogonality and omitting the fixed index m):

c? c?
(fa|x?[fa) = — (n+1)2+ —— (n+m? + (2n+m+1) = 6n2+6n (M+1) + (M+1) (M+2). (13.12)
c24 c2 4
Upto first order then
[ m| +1 F
Bi=ni+ ——— + — (6nf+6n; (M+1) + (M+1) (M+2) );
2 4
[ m| +1 F
Ba=Np+ —— + — <6n§+6n2 (m+1) + (m+1) (m+2) )
2 4

and, see the definition of nin (8):

3 3 3
Bi+Be=n+ 7| —(nf-n3) + — (n-ny) (m+1)J =n+ —F (N - Ng) n. (13.13)
2 2 2
Imposing the constraint (7) , using ¥ = F/e3 and the zeroth order result e = Z/n
Z 3 F 3 F
— =N+ —— (NM1-Nz2)n=n+ —— (N; - n) n* =
S 2 &3 2 73
€ 1 3 F z 3 n,2
—=—|1-——(Mm-n)n’| s e=— - *F( J (N1 - nz),
Z n 2 78 n 2
and finally for energy, E = - €2/2
122 3 n
E=-——+ —F— (ny-ny). (1314)
2 n? 2 Z

This gives the first order Stark effect on all levels. It is easy to check low level to compare with more elementary results (prob. [8] ), we consider
hydrogen, Z=1:

n=1, m=0; (ng, ny) =0 = 6E = 0;
n=2;, m=0; (ng, np) = (1, 0), (0, 1) = 6E = ¥3F,;
n=2; m=+1; (ng, nz) = (0, 0), (0, 1) = 6E = 0}

We have the known Stark effect on level n = 2, to compare with problem [8] useF=e & a
The normalization of wave functions
The eigenfunctions (10) are a complete and orthonormal set with respect the measure dx. The eigenfunctions used in notebook [*] where similar but

not identical. In & variable they were

Unin,ml€, 1, @] 0= fnlm[g} fnzm{n] ;

(13. 15)

Functions (15) are orthogonal with respect the three dimensional measure induced by parabolic coordinates, i.e.

+

anl n, m* Uk, ky ni d&dnde = bn;k; On,k, Ommi

Functions (15) are not a complete set with respect to this measure, we clearly miss continuum spectrum. In this problem eigenfunctions (10) are
used to solve the auxiliary problem (7). For negative energies we look at real eigenvalues 3 and in this framework (at # = 0) functions (10) are a
complete set. If we make the change of variables

fix] = xY2g([x]
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thefirst equation (7) becomes

and have only a bound spectrum for ¥ 0. For ¥ = 0 both equations (7) admit only a discrete spectrum, the continuous spectrum of the coulomb
potential comes from E > 0 and e imaginary. The constraint in this case force to look for imaginary eigenvalues.

When ¥ 0 one of the two equations has a potential non bounded below at infinity, for example the second one if > 0, the energy levels will be
instable for tunneling, this phenomenon will be analysed with WKB methods, but do not concerne us as far as we consider perturbation theory.

m Perturbative solution at second (and third) order

It is not difficult extend the solution to second order, First we write implicitely the correction (1) to wave functionsin the two eigenvalue problems

Q]

. (Fs|V]fn) F
PV [x] = Zsfs[X] ¥; V= —x% (13.16)
Bn - Bs 4
then we use the general formulae
SE = (wo | V| uiV), 6B = (y | V] et ) - 6B (uiP | ). (13.17)

Iterating recursion relation (11) we obtain

XLM=m+2)(n+ DLy, -2+ DH@2n+m+2 L0, +

m m (13.18)
J+M+2)(M+ D)LY -2+ m M+ 2n) Ly, + (M+n)(n+m-1) L,

Let us cal di(k = -2,..+2 the coefficients of this relation. Using normalization constants ¢ this relation an be transformed in a recursive relation for
basis functions:

2 ¢
X feix] = ) e Fo X1 (13.19)
k-—2 Cnsk

Using orthogonality of basis functions the first order correction (16) is

2,

0 0
k0 Bl - BOk Cnk

F 2 1 Cn
- di fnok [X] (13. 20)
4 k=-2,

Now we have only to insert (20) in (17) and using (12) and orthogonality to perform integrals. The result with # - - # will give correction to 3.
Imposing the constraint (7) will give the corrections to enery levels. We report here the final result of this strightforward but tedious computation

z2 3 n 1 ny4
E=- o —F— (n;-ny) - — F? [7] [17n% - 3 (N1 -np)% -9nf +19] +
2n2 2 Z 16 z (13.21)
3 n,7
+—F3[—] (g -nz) [23n% - (ny -nz)2 + 11 nf + 39].
32 Z

A method to perform the computation to al orders is given in notebook [9.3]. In particular for the ground state of hydrogenic atoms (n=1,
n; =n; =0, m=0)oneobtains

9 1
E--— - —F2 .

From previuous result the polarizability o follows

which reproduces the known result of hydrogen atom, see problem[11].

Problem 14

In a helium atom let us consider the electron - electron interaction as a small perturbation. Compute to lowest order the ground state energy of
helium atom. Compute 3-dimensional Fourier transform for functions
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1 Exp[-ur]
- EXpl-url;
r r
and show how these results can be used to solve the problem.
® Solution
m Introduction
This problem isintended as an introducion to the next one, prob.[15].
In this problem we will use atomic units. Units for length and energy are
n? me* e?
ag = —— (Bohr radius); Eg= — = — = 27.2114 eV (14.1)
me? n? ag
In these units the non relativistic Hamiltonian for Helium atom is
1 1 z 4 1 1
H=-—-2n - -0 - — - —+ ——— =H+ ———. (14.2)
2 2 r ro |r1—r2\ \rl—rz\

Suffixes 1,2 refer to the electrons. r 1, r , are their position with respect to nucleus, r ; = |r 1 | etc. Z isthe nuclear charge, Z = 2 for helium otherwise
we will describe ions of Berillium, Z=3, Boron, Z=4 etc.

In this problem we are considering electron-electron interaction as a perturbation. We do not expect good quantitative results as its order of magni-
tude, e? /aBin usual units, is similar toother terms in the Hamiltonian.

Hpis asum of independent hamiltonians, then its ground state is written at once

ZZ
Do (r1, r2) = U1s (r1) Y1s (r2); Eo= Ers+ E1s =- Py

1 1
,+,]=_ZZ_ (14. 3)
1 1

m Perturbation

The perturbative contribution to the energy of the ground state is

1 s (F1) 12 Was (r2) |2
AE = (1s;1s | 7|1s;1s>:Jd13r1d13r2 te 1 ey (14. 4)
[ri-ra| [r1 -T2 |

The most simple and general way to compute integrals like (4) isto use multipole expansion for Coulomb potential:

1 @ 1 o(ro\/
—_—= —[—] P, [Cos (¥)]; (14.5)
[ra-r2| or- I,
with P, Legendre polynomials and
r.=Max(ryq, rz]; ro=Mnirg, rz]; rp-rz =ryrpCosly].

In the actual case our distribution are spherically symmetric, only £=0 term in the sum survives angular integration and we have, splitting the integral:

1

AE = Jdﬁrldﬁrzp (r1) — o (ra) =
r>
1 1 ) ) 1 2 )
— D(r2>r2d1r2+rd1r2fzp(|’2)*J{D(fl)rld”l = (14.6)
rp{ J0 0 ro JO
2 2 1 ! 2
) FdlrlrlD(rl)— o (rz) rydra.
0 r, Jo
Using the known wave functions
1 3/2
U1s = Yoo Rus[r] = 27°% Exp[-Zr1].
4ot
it is easy to compute
5 5
AE = 2x —Z = —Z (14.7)
16 8

For the energy the predictionis (for Z = 2)
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5
E=--22+ -2 -2.75a.U.; Eep =~ -2.90a.u.
8

Usually what is reported is ionization energy, i.e. the energy necessary to extract one electron. After ionization we have a one electron atom, with
energy - Z2 / 2then ionization energy is defined as (we neglect relativistic corrections)

Z2 Z2 5
| =-— -E= —-—2Z=0.75a.u. =1.5Ry = 20.41eV.
2 2 8

to be compared with
lexp ~0.9035a.u. = 1.807 Ry = 24.5855¢eV.
m Different methods to compute an integral

The multipole expansion (5) is a standard way to compute integrals of the form (4), nevertheless it can be useful to have aternative strings in one's
bow.

Electrostatic analogy

Theintegral (4) isthedouvle of an electrostatic self - energy for a charge density p:

1, s P p(rz)
AE= 2 U, U = 7J\d] r{drop
2 [r1-r2|

Let us divide the space in shells of width dr, with charge p(r) 4 7?dr. The self energy can be obtained by summing potential energy of these shells,
the potential being created by charge inside sphere of radiusr. The total charge up to radiusr, Q(r) creates a potential Q(r)/r at limiting radius r, hen
the self energy is

1
U= Jw47rr2dlr o (r) —Q(r)
o r
Once multiplied by the additional factor of two this expression coincides with (6).
Fourier transforms

In this book, as often in Physics literature, the fourier transforms are defined in an asymmetric way:

d" k
fx] = J Fr (K] e X 7t (K] = Jd"x% (k] e kX, (14.8)
2m"

This method is based on two well known facts about Fourier transforms :

d" k
JEEINSETS :J(Z 7K TRk T K] = 71 K] 73 ) (14.9)
7T

For real functions 7¢ [k]1=7t [-k]. f*gisthe convolution of two functions, i.e.

fxg[x] :Jd”yf [X-ylgly].

Direct application of (9) givesfor the integral (4):

dn k
AE - J 71k 710 (K] 75 (K] (14.10)
2"

By direct computation, or by taking the Fourier transforms of the equations

1 e M’
o= =489 (r); (-a o+ u?) = 476% (r);
r r
we have
4 5 e Hr 4 5
Finw (K] = —; F (k] =
k2 r k2 + 12
From the second of these relations follows
o e’ 8ru
Fle VK] = - — 5| —] k] =
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In our computation :
23 Z4
o=1{urst®= — Exp[-22Zr7; rp[k]zlaiz;
4 (k? + 4272

and

162 z8 1 2 .16° z8 4 1 5
AE = 47 | Kk — = JW dlszzrile:fz
2m?® (k2 +422)* K? (k2 azz)t o (x2 ) 8

The last integral can be computed by method of residues. This use of Fourier transforms may seem complicated but the reader must note that it
automatically transform a doubleintegral like (4) in asimpe integral,like the one just computed.

Problem 15

In a helium atom let us consider the electron - electron interaction as a small perturbation. Compute to lowest order the energy of the first excited S
state of helium atom. Discuss how the Pauli principle selects possible states.

® Solution
m Introduction

In this notebook we will use atomic units. Units for length and energy are

n? me* 2
ag = (Bohr radi us); Eg= — = — = 27.2114 eV (15.1)
me? n? ag
In these units the non relativistic Hamiltonian for Helium atom is

1 1 z z 1 1
H=-—-n - -0 - — = —+ ———— = Hy +

I (15.2)
2 2 r ra [r1-r2| [r1-r2]

Suffixes 1,2 refer to the electrons. r 1, r , are their position with respect to nucleus, r ; = |r 1 | etc. Z isthe nuclear charge, Z = 2 for helium otherwise
we will describeions of Berillium, Z=3, Boron, Z=4 etc.

In this problem we are considering electron-electron interaction as a perturbation. We do not expect good quantitative results as its order of magni-
tude, e? / agin usua units, is similar toother terms in the Hamiltonian, but the perturbative computations will give us some hints on the general
properties of the spectrum.

Quantum numbers

We are neglecting spin interacions, albeit as we will see spin enter in the determination of energies. Hamiltonian (2) is invariant under global
rotations, i.e. L and L, are conserved. L istotal angular momentum:

L :(1+ /2. (153)

Energy in general will depend on L, and, always neglecting spin and other effects (as Pauli principle) we expect at least a degeneracy 2L +1 for each
level. To know how levels are organized we need more dynamical information, thisis wy we use perturbation theory.

Hamiltonian Hyhas a much bigger symmetry, it is symmetric under independent rotations of first and second electron. Each rotation invariance imply
a degeneracy (2¢+1) then for Hywe have at least a degeneracy (2 /1 + 1) (2 7, + 1) . In effect we have more degeneracy as Hyis symmetric under
the exchange of the two electrons, then given a state with quantum numbers (a,b) (and a b) then the state (b,a) will have the same energy. Finally
Hois of coulomb type and the accidental degeneracy typical of hydrogen-like systems is at work, i.e. energies depend only on principal quantum
number and not on ¢, this will be a minor complication.

Hy isasum of independent hamiltonians then eigenstates and energies are written at once:

1 1
—+ — .

Dap (F1, T2) = Wa (r1) ¥ (r2); Eab=Ea+ B =- —
nZ nj

2

(15. 4)

Va, Ypareone electron statesin coulomb potential and a,b the relative quantum numbers, i.e. n, ¢, m.
Pauli principle

Taking into account the overall spin degeneracy, 4 spin states, and neglecting the accidental coulombic degeneracy, on the basis of (4) we have the
following list of levels. We write individual quantum numbers of the electrons to select the level, and write possible total angular momentum and spin
using the known rules for summing angular momenta:
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State deg. (L, S) (L, S) observed
(1s, 1s) 4 (0, 0), (0, 1) (0, 0) deg. 1
(1s, 2s)or (25, 1s)| 42-8 |20, 0), 20, 1) | (& 9891 1o ates
' ' - o ' (0, 1) deg.3
B (1, 0) deg.3
(1s, 2p)or (2p, 1s) |2x4x3=24|2x(1, 0), 2 (1, 1) (1, 1) deg. 9 12 states

We see that the observed states are half of the predicted ones, this is a consequence of Pauli principle, or in general of the antisymmetry of total wave
function. Each function of two variables can always be decomposed in a symmetric and one antisymmetric part: Spin Statistics theorem imply that
only antisymetric states are physical states, and this explain the halving of states. We want to stress some points:

@ Functions T, pand Ty, , aredifferent functions, as an example
Yrsra] Y2slr2] # ¥1slra] das(ri]

they are even orthogonal!. Thisiswy the factor 2 due to symmetry exchange 1< 2 appearsin the degeneracy.

@ Last column levels are those permitted by statistics, symmetry of spin function will force the symmetry of the corresponding orbital function, so to
a symmetric S=1 spin state will correspond an antisymmetric orbital function, while to anantisymmetric S=0 spin state will correspond a
symmetric orbital wave function.

O Statistics explain the total number of states, do not explain the splitting implicitely exposed in the last column. In effect it is safe to say that if two
level can split they will split, due to a pertubation. it is important that the reader appreciate that in this problem (and for a genera atom) the
perturbation is the electrostatic repulsion between electron, which has nothing to do with spin. Then while statistics (and hence spin) is responsible
for the halving of the states, their actual splitting is of electrostatic origin, then quite large on an atomic scale.

@ We have classified the final levels with (L,S) which are good quantum numbers of the whole Hamiltonian, not simply of Hy, then this is a good
classification, and could be changed only if we add some more termsto H.

m Energy of excited s - states

Helium states can be classified according to their total spin, S=0 states constitue the parahelium spectrum, S=1 the orthoHelium spectrum. S=0 and
S=1 are respectively antisymmetric and symmetric in spin. The opposite symmetry must be own by the orbital par of the wave function. We note that
symmetry can be read at lowest order in perturbation theory, being the perturbation symmetric, higher order corrections do not change symmetry
properties.

1s1s = 1 s?state
At lowest order in perturbation theory its wave function is necessarily symmetric, being the product of the same single orbital wave function:
Pis1s (F1, T2) = Y1s (F1) Yas (r2)

This means that Pauli principle imply S=0 for the spinpart, i.e. the ground state is a parahelum state.
1s2s state
Thisisthe first excited state. Spin statistics theorem imply

S=0 Pys2s (M1, r2) antisymetric

S=1 Dy 625 (M1, Fp) sSymmetric
At lowest order in perturbation theory symmetric and antisymmetric functions can be easily constructed from the two degenerate states
dis(ralves(rz] and ¥yos(ralivas(ral.

1
2
These two wave function, that will be denoted by ¥*and &S are orthogonal and do not mix under perturbation, i.e. coulomb interaction is diagonal in
thisbasis. We have:

P g2¢ = (U1slra] Yoslral # da2slri] ¥aslra2])

1
(Al —— |A) =
[ra-rz|
) 1 2 1 2
J(Wls[le — {Yasralt” - Ji%s[ﬁ]dfzs[le7{&15“2]&25“2]}
[r1-r2| [T1-T2]
1
(S| ——— IS) =
[r1-r2]
2 1 2 1 2
Jﬂlfls[le —— {2 [r2]t° + Jidfls[rl]dfzs[rl]}7“1/13“2]#/25“2]}
[r1-T2| [r1-T2]

For obvious reasons the first integral is named direct integral, and will be denoted by K, and the second exchange integral, and will be denoted by J. K
isvery similar to the integral met in ground state computation, J determines the splitting between parahelium and orthohelium. We write:
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1 1
(Al —— |A) =K-1J; (S| — ISy =K+ J. (15. 5)
[r1-T2| [r1-T2|

K, and J canbe easily computed on the basis built on hydrogenic functions

1 (2 - Zr)
U1s = Z322EXp[-Zt ]  Wos = z8/2 Exp[-Zr /2]; (15.6)
V4 Var 22
using multipole expansion, already seen in problem [14]:
1 @ 1 (r.\/
=) — [—] P, [Cos (v)]; (15.7)
‘rl_rZ‘ (:0r> r.
An easy computation gives
172 167
K= —: 3= _— (15.8)
81 729

Then, at first order in perturbation theory (we report also approximate experimental data):

z? 1 5 169
E[ls2s; S=0] = -— 1+7] + (K+J)y = -—2Z%+ Z=-2.036a.u.; exp: -2.14577 a. u.
2 4 8 729
72 1 5 137
E[1s2s; S=1] = -— 1+7] + (K-J)y = -—2Z%+ Z ~-2.124a.u.; exp: -2.17503a.u.
2 4 8 729
327
E[1s2s; S=0] - E[1s2s; S=1] = ~ 0.088a.u.; exp: 0.02926a.u.
729

We see that while ordering of levelsis correct, energy differences are badly reproduced.
m Hystorical remarks
It would be very difficult to overemphasize the imprtance of the problem of Helium atom in Quantum Mechanics.

@ The disagreement between theory and experiment for highly excited Helium states marked the end of old quantum theory. In the words of Born
[1], who carried the calculations with Heisenberg:

We may therefore conclude that the systematic application of the principles of the quantum theory .... gives resultsin agreement with experiment
only in those cases where the motion of a single electron is considered; it fails even in the tratment of the motion of two electronsin the helium
atom.

@ Intwo semina papers on helium atom [2] Heisenberg put forward the idea of the connection between spin and symmetry of the wave function,
idea almost simultaneously advanced by Dirac. The observation is that if one work on unperturbed functions, and without knowing about spin
statistics connection, one should treat electrostatic interaction as a perturbation on a a degenerate level. In the basis
Yis (M1l Y2s (2], das[r2] Y25 [11] thematrix willbe written as

K J
A= (5

and we know that eigenvalues are K + J, while eigenfunctions are symmetric and antisymmetric combinations. This structure agree with experimental
known helium spectrum, whose spin can be detected by interaction with a magnetic field. In the second paper Heisenberg elaborate a quite sophisti-
cated form of perturbation theory trying to explain in the new Quantum Mechanics what Old Quantum Theory was enable to explain.

@ The definitive word on the argument was given by Hylleraas [3], were a variational technique were developed and a spectacular agreement with
experimental datawas found. We will study later variational comptations.

The reader who want to go deeper in some of these aspectsis referred to the book of Bethe and Salpeter [4].
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Problem 16

Consider the helium atomin a generic (1s,nL) state. Interactions between electrons are taken into account by perturbation theory. As the unperturbed
Hamiltonian for excited states, take an asymmetric formwith potential Z/r for one electron and (Z-1)/r for the other.
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@® Solution

m Introduction

For highly excited states we expect that one electron is tightly bound to the necleus, while the other is subject substantially to a screened potential,
(Z-1)Ir. Levels must be approximated by hydrogenoid terms:

z2 (Z-1)2
E--— - — (16.1)
2 2n?

and the spectrum (frequency are given by the difference of energies) must be similar to hydrogen. Energy levels (1) will be affected by corrections
and it is usual to parametrize these corrections in the form of Rydberg corrections, or Rydberg defects

z2 (Z-1)2
E~-— - —
2 2(n+ 62

To make sense this formula the parameter ¢ must be independent on n, while a dependence on L can be present. This parametrization works quite well
for alkaline atoms, and for excited helium states. In helium we expect to defects, one for parahelium and another for orthoelium, and levels can be
parametrized as

z2 (Z-1)2 z2 (z-1)?
3SR S U — (16.2)
2 2(n + S - 6p)2 2 2(n + 6+ 6a)2

The first perturbative analysis of this problem within Quantum Mechanics has been given by Heisenberg in the papers quoted in problem [15]. To this
aim Heisenberg elaborated an unortodox form of perturbation theory, its simplest form will be reviewed below.

m The unsymmetrical perturbation theory

The idea is that in a given problem a priori one is free to choose what consider unperturbed hamiltonian and what consider perturbation, the only
computational requiriment (just to simplify our work) is that unperturbed Hamiltonian must be exactly soluble.

Suppose that in asystem A isa small parameter and we can split the Hamiltonian in two different ways

H=H® +AVy = HY + 2. (16. 3)

A in general will be contained also in zero order H, but the two Hamiltonian are equal for A=0. Suppose that we want to study a degenerate level,
E:® = E)” = Ey. Wewill have two different wave functions g and ¢y, which we can suppose orthogonal at least for 1=0, when the two unperturbed

hamiltonian are equal. This choice will be surely possible in a degenerate level. As our aim will be to handle the two decomposition onthe same
footing we will search for a first order correction to energy which reduces to a symmetric combination of the two eigenfunctions for A-0, i.e. our
eigenfunction will be of the form

1

W= ——
V2

(a + @p) + Ay, (16. 4)

(a and ¢y, satisfy the equations

(H® -Eo) va = 0;  (H” -Eo) ¢y =0. (16.5)
¥ will be the solution of the Schrodinger equation with a corrected eigenvalue:
(H-E)y = 0; E=-Eo+21E (16. 6)

Substituting eg.(4) and using (5), we have, at first order in A:

V2 (H-E) 41 + (Va0a +Vo o) - E1 (02 + @p) = 0. (16.7)
Asin usua perturbation theory we can now multiply at the left by zero order ¢, i.e. (pq + @p) and integrate. The first term, already at first order,
vanishes by the equations (5). At the same order ¢, and ¢y, are orthogonal and we have

1
E - ija © 0b) (Vawa + Vo op) - (16.8)

This is the correction we are looking forward. An identical deduction could be done for antisymmetric combinations, the plus signs in (8) would be
replaced by minus signs.

m Excited helium states

In the two electron problem of helium-like systems a quite general decomposition could be (we will use atomic units)

+

1 1 Z
H:—£A1—£A2+V[r1] + V[ra] + W W:(—*—V[r].}

Z 1
_7_\/[,'21] - —_— (16.9)
M

[r1-T2]
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With the aim of reproducing the hydrogen like levels (1) it is natural to make an asymmetric choice

z (Z-1) 1 1
Viri] = - —; V[ra2] =- ; > W= ——— — —, (16.10)
ri ra [ra-r2| 12

Thiswill be our a- choice, in the sense of eq.(3). A state (1s,nL) and the perturbation will be described by:

. z2 (Z-1)2 1 1
Ya= @o[r1] onumlral; E® = -— - ——— Va= ——— - —. (16.11)
2 2n? [ro-ra| r2

Asb - system we take the same system but with role of 1 and 2 exchanged
. z2 (Z-1)? 1 1
o= @olr2] Gnim(ral; E® = -— - —— Vp= ———— — —. (16.12)
2 2n2 [r1-rz2| ra

The two states have the same unperturbed energy. The two limiting states of opposite simmetry will be

1 1
Ve = —— (batdp) = —— (@olra1] enmlr2] £0o[r2] @amlra]). (16.13)
V2 V2
The correction to energy levelswill be given by (8)
. 1 1 1 1
E; = 7Jwr{(777 @o[r1] @nim(ra] + [7,f WO[Fz]wan[rlJ}. (16. 14)
2 [ r1-ra| ro [ry-ro| r

We have to add for completeness that eigenfunctions ¢g and ¢, are not really orthogonal, the first referring to a nucleus with charge Z,the second to
anucleus with charge Z-1, but they are almost orthogonal and this small difference will be neglected in the following.. i.e. we use

JQJO[U} Onm[r1] = 0; J%[rz] ¢nLm[r2] = 0,
1 2

inwriting (14). Equation (14) can then be expicitated as

E; =
1 1 1 1 1
*J @olra] onimlr2] [7 - — | @ [ri1] ¢nimlr2] = @o[r2] onimlr1] [7 - ©o[r1] enmlra2] +
222 [r1-T2 | 2 [r1-T2| T2
1 1 1 1
®o[r1] GnLmlr2] [7— — | @o[rz2] enimlr1] + wo[r2] @nLmlril [7 - —|@olr2] enimlra] = K+ 1J
[ri-T2 | I1 [ri-T2 | I1
where we have used the facts that integrals are two by two equals, by the exchange 1 < 2, and
5 ) 1 1 1
K = J foo[ra] 1% {@nmlr2]t [7 - —]; J = J @o[r1] Gnimlr1] ————— wo[r2] enmlr2] (16.15)
1,2 [ri-ra| 132 1,2 [r1-ra|
In writing the exchange integral Jwe have used orthogonality.
The energy levels will be given by
z2 (Z-1)?
E=-—- — "~ +K=zJ. (16.16)
2 2n?
integrals
The angular part of the direct integral canbe easily performed by using multipole expansion
© 1 (r.
Z*[*] P, [Cos (¥) ]; (16.17)
‘ rp-rp ‘ =0 r. >
and the identity relating the relative angle y with polar angle between the two directions 1 and 2:
47
PelCos[¥]) = — ZYkm ] Yiml@2]. (16. 18)
+

The angular part of the first integral, the only non trivial, gives,for a generic term of multipoles expansion

4

k
D Ykml(91] Y921

k+1

JdQl A2 Y30 Yiml[22] Yim[Q2]



Problems_chap9.nb | 31

Theintegral in @; imply that only k=0 term gives a contribution and the subsequent integral in Q,is one. We have then

1 1
K= Jdrlerr%rgRls[Z; r1)?R(Z-1; r2)? [ — - —]

r- ra (16.19)

deldfz r2r3Ris(Z r1)?RalZ-1; r21%f [ry, Tal;

The kernel vanishesforr, < r

1 1
fry, ra] :(—— — | forry>ry fry, ro] =0forrys<rs.
I ro
Ther jintegral is easily computed
1 1 1
Fdrlr%Rls[Z; ri12fry, ra] = Fdrlr%Rls[Z; ril? [— ——] = - [Z + —] EXp[-2Zr3]
o "2 r I ra

and for K we have

1
K= —Fdrzrg R [Z-1; rp]? (z + —) EXp[-2Zr,].
0 ra

Theintegral can be evidently computed for fixed values of nand L, but it is also possible to extract the asymptotic behaviour for large n. The radial
wave functions for Z nuclear charge are given by (we use Mathematica notation)

2232 | (n-L-1)! (2Zr\" = 2Zr
RN, L, r] = [ e LaguerreL[n—L—l, 2L + 1,
n2 (n+L)! n n
To perform the large n limit we will use the folowing asymptotic behaviour of Laguerre polynomials, see notebook [*]:
X
L[n, o 7] N no‘x’“/ZJa[Z vX_} (16. 20)
n N- o
Using Stirling approximation for the factorials this gives the following asymptotic form for hydrogen wave functions:
V2 ZBesseld[1+2L, 2 V21 Z |
Ras [N, L, 1] = (16.21)

ndr

Inserting in (19) we have for the asymptotic form of K

(Z-1)? 1 2 2
Kzfifdxxz Z+ - Expr2zx) - [Besse|3[1+2|_, 2 2% (z-1) H .
n3 o X X
As
(z-1)? (z-1)2  (z-1)?
- ~ - + S
2 (n+6)2 2 n? n3

theintegral isjust Rydberg defect, 5. in the notation (2). Thefirst few values asafunction of L are

6c[L] = {0.1684, 0.01045, 0.000178, ... }.
An anal ogous computation can be done for exchange integral. After angular integrations we have

2
J = fr%*zdrles[z, r2] R [Z-1, rz]fri“drlRls[z, ri] R[Z-1, rq] (16.22)
2L+1 Jo I

The asymptotic behaviour is again estimated with

(z-1)2 4 1
J- 77 Fr%*zdrles[z, rz]iJ[1+2L,2 2r2(271)]
n3 2L+1 Jo A/rz

1 (Z-1)2
rriL*ldrlRls[Z, ri] ——Jd[1+2L, 2+/2r1 (Z-1) }: N
ra
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Thefirst few valuesfor 65 [L ] are (for Z = 2):

SalLl] = {0.383369, 0.035142, 0.000649735)

Sals quite in agreement with experimental data, while 5. require second order corrections. The reader can find more details on this argument in the

book of Bethe and Salpeter [1], which we have followed quite closely, we have only a small numerical discrepancy on the first value of &4 for
helium. In the quoted book the shifts are given in form of infinite series.

® References

[1] H.A. Bethe, E.E. Salpeter: Quantum Mechanics of One-And Two-Electron Atoms, Plenum Publishing Corporation; (1977)

Problem 17

An excited level of an alkaline atom can be described by the wavefunction of the outermost electron in a screened Coulomb potential due to the
nucleus and the other electrons (with the net charge |€]) corrected by a small central perturbation V[r]. Show that in this approximation the spectrum
of the optical electron can be described by a corrected Rydberg-type formula.

@® Solution
The spectrum of the radiating (external) electron of an alkaline metal can be described quite accurately by an hydrogen like spectrum:

ngf
En-- (17.1)
2 (n+6)2

The parameter § is called a Rydberg correction, or a Rydberg defect. The meaning of this parametrization is obviously that ¢ does not depend on the
principal quantum number n, while it can depends on orbital momentum L. This parametrization works better for large values of n.

A peripheral electron is submitted, approximatively, to a screened columb potential, as electric field of the nucleus is almost compensated by tightly
bound electrons. The ideathen is to describe the motion of this electron with a Schrédinger equation for a potential
Zett

Vir] =- + Vi [r] (17.2)
r

where Viisasmall perturbation. The effect of V;isdescribed in first order perturbation theory by

6B, = (n, L|Vi|n, L)= Jdrrzvl[r]RnL[r}2

For large n the wave function of a coulombic system has a simple limit form, see notebook [*],

14201, 2 +/2Zet 1 ]

3/2
223/ Bessel J

Ras[n, L, r]= 22
n A2 Zeff r
then
SE, Zat ar 12V (r] 23 2z ]2 2t 5 (17.3)
=—— |drr r] — . r = .
n = J 1[]r 2141 ef f e L
The integral in previous formulais exactly the (perturbative) Rydberg correction, in effect for small 6/n <« 1
Z% Zg 6 Zg Z%4
E, = - ~ - - —| = - +
2 (n+6)2 2 n? n 2 n? n3

Asindicated in our formulathe parameter can depend on L.

Problem 18

A free particle moves inside a box of lengths (a,b,c). Discuss how the energy levels change upon varying a,b,c. Show that for isotropic changes, i.e.
changes of length unit, the expression for the mean energy of a stationary state reduces to the equation of state for a nonrelativistic perfect gas.

® Solution

The Hamiltonian for afree particle is the sum of three independent Hamiltonians
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52 8% &2

—
ox? oy? oaz?

h2
H=- -
2m

On athree dimensional box of lengths (a,b,c) also the boundary conditions are written as separated constraints:
(0, y, z] =¥la, y, z] =0; ¥[x, 0, z] =y¢[x, b, 2] = 0; ¥[x, y, 0] =¢[x, ¥y, ¢] = 0;

then the problem is completely separable. Energy eigenvalues are given by

n2n® (n} n3 n3
Enynyng = — + — + — (18.1)
2m |a® b? ¢?
For asmall change in the parameters
a-a(l+6,); b- b (1+6p); c->c (1+60);
we have
n? 72 n? n3 ng
S Enynyng = -2 Sa — +6p — + 6 — (18.2)
2m a? b2 c?
A change of scale would correspond to
ba = Op =6¢ = 65,
and
n?2n%2 (n2  n3 nj
S6E=-206, — + —+ — | = =26, E
2m |a? 2 2
Under this transformation the volume of the box changes as (at first order)
6V =abc (1+63) (L+6p) (L+6.) ~abec (1+63+6p+6:) - 36,abec =36, V.
The energy variation can be written as
2 E 6E 2 E
SE=-— -6V, — = - — . (18.3)
3V oV 3V

Thisisthe state equation for a perfect gas as by definition - 6E/6V isthe pressure, p, and for a perfect gas E = 3/2kT N, then

Nk T
p=—.
\%

Equation (3) is adirect consequence of scale transformation properties of the model. In a scale transformation x —» (1 + &;) X the laplacian changes
as

A (L+6) 20 =4 - 26,0
Asthe Hamiltonian is proportional to the laplacian, at first order in perturbation theory the levels are changed by

SE = —26, E

The volume changes as 6V = 3 5,V and expressing &6,as 6V/(3 V), equation (3) follows.

Problem 19

A free particle moves inside a spherical well of radius R. Discuss how the energy levels change if the sphere is deformed to an ellipsoid of axes
(b,ba),b< a

Generalize the result to an arbitrary deformation.

@® Solution

m Introduction
This model has been proposed by Migdal to describe levels of deformed nuclei.

A rotation (oblate) ellipsoid is described by the surface
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—+ —+ — -1=0 (19.1)

We suppose that this ellipsoid is obtained by a small deformation of a sphere of radius R, without changing the volume., The axes and the volume are
given by

4 4
a=R(1+6a); b=R(1-6p); V= —nbPa= —naR (1+6a- 26p)
3 3

as the volume must be unchanged we have 6,=2 &p.
We have to solve the free particle Schrodinger equation but with boundary conditions on the surface S givenby equation (1):

h2
-— Ay = By YixeS] = 0. (19.2)
2m

The equation is simple, while the boundary conditions are a small deformation with respect usual boundary condition on a sphere. We know how to
handle small perturbation in an Hamiltonian (perturbation theory), the idea is to trade deformations in boundary conditions for a deformation in the
Hamiltonian. Here is very simple, if we change variables with

X = (1+6x) &1 Y = (L+8y) &1 2 = (1+6;) & (19.3)

we see that if £ variableslie on a sphere of radius R, then (x,y,z) variableslie on an ellipsoid:
X2 y2 ZZ
§%+§%+§§:R2 = + + =1.
R(1+60% R (L+sy)? R (1+6)°

Under the transformation (3), at first order

n? 52 82 82 n? 52 B2 8?2
H= - — | 8 - 26 - 26— - 26, H[E] + V, V= — |6 + 8y + 6, )
2m o0&} 0&3 03 m o0&t I3 0&3

The "unperturbed" problem described by Hyis a free particle in a spherical well, and we know eigenvalues and eigenfunctions for this problem. The
eigenvalues of H are simply computed by first order perturbation theory with V.

In our simple case

6x =8y = ~8b; 67 =0ba= 2 6p. (19. 4)
and
n? B2 52 52 n? 52
V=—06|-—- +2 —|=-—56p|hsg -3 —|. (19.5)
m ogf o0& 063 m 0%

m Matrix elements

The unperturbed Hamiltonian has eigenvalues and eigenfunctions given by

72 k2
Ei,L = 2—; Yk, Lmlf €, 0] = Ra[r] Yiml6, @]; (19.6)
m

Where wave number Kk is fixed by imposing zero boundary conditions on a sphere of radius R to the solution of radial Schrodinger equation

. 2 L (L+1)
RkL+—RkL+[k2*72]RkL:O- (19.7)
r r

The computation of matrix elements of V in equation (5) is an exercise on Wigner Eckart theorem. In effect V is the zz component of a traceless

symmetric tensor, like a quadrupole
h2 @2

Qj = - —5p A,géij -3
m

0&i O¢j
By Wigner Eckart theorem

2
<n, L,M‘QJ ‘n, L, M>=C<n, L,M‘L, LJ+LJ Li_fl—zéij ‘n, L, M>
3

Angular momentum eigentates |L,m) diagonalize our perturbation and we have
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2
(n, L, M| Qz |n, L, M :c[zlva — L (L+1)
3

2 2
L, L| Qs|n L, L) :C[ZLZ— —L(L+l)]:C—L(2L—1)
3 3

3Q 1
(n, L, M| Qs |n, L M = 7[1\/& —L(L+1)
L(2L-1) 3

(19. 8)

which determine how a level is splitted under the perturbation. Q is the marix element on the highest component of the multiplet, M=L. We note that
states with + M are degenerate, and this could be predicted by invariance under y—-y of the perturbation. This transformation change sign to third
component on angular momentum, see the analogous situation in Stark effect, problem [8].

To compute the effective splitting we have to compute Q. A simple computation, carried below, shows that for alevel with unperturbed energy E:
2L 4

= 6E =36, E
L+3 (2L+3) (2L -1)

Q=-26,E

1
sz—L(L+1)]. (19.9)
3

Computation of the matrix element

Thewave functionis ¥=R[r] Y. [6, «](wecdl x,y,z the coordinates to clarify the manipulations). Integrating by parts:

Q n2 52 ayr oy h? n?
— = - — zj/*A—3—LI/:—kZ—S—J——:—kZ—S—S (19. 10)
Sb m az2 8z 9z m
The spherical harmonic Y, | in cartesian coordinates is
(x+1y)"
Y. =C ;
rL
then we can write
oz x+iy)tz  z
—=-RY,_, -RLC—m—«w— — = — [R' - —R]Y._L
oz r rL+l r r r

The integral to compute is then transformed in

L 2
S = Jd3x00s[e]2wm2 [R' - fR] .

The radial integral integratin by parts (2 R R = d/dr (R?) ) can be transformed as

Jdr r

Multiplying by r 2 Rand integrating the radial Schrodinger equation

L
2_2_RR + —RZ
r

Jdr r2R'2+LR2+L2R2):Jdr (rzR'2+L(L+1)R2 (19.11)

1 o e} L (L+1)
— —r? _R- — " R=-kK*R
rz or ar r2

it follows
Jdr (rZR'2+ L (L+1) RZ) = kZJdr r2 R = k2.
The last integral being just the norm of R. Then

S = k? JdQCOS[e]Z 1Yo t2.
The simplest way to compute the angular integral isto write the explicit form of the spherical armonic
(-1t efte A/ (2L+1)

Y (6, o] = Sin(e]

2L+1 /_7T Lt

L

it follows
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1 (2L+1): aL k2
S = k? JSi n[e] de Cos [6]2 - Sin[e]?*t= .
22L+1 L2 2L+3
Substituting in (10)
n? n? k2 E
Q=06p | —k* -3 — =5b2E(1— ]:45b ,
m m2L+3 2L+3 2L+3

the value used in previous section. An alternative way to perform angular integral is to express Cos [6]2in terms of spherical harmonics and use
integrals for three spherical harmonics, proportional to Clebsch-Gordan coefficients.

m Generalization

It is clear that previous calculation can be generalized to an arbitrary change of variables. The idea is to make a transformation x — £ in such a way
that in ¢ variables the surface is easily handled, as a sphere. The boundary Sxwill go, in general, in the bondary S:. Under an infinitesimal
transformation

H(x[E]] = H[E] + 6H  (i.e. H-> H+ 6H) (19.12)
Let ¢[¢] the zero order eigenfunctionsin & variables, i.e.
HIET 0[€] = B 0[], wl&e Sg] = 0; (19.13)
the first order eigenvalues are

Eo+ OF = Eo+ Jd§w*[§] SHo£]. (19.14)

A typical caseis given by achange of the laplacian, let us consider (all formulas are valid at first order in the small parameter (functions) f ' ):

. . ) . ) ) ogl ofl
Xo=g e flign X o fx) sy - — (19.15)
ox! a&
It is easy to show that
82 ofl 5] ofky o ofl 82 o (ofk &
My = —————= |&i - ——| — |0ki - —| —— Fhe-—— ———— - —— | —— —— | =
OXi OXi o8 ) ad o8 | agk o0& od oagd  og log ocgk
ofl 82 .0
be-2 — ——— - Afl) —
oc oad ag aé

from which ¢H follows.
Equation (14) can be transformed in such away to enlight some subtle points. Consider the eigenvalues problem in original x variables
Hy[x] = Ey[X]

Once we know E, thisis a differential identity, satisfied for every value of x, and independently of the name we use for the variable, of course. With
the transformation (15)

YIX[E1] =¥lE] + tX0ku = ¥ig] + o
Using (12) we have, at first order:
(H[E] -B) ¥[&] + (6HY + H[E] &Y - Edy) =0
Thefirst termisidentically zero, because as aready stressed a differential relation do not depend on th ename of variables, ad we have
SHy = (E - H[E]) oY

the crucia point is that all quantitiesin this relation have already a factor f exposed, so in other factors we can consider order zero quantities. At zero
order E = Egand 6y = 6¢, where ¢ is the zero order solution (13). After multiplication by ¢* and integrating we obtain

Jdlw sHo - oF - Jdléw* (Eo - HIE]) G0 (19. 16)

Theright hand side is not zero because H is self adjoint on functions which are zero on S but in general ¢ do not belongs to this space, i.e. d¢  on
Sc. Taking the explicit form of the laplacian for H we have (assume ¢ real for simplicity, and integrate by parts

J(pAéw = J(pAéw = —JV@V&D = -JV(V@ op) + J (&) 0.
3 3 3 3 3

Last term cancel theterm i n Epin (16) while the first can be transformed in a surface integral by use of Gauss theorem, leaving us with:
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n? n? _
SE = — | n-(60ve) = — | n (f! (8 0) (Gke)) (19.17)
2mJs: 2mJs:
Thisformula clarify these issues

@ Thereisnot changein eigenvaluesif the variation vanishes on boundaries. Thisis essential as a change of variablesin the interior of the domain is
just arelabeling of the points, i.e. aunitary transformation, and eigenvalues do not change for unitary transformations.

@ Eigenvaluesin particular do not change in infinite domain (if f ' functions decrease toward zero at infinity). Thisisaminimal rewuirement, as we
clearly change variables at our will in the Schrédinger equation in RS,

@ Eigenvaues do change if we modify the boundary and change is do entirely to behaviour of ¢ (of its derivatives) at the boundaries. Thisis required
also by continuity because we can always imagine to superimpose to our transfomation another one which affects only the interior bringing back x
toitsorigina vaue.

Equation (17) is the generlization of analogous relations that we will find in some problems of notebook [*], where the motion of a free particle
between moving walls will be considered.

The reader can check the equation (17) with the results of problem [18].

Problem 20

Compute the cross section for photoelectric effect on a hydrogen atom in the ground state, assuming k ag « 1, where k is the wave number of the
photon. Approximate the wave function of the outgoing electron with a plane wave and discuss the validity of the approximations used.

@ Solution

In the process a light beam of intensity | and frequency w induce a transition from a bound state, i, and a continuum state, f, of an electron. The
quantum numbers of the final state are the momentum p of the particle. The cross section for the process is defined by

dW= Ndo; (20.1)
N isthe photon flux, i.e. the number of photons per second and per unit surface impinging the atom, dW is the probability of transition per unit time.

We will treat the electromagnetic field as a classical field:

A=Aee' +c.c. (20.2)
e isthe polarization vector. Fermi golden rule gives the probability of the transition per unit time
271 e?
h onPc?

i, f, areinitial and fina state of the electron, 7w the photon energy. The strength of the vector potential Agis related to the intensity of incident light
by (see text)

dw =

[ Ao |21 (f|et* e-pli)2ds o6 (B -E -hw). (20.3)

2rnc 2rnc
= I = nwN. (20. 4)
w2 w2
The cross section is, from (1)
4 572 g2 )
do = [ (fle*"e-p|i)t?ds o6 (B -E -hw). (20.5)
nmcuw

For long wavelengths, k ag « 1 we can approximate Exp[i k r ] ~ 1 (dipole approximation). This approximation works in the X rays regime. For
energies ~ KeV we can approximate the fina electron state by a plane wave, a more accurate computations would require the Coulomb wave
functions for the emitted electron. In this approximation

za—3/2
Yir] = e Y= etPr/hy a= Bohrradius. (20. 6)

Varn

The matrix element is (in dipole approximation)

n .
Vi = Jdl3r Upirle —vins[r] = JdlSr in(ve'P') euss = p~eJJd13r e Pl s =
i

a3/2 8r/a 8 rad/?
- P NES p 2 1 : Pre T
()~ %) ()" 1)

a2

We used the Fourier transform
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d e*’ 8 7 u
FleH'] = -— ] =
dut r (K2 + 12)
The phase for afree particleis
dép p?dpde mpdEdQ
de; = = = X
2rn® (2nn)? (2nn)?
Integration of the ¢ function fix the energy
p? e? p? a? 2ma (w - wy) a2 w
E= —=hw+E=h"hw- — =h (v - wy) = = = — -1
2m 2a A2 A2 wo
where
e? n?
Ei = - — = - hwy = energy ground state; a = —— = Bohrradius.
2a me?
Substitution in (3) gives
32¢e? (ap/n)? wg 772 wo \3/2
do = | n-e|?do = 64aa? | — [17— | n- e|?da. (20.7)
muc ((@ap/m?+1)’ w w
n isthe direction of the outgoing electron. a = e2/ (h c) isthefine structure constant. Using
1 1
— |deni nj = —&;; (20.8)
4 5 3
thetotal cross sectionis
4 7 wo \7/2 wo | 3/2
64 — aa’ | — [17 — (20.9)
3 w w
The angular dependence for a polarized light beam can be studied by writing
3
do=o0—1] n-e|?da (20.10)
4 5

Let z axis be along the beam direction. n = (Sin[#]Cog¢], Sin[A]Sin[¢], Cog[6]) the direction of the outgoing electron. For a polarization along x axis:

3
do = 0 — Sin[e]? Cos [¢]? da. (20.11)
4

Approximations

We considered the final electron as a free particle, this is correct if its kinetic energy is much higher than Coulomb interaction with nucleus, i.e. for
pa/h » 1ofw/we> 1.A moreaccurate computation would require exact Coulombic functions for the final state, we quote the result

wo 4 e—AxArCCOt [x]

w

4
64 — aa’2n
3

, X =nh/ap. (20.12)

1- Exp[-27nx]

A comparison of the resultsis given below, with og = 64 o a? 4 7/ 3:
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0.01

0.001

104

105

L L L L L h
8 10 =

We see that at high energy (x—0) the two result match while near threshold (x—oo) the cross sections are different.

Problem 21

Write explicitly the form of the Hamiltonian for matter - radiation interaction taking into account the dipole, quadrupole and magnetic dipole

interactions. Discuss the selection rules for each case.

® Solution

Let |i)and | f )theinitial and final states of our system. We will consider an atom in the approximation of infinite nuclear mass, then these states

depends only on electrons coordinates.

To fix our ideas we will consider the absorption process. In the text it has been shown that the relevant part of electromagnetic interaction for this

processis
_ ikr-iwt. B B - B _ :
A=MNee oW o= = Wi - W
h

e isthe polarization vector while the field strength Agisrelated to theintensity | of light beam by

2rnc

A= — 1.
w2

In the Coulomb gauge € - k = 0 and electric and magnetic field are given by

1 6A w ‘ ) ‘ .
E:—*f:ijoeelkr’““; B:V/\A:AojkAeelkrflw‘_
c ot C

The multipole expansion is an expansion in powers of (k r). We know that the low orders in this expansion are given by

1
Ho=-dE-wB- QaFf.

Fields are computed at r=0, d, 1, Q j are respectively the electric dipole, the magnetic dipole and the quadrupol e tensor

e
d=>eax®; = (lavgSa); Q5= ) e 3% %™ - (x@)2e ).
a 2 2mc

a

The sum runs on the electrons. The matrix elements of the interaction take the form

w ) w ) 1 w2 )
Hs:fliAoE<fIdIl>e: Hn= fJ'leE<quII><nA6>; l-b:ng[g) (F1Qj i) (mig).

n = k/|k| is the direction of the light beam. We used k = |k|=w/c . The reader must note that in this approximation w ~ wsj .
m Selection rules
Selection rules follow from parity conservation and Wigner Eckart theorem. Let us consider each term separately.

Electric dipole
1. Pf = - P;; Pistheparity
2. For al matrix elements J; =J;i, Ji = 1; 0— Oforbidden.

(21.1)

(21.2)

(21.3)

(21. 4)

(21.5)

(21.6)
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Neglecting spin orbit interactions and noticing that the electric dipole acts only on orbital variablesL; = L;, L; + 1; 0— Oforbidden.
Explicitly the only matrix elements different from 0 are
D,=(J, J; | dz |J, Jzywith (J; =Jz); D. =<3, J;| d.|J, Jz); with(J; =J; +1).
Magnetic dipole
1. Pt = Pi; Pistheparity
2. For al matrix elements J; =J;, J; =+ 1; 0— Oforbidden.

Explicitly the only matrix elements different from 0 are
M= (3% 3, | e |3, Jpwith (3, =3, )5 M = (3% 35| wa |3, I with (35 = 3, ¢ 1).

Electric quadupole

1. Pr = P;; Pistheparity

2. For al matrix elements Js =J;, J; =+ 1,J;+2; 0- Oforbidden.
m Hamiltonian

It can be useful to check the above expansion starting with the canonical form of the Hamiltonian

2 e

H= — |p- —Al +ea-g S.B. (21.7)

2m c

"

2mc
In Coulomb gauge we can take ®=0 for the radiation Hamiltonian. A isgiven by (1).

Thefirst order in k gives for matrix elements of the interaction
e .
-— A (f je-pi).
mc

We used the gauge condition V-A = 0towrite A- p + p- A =2 A- p. Using the equations of motion up to the first order in A:

_ dr i ) (B -&) . .
<f\p\l}:m<f‘E‘|>:mg<f\[H,r]\l}:ij<f|r\|>:jmw“ Epr i,

Using w = wt; onerecovers (6).
Thefirst order ink for A is

1 1
Ai(l)=A06i (]Lk] Xj) =i AO[E (Ei k] +€j k,) + E <6i kJ - €j k|>

X . (21.8)

Thefirst term gives, using e’k =0,

e 1

1Ay — (€~k)5ij
2

W N

<f‘pin+iji|i>.

Ho= - €j kj+€j ki -

2mc
Using again equations of motion and w = w¢; we have
1 ) 1 d ) )
—{f|pixj+ppxi i) = —<f — (xi x;) ‘|>:jw<f | (xixj) [i)
m m dt

and with some easy algebraic manipulations:

ew 2 )
Fb:i €j kj+€j Ki ——(e-k)éij]<f\<xi Xj)||>:
4c 3
ew 2 2
— Ag |€i kj+6j Ki 7—(€~k)5ij <f‘Xi Xj + Xj Xif—Xzéij ‘I>:
8c 3 3
ew

2
— Ag € kj <f ‘Xi Xj + Xj Xj - 7X26ij ‘I>
3

which match (6).

The antisymmetric termin (8) gives

e e e
1 Ao <€i kj - €j ki ) Xj pPi = - 1 Ao €j kj (Xj Pi - X pj ) = -
2mc 2mc 2mc

1Ay (e-pk-x -e-xk-p).
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Using the identity
€ias Eiuv = Ooau Opv — Opu Oav s
the product can be written as
(e-pk-Xx —e-xk-p)=€eak - (pax) = kae-L.
The formal manipulations are allowed as only x and p commuting components are involved.

Theinteraction matrix element takes the form

e
-1 Ay kae-L.
2mc
The term proportional to the spinis
e
-1 gA kae-S.
2mc

Their sum reproduces (6).

Problem 22

An atomic systemis subjected to an external oscillating electric field. Compute the induced dipole. (Dispersion law).

® Solution
Let

1
E(t] = EpCos[wt] = —Ep (e“" + e'¥'), (22.1)
2

the external electric field. We want to compute the mean value of the dipole operator at first order in perturbation theory on a stationary state
perturbed with (1).

At zero order parity conservation imply
(G Jdjiy=0.

Let us work in the interaction representation. At first order in perturbation theory the evolution of the initial state of the system, |i ), has a
correction (see text)

L™y = )laitl] ko,
k

where

1 ei (wgi ~w) t _ 1 ei (Wi +w) t _ 1 1
alt] = — |Fy ———— ¢ Py ——— |; F-_—d-E. (22.2)
h Wkj — W wki + W 2

The mean value of the dipole operator at first order is
oft] = (i [d ™) s (u® di (i) = D ((d)cart] s aprtd (d) ) (22.3)
K
In interaction representation
(di);, = e “¥ dik= e " dik. (22. 4)

Steady behavior of D

Let us consider the terms time dependent in (2), i.e. let us forget for the moment the -1 in the numerators. The exponentia in wy; in (4) cancels the
corresponding term in (2) and we have for D :

Goldi [ ky Ckfd i
e

1 Goldi k) Ck[dp iy ,
Dlt] = — Ey ot ot
2h Wi — W Wki + W
. . . . (22.5)
1 (i ld k) Ckfdifio (il [ k) Ckpdifio
—_— on e tot etvt] = Qi j Ej [t1;
2h Wi — W Wki + W
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with

Gopdi [ ky Ck[dj|io (i |dy [ k) Ck|di|iy
N }

1
dij = —
h Wi - W Wki + W

(22.6)

aij isthe polarization tensor and (5) describes the induce time dependent dipole of the system. The form (6) is the dispersion law, due the well
known relation between polarization and refractive index. Formula (6) is clearly inconsistent at resonance frequencies. We will see in chap.(13) that
near aresonance the effective evolution for a state is described by the substitution

i
Be » Bk - — Ay (22.7)
2
where y is the line-width. Assuming for definitenessthat | i )is the fundamental state, with y; = 0, our formulas change with wyij —» wki - 1y, /2.
The cancellation of time dependence in the exponentials between ay factors and d' matrix elements is aways at work and the polarization tensor
becomes

1

ajj = —

+
. Yk L Yk
wei —w - 1o Wki +w- 1 —

(22.8)

Godi [k Ck[dp [Py (i djk><kdii>]

2

This line-width effect do not cancel in the factors -1 in the numerators of (2) and this is why these factors do not contribute to the steady behavior of
induced dipole. The approximation woks for timest> 1/y, t> 1/w, otherwise the transient terms must be taken into account.

Asw — 0(8) reduces to usual static polarizability.
Dispersion and resonances

Let us consider for simplicity a state invariant under rotations. We can write

11 [dlky(k|d]i) G jdiky (kjdjiy
aij = adij; a=— — + . (22.9)
3 h u)kifouflly—k wki+w—1'1y—k
2 2
Near a resonance
11 G |djkyck|[d]i)
o= — — ;
. LYk
3 n Wi -w - 1
and we have the typical dispersive structure
1 . ) Wki — W 1 ) ) Yk /2
Refa] = — | ¢i[d[k)|® ———— Ima]=—1] @ |d|k)[® ————
3n (wki - w) 2+ sz 3n (wki - w)2+ ka

These properties are related to refraction index n by

N =e=1+4npa;

where p isthe number of particle per unit volume.

Problem 23

Consider the electron - electron interactions as a small perturbation in a helium atom. The unperturbed Hamiltonian Hy describes two independent
electronsin a Coulombic potential. Write at zeroth order in the perturbation the ionization energy of the system. Let us suppose that the heliumisin a

state 2 s? (both electrons in 2s level). Show that the electron-electron interactions can induce a decay of the system and write the probability per unit
time of this process (autoionization).

@® Solution

In this problem we will use atomic units m=1, e=1, 7=1.

Neglecting the electron-electron interaction the ground state of helium atom has an energy

The continuum spectrum begin when the energy of one of the electrons become positive, then the ionization limit is

1
E. = -— 7%
2
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Let us now consider in this approximation the 2 s?state of the helium atom. Its energy is

This bound state is embedded in the continuum spectrum and switching on the electrostatic electron-electron interaction will give rise to a level
disintegration, or in physical terms

He[2s?] - He*[1s] + e .

We want to compute the width for this processin perturbation theory. The unperturbed Hamiltonian is

p? p3 Ze?  ze?
= — — - — - —;

2m 2m ry ro

the perturbation being
e2
H = + .
[T1-T2|
Theinitia state wave functionis
T = Yos(ri] v2slrz] | S). (23.1)

| Sy isthe singlet spin state, ¥, sthe hydrogenoid wave function. The interaction commutes with spin, then also the final stateisasinglet

1
Uf = —— (Uas[ral ¥ lra2] + daslrz2] wlral) | S). (23.2)
V2

The singlet spin state is antisymmetric, then Pauli principle imply a symmetric two-electron orbital wave function. y is the coulombic wave function
for the continuum spectrum. With the usual normalization for single particle wave functions

e | v = (2m°% 8 (k-k),
the states (2) are normalized with
(zk] [ 2[k']y = (2m)3&% (k-k').

The Fermi golden rule gives for the transition probability per unit time (in atomic units):

1 ) d® k k2
awW=2r| (3| —— | T ) | 6 |Epgr - Eis - —| =
[T1-T2 | 2m?® 2 (23.3)
1 , d
= 1 (%] — @) |"——da
[r1-T2] 4 7
We have performed the integral over k and used
q=+/2 (B2 - Ers) .
The matrix element can be written as
1 2 s s 1
A= (%] —| g ) = 7Jd radroyns(ra) Yas(ri] ———— ¢ [q][r2] ¥2s(ra2] . (23.4)
[ra-rz| V2 [ra-rz|
We will approximate continuum states by plane waves
2 5 s 1 ‘
A= Jd ridroyns(ra] ves(ra] —————e 9" [ra] yas(ra] . (23.5)
2o | ri-ra|
The integrals can be easily computed with Fourier transforms. From
2 1 1
1//15: 23/2 ‘EfZI'; wZS _ 23/2 (2—ZI’) efZI’/Z;
NI Varx 242
z°/? ddk 1
A=+/2 J Fic[e32r/2 (Z—Zr)}’/”k{e’iqx(2—ZX)e’ZX/2*7
32 7T3/2 (27_()3 ‘X‘

F stands for Fourier transform, and * denotes convolution product. Using the elementary results
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8 71 u d 87T(3u2—k2) 1 4
Fle*'] = ; Flret'] =- —Flet] = ; ﬂ ] = —
<k2+u2> du (k2+u2>3 [ x| k2
one has
32 1Z K2 _ 4nZ (22 -4 (k+q)?)
File®?2(2-2r)] = — Fi[e 9% (2-Zx) e?*?] = .
2 2
(k2+(¥) ) ((k+q)2+(§)
and
3k 1 k2 (22 -4 (k+q)?)

A = 16 /2 7T3/2 Zl3/2 d o -
7 2\3 z
5 =

2 1 Z2-4 (k?+9?+2kqCos[o])
4 | — 7¥%2 | k2dk Sin[e] do 5 ;-
d (k2+(32i)2) (k2+q2+2quos[e]+(§)2)

2 K2 128 (-16 (k2 - q2)° + 2¢)
16 | — ZSFd]k . S =0.075.
7 0 (kz+(32_2)2 (16 (k2_q2)2+8(k2+q2)22+z4)

From (3)

q
W=| A|2—- =2.510%a.u. = 0.07eV.
7T

More accurate computations [1], using variational principle, give W~ 4 - 1072 au. , of the same order of magnitude.
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