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Summary. — The role played by composite vector supermultiplets is
studied in detail in the context of general supersymmetric confining
theories. The structure of the low-energy effective action involving these
vector supermultiplets is determined by use of the chiral WT identities.
One of the most interesting outcome is the universal appearance of an
effective gauge symmetry structure. Another is the emergence of a
generationlike structure among the composite « matter » multiplets under
this effective gauge symmetry.

PACS. 12.40.—y. — Models of strong interactions.

1. — Introduction.

There has been a considerable progress recently in understanding the non-
perturbative dynamics in supersymmetric gauge theories, through the study
of instanton effects (*4), anomalies () and effective Lagrangians (58) as well

(*) V.A. Novirkov, M. A. SHiFrmMaN, A.I. VainsaTeEIN, M.B. VoLosHiy and V.I.
ZsxuAROV: Nucl. Phys. B, 229, 394 (1983); V. A. Novikov, M. A. Sa1rman, A. I. Vaix-
suTEIN and V. 1. Zaxuarov: Nucl. Phys. B, 229, 381, 407 (1983); E. Couex and C.
Gomrz: Phys. Rev. Lett., 52, 237 (1984).

() G.C. Rosst and G. VENEz1ANO: Phys. Lett. B, 138, 195 (1984); D. Amart1, G. C.
Rosst and G. VeENEzIaANO: Nuel. Phys. B, 249, 1 (1985).

(3) I. AFFLECK, M. DiNE and N. SEIBERG: Phys. Rev. Lett., 51, 1026 (1983); IAS pre-
print (November 1983).

(4) Y. Meurice and G. VENEZ1aNO: Phys. Lett. B, 141 69 (1984); I. AFFLECK, M. DINE
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as via the index analysis (°). As a result, one seems now in a position to discuss
about the possible realizations of chiral symmetries and supersymmetry with
some confidence, at least in some classes of models.

Based of this development, we wish to discuss in this paper the role played
by certain composite vector supermultiplets in supersymmetric confining
theories. (We shall restrict ourselves to gauge theories with n =1 global
supersymmetry.)

The vector supermultiplets we shall be interested in are the ones whose
D-components are related to the matter kinetic part of the original Lagrangian
(see eqs. (2.2) and (2.1)). One of the reasons for introducing these vector super-
multiplets is that it allows us to reproduce the chiral WT identities in the
effective theory in an exact way. (See subsect. 22 and 2'3.) At the same time,
the «field-current identity » (*°) holds for these vector multiplets, and as a
result the structure of the effective action obtained from the consideration
of the chiral WT identities can be derived, alternatively, from a generalization
of the Lee-Zumino construction (¥) (subsect. 2'1).

Perhaps the most striking and interesting aspect of the effective action
thus obtained is the emergence of an exact gauge symmetry structure (which
will be called the effective gauge symmetry hereafter): this occurs quite universally
in supersymmetric gauge theories with matter. The group of the effective
symmetry is the full chiral group @, that would be the global symmetry group
of the original action if the superpotential and strong U, anomalies were both
neglected. @, does not include R-type symmetry groups which do not com-
mute with supersymmetry. For instance, G,= U, xU, for M-flavoured
quantum cromodynamics.

and N. SEIBERG: Phys. Rev. Lett., 52, 1677 (1984).

(°) K. Konisui: Phys. Lett. B, 135, 439 (1984); see also T. E. CLarE, O. Piguer and
K. SiBorp: Nucl. Phys. B, 159, 1 (1979); S.J. Gares jr., N. T. Grisaru, M. RocEK
and W. SieceL: Superspace (Benjamin/Cummings Publ. Co., New York, N.Y., 1983),
Chapt. 6.

(6) G. Veneziano and S. Yankrerowicz: Phys. Lett. B, 113, 321 (1982).

() T.R. TavyLor, G. VEnnziano and 8. Yankrerowrcz: Nucl. Phys. B, 218, 493
(1983).

(®) M.E. Peskin: SLAC-PUB 3061 (1983); A.C. Davis, M. Dive and N. SEIBERG:
Phys. Lett. B, 125, 487 (1983); H. P. NiLLEs: Phys. Lett. B, 129, 103 (1983); J. M. GE-
rarp and H.P. NiLLes: Phys. Lett. B, 129, 243 (1983); see also W. BUCHMULLER,
R. Prccer and H. Yanacipa: Nucl. Phys. B, 227, 503 (1983).

(® E. WirteN: Nucl. Phys. B, 202, 253 (1982); S. CEcoTtr and L. GIRARDELLO:
Phys. Lett. B, 110, 39 (1982); E. CoueN and G. Gomrz: Nucl. Phys. B, 223, 183 (1983).
(1) T.D. Lee and B. ZumiNo: Phys. Rev., 163, 1667 (1967), and references therein;
see also, J. Wess and B. ZuMiNo: Phys. Rev., 163, 1727 (1967). Application of the field-
current identity in the context of (nonsupersymmetric) composite models of W* and Z
has been considered recently by N. 8. Craicie and J. STERN: ICTP preprint IC/84/36
(1984), and B. ScHrEMPP and F. Scarempp: DESY preprint, DESY-84-055 (1984).
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(B-type symmetries, as global symmetries, will of course be taken into
account.)

At first sight, the local @, symmetry appears to be only approximate, being
broken (among others) by vector self-interaction terms of the form

(1.1) u? _[ dsz Tr exp [V],

Wwhere V is a set of composite vector supermultiplets, a matrix of a box-diagonal
form in the &, space, and u is a parameter with the dimension of mass. Our
effective action in fact looks as a straightforward supersymmetric generalization
of the onme, involving the p-mesons, nucleons and pions, given many years
ago by LEE and Zumino (%),

Our central observation is that in supersymmetric theories, a simple re-
parametrization of the form

(1.2) uexp [V]= Mtexp[V] M

(where M is a chiral superfield of a box-diagonal matrix form in G, space),
together with appropriate reparametrization of other composite fields, allows
us to bring 8, into an equivalent form which possesses an exact local @, in-
variance. Such an equivalence is similar to the one between nongauge and
gauge Lagrangians describing the same U, Higgs model, first noticed by
FAYET (1),

The way the chiral superfield M transforms under this local @, group is
of particular interest. Take, for instance, the case G, = U,. M behaves under
the effective Ux gauge group as K multiplets, {¥3},

1.3) M = ((P)(P) ... (¥x)) ,

each of which transforms as in the fundamental representation.
For a more general G, say G, = ]_[ U,,; each submatrix M, of M transforms
i

as m, fundamental multiplets of the U, and singlets of other u,’s.

Natural appearance of such a generationlike structure of composite matter
multiplets is very interesting in view of an eventual application in a composite
model of the presently known «elementary » particles (12).

Another salient feature is that the effective @, gauge symmetry is exact

(1) P. FaYEeT: Nuovo Cimento A, 34, 626 (1976); see also G. MAINLAND and K. TANAKA:
Phys. Rev. D, 12, 2394 (1975).

(**) For recent reviews on supersymmetric composite models, see, e.g., W. BucH-
MULLER: CERN preprint, TH 3873 (1984); R. D. Prccrr: MPI preprint MPI-PAE/PTh
35/84; G. VENEZIANO: Proceedings of the I Capri Symposium (1983)'
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even when the original global ¢, symmetry is partially broken by superpotentials
and/or strong anomaly. The point is that the composite fields transform dif-
ferently under the effective gauge group and under the original global group.
For instance, if G, = U,, M transforms as K rows of fundamental multiplets
of the global and not like K columns as in eq. (1.3). See sect. 3.

In this paper, we shall not discuss the question of dynamical supersym-
metry breaking (%), although there has been some interesting developments
recently (*). We believe, however, that the main conclusions of the present
paper (sect. 2 and 3) are independent of (and compatible with) the possible
dynamical breaking of supersymmetry.

Another omission is the effects of non-Abelian anomalies (**), to whose
implications we hope to come back in the near future.

This paper will be organized as follows. In sect. 2, we study the general
structure of the low-energy effective action in a supersymmetric confining
theory, by using a generalization of the Lee-Zumino construction of L, (%)
(¢« field-current identity »; see subsect. 2'1), and by studying the chiral Ward-
Takahashi identities associated with unbroken, broken and anomalous global
symmetries (subsect. 2’2 and 2'3).

The emergence of the effective gauge symmetry and resulting characteristic
structure of composite matter multiplets will be discussed in detail in sect. 3.
This section contains the exposition of the main physics ideas of the present
paper.

In sect. 4 and 5, we illustrate the general ideas by constructing the effective
Lagrangian explicitly, in two models. In sect. 4, a chiral SU, model will be
studied. Minimization of the scalar potential shows that the effective gauge
symmetry (U, X U,) gets spontaneously broken, while the original global (ST,)
symmetry remains exact.

The results for supersymmetric QCD with M(flavours) < N(colours)
will be presented in sect. 5. We show that the introduction of the composite
vector supermultiplets as low-energy degrees of freedom is perfectly compatible
with all the known results in SQCD (»%*7). Furthermore our effective Lagrangian
leads to new, complementary results involving all possible sets of bilinear con-
densates.

In particular, the dynamical supersymmetry breaking in the massless
limit & la PESKIN (8) seems to be excluded.

Section 6 contains summary and outlook.

(*) Some of the ideas of the present paper has been first presented in an unpublished
note by one of us (KK), which studied a SU; model where supersymmetry is believed
to be broken dynamically (*). Unfortunately, a proper treatment of that model seems
to require the introduction of composite superfields which are neither chiral not real,
and consequently to require a more involved description than in the effective Lagrangian
proposed there. The present paper is a fully revised and extended version of that note.
(%) J. WEss and B. Zuvmino: Phys. Lett. B, 37, 95 (1971).
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2. — Structure of the effective action involving composite vector supermultiplets.

2°1. Field-current identity. — In this section we begin to study the structure
of the low-energy effective Lagrangian of a general supersymmetric confining
theory, involving certain composite vector (real) supermultiplets as low-energy
degrees of freedom. We consider a supersymmetric gauge theory (*), with a
set of matter chiral (sealar) superfields {®} interacting through the action

2.1) § = [@52 @t oxp (V] @, +d% 2(@) + hoc. + 5.,

where the « flavour » index ¢ labels all the matter fields present (the « colour »
indices are, however, kept implicit throughout), £ is the superpotential, and
8,.ue. cONtaing the usual gauge kinetic terms and gauge-fixing and ghost terms.
The gauge vector multiplet V enters the first term of § through V, = V19,
where T are the generators of the gauge group (e.g., a = 1, ..., N2— 1 for the
SU, group) in the basis of the representation appropriate for @,.

The composite vector superfields we shall be interested in are the mulbi-
plets (™),
(2.2) Ri=0Yexp (V] ®,. h
: e
Nondiagonal elements (¢=<§) will be considered only between two states
belonging to an identical representation of the strong gauge group, for which
V:=V;. Thus R has a box-diagonal matrix form in the flavour space.

Suppose that the Lagrangian possesses a global SU, symmetry associated
with the transformations among ®@.s, i =1, 2y..., L. The U, symmetry
related to the common phase rotation of the L @ fields is broken by the strong
anomaly, and it will be taken into account in subsect. 23 (***). The properties
of the effective action under the full U, transformations will be important
in the discussions of the effective gauge symmetry in sect. 3. For the moment,
we study the consequences of an unbroken, nonanomalous S8U, symmetry.

Writing the vector component of R in the Wess-Zumino gauge, one finds
that (1’s are the SU, generators)

(2.3) (ta);(R;)Oa“E = TI‘ taRloa“E == JZ )

‘

(*) Throughout, we shall use the notation of ref. (14).

(14) J. WEss and J. BAGGER: Supersymmetry and Supergravity (Princeton University
Press, Princeton, N. J., 1983).

(**) Such composite vector multiplets have been already considered in the literature:
see, e.g., ref. (15).

(15) W. BUCHMULLER, R.D. Peccer and T. YANAGIDA: Nucl. Phys. B, 231, 53 (1984).
(***) This U, symmetry may further be broken by the superpotential which (by assymp-
tion) respects SU,. This will be also taken into consideration in subsect. 2'3.
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where J% (@ =1,..., [*—1) are the standard conserved Noether currents
associated with the global SU, symmetry. Equation (2.3) is thus the field-
current identity () (and eq. (2.2) its supersymmetric generalization), analogous
to that discussed many years ago by LEE and ZumiNo in the context of the
hadron physics. There, the assumption that the full isospin currents are pro-
portional to the p fields led to an effective Lagrangian involving the p-mesons
(together with 7’s and nucleons) which possessed an approximate local isospin
symmetry, broken by the mass terms of the p-mesons only (*).
Supersymmetric generalization of the Lee-Zumino construction is best
carried out in the superfield formalism. Considering, for the moment, only
the composite fields R of eq. (2.2), the effective action can be written in general as

(2.4) 8., =J.d°z (1/4k) Tr W= W, + h.c. —l—fd*’zF(R) ,
where
(2.5) Wa=— (1/4) D*R1D.R.

Notice that we have introduced a matrix notation in the «flavour» L XL
space, which will be used whenever possible hereafter. The first two terms
of eq. (2.4) contain the kinetic term for the vector component, and F(R) is
a function of R which, by assumption, is invariant under the global SL, trans-
formations.

The current conservation of the original theory reads (*) (¢, a =1, ..., L?,
are the SU, generators)

(2.6a) D*{®" exp [V] ()i} =0,

(2.6b) DM exp [V] (1)} =0.

The field-current identity, eq. (2.2), then implies the «field conservation »
equations

(2.7a) D:Tr (Rt*) =0,
(2.70) D2Tr (Rt*) =0.
We prove now the following theorem:

Theorem. In order for the «field conservation» equations (2.7) to hold

(*) The standard current divergence equation is contained in the lowest component
of [D2Xeq. (2.6a) — D2 X eq. (2.6b)]. In supersymmetric theories, however, eq. (2.6a)
and eq. (2.6b) hold separately; they form natural generalizations of the usual current
congervation equations. In what follows we shall refer to eq. (2.6a) or eq. (2.6b) as « cur-
rent conservation equation »; no confusion should arise from it.
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in the effective theory, F(R) must be of the form (¢, & are constants)
(2.8) F(R) = ¢ Tr (R) - & Tr (log R) .
Proof. From the equation of motion of R, one gets
(2.9) — (1/2k) D*(RW ,B7*); + R} 3F[3R, =0,
after using the dual identity
(2.10) D*(RW,R-') = — RD ,(R-*W*R)R*.
On applying D? to eq. (2.9) one finds (for each (%, 1)),
(2.11) D*(R;8F[3R;) = 0.
Also, by using the dual identity egs. (2.10) in (2.9), one gets another relation
(2.12) D¥(SF|SR)R}} = 0.

On the other hand, the 8U, invariance of the effective theory implies the
associated currents to be conserved. By considering the variation

R — exp [— i4%t19] R exp [idete],

and taking the functional derivatives with respect to A*and A+t independently,
we find the current conservation equations

(2.13a) DX{(#*R): SF|3R} = 0,
(2.13b) D*{(Rt*):3F|3Ri} = 0.

They are indeed satisfied due to egs. (2.11) and (2.12).

Now, in order for egs. (2.13) to imply the «field-conservation » equations,
eqs. (2.7), F must contain a term whose derivative with respect to R} gives 0].
This leads to the first term of eq. (2.8). Furthermore, F' may in general contain
other terms which, when inserted into eqs. (2.13), give zero identically. It
means that the derivative of these extra terms in F with respect to B} must
give either (B™')] or zero. Such terms can be combined into the form of the
second term in eq. (2.8). Q.e.d.

Note. Actually, the consideration of SU, symmetry alone would allow for
addition of a general function f(det R) in eq. (2.8); such a term can be, how-
ever, excluded from the consideration of the anomalous U, WT identity as
discussed in subsect. 2'3. We have anticipated this result in eq. (2.8).
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Let us next consider a more general case in which composite fields other
than B are also present. For simplicity we assume all other composite fields
are chiral (scalar) superfields, and denote them collectively by {T}. Let
us assume 8, to have the following general form:

(2.14) 8, = (1/4k) f d% Tr Wa W, + h.c. + [d% F(R) +

4+ f A% G(T, Tt; R) +- f d%2H(T) + h.c.

where H(T)) is a superpotential depending on chiral superfields {7} only, F(R)
is a function of R only, and & depends on 7 and T* (and perhaps also on R).
W is defined by eq. (2.5) as before, and % is some constant.

Nonrenormalization theorem (2¢), valid to all orders of perturbation, implies
that H(T) contains the original superpotential P (D), formally rewritten as a
function of composite superfields; H(T), however, may contain terms which
arise due to nonperturbative effects such as instantons (%%). (See also sub-
sect. 2°3. below.)

By assumption, F, @, and H are all invariant under the global 8 U, trans-
formations.

From the equation of motion of R (*), it follows that

(2.15) D*{(3F/3R! + 8G/SR)R} = 0.

Moreover, the equation of motion for the I-th 7' field is

(2.16) — (1/4) D2(8G/ST,) + SH/ST, =0 .

By using egs. (2.13) and (2.16) one sees that the S U, current conservation
equation

(217)  — (1/4) D’[(3F[3R! 4 SG/SE)(Bt*)] + (12T), 5G/ST,] +(t2T), 5H/ST, — 0

is indeed satisfied. (In eq. (2.17), we denoted the S U, generators in the basis
of the (in general, reducible) representation according to which T transforms,
by t.)

Since F is a function of R only and @ depends on 7 and Tt, the only way
the field conservation eq. (2.7a) to follow from eq. (2.17 ) is that G satisfies

(1%) M. T. Grisaru, W. S1EGEL and M. ROCEK: Nucl. Phys. B, 159, 429 (1979), and refer-
ences therein.

(*) These equations appear always in a chiral-antichiral pair (as in egs. (2.6), (2.7),
(2.13)). In what follows we shall write only one of them.
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(the last term of eq. (2.17) vanishing by the SU, invariance of H )
(2.18) — (1/4) D*[3G[SRi(R*)! 4 (15.T), 3Q/3T] =0,

and that F is given by eq. (2.8) as before. But eq. (2.18) (and its Hermitian
conjugate) means that @ is a function of T, Tt and R which is invariant under
the local 8U, transformations.

We are thus led to the following general form of the effective action (*):

(2.19) 8, =fdsz Tr R + &[as% Tr (log R) +[dwar, 1 B) +

+ (1/4k) f d% Tr W* Wy - h.c. + f A% H(T) + h.c.

where G and H (hence, all terms of S

eff
under the local SU, transformation

except for the Tr R term) are invariant

T —exp[iA*] T,
(2.20) Tt — T exp [— s4°te2] ;
B — exp [— iAt45] R exp [iAete]

and & (dimensional) and & (dimensionless) are (in principle) calculable constants.

Equation (2.19) is the main result of this subsection. 8, has the structure
of an approximate gauge theory; the local SU, invariance is broken by the
Tr B term alone. By writing R — u*exp [V,], one sees that eq. (2.19) is
quite analogous to the effective Lagrangian containing the p and other low-

lying hadrons obtained in ref. (1),

2°2. 8, as truncated generating functional I'; WT identities associated with
unbroken symmetries. — In this subsection the structure of 8, in eq. (2.19) will
be understood more directly as a consequence of the chiral Ward-Takahashi
identities.

Let us again start with the case in which the only composite states consid-
ered are the vector supermultiplets R, eq. (2.2). We assume, as before, that
the original action 8 (eq. (2.1)) is invariant under a global 8T, .

Consider the generating functional Z (Jr) of the connected Green’s functions,

(2.21) exp [Z] =f9<15 2Pt ... exp [z {S + f A% @i exp [V] Dy(J R);'}] )

(*) We absorbed the constant ¢ in eq. (2.8) into the R-field; Tr W2 term is unchanged
by this redefinition (recall eq. (2.5) for the definition of w,).
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where § is given by eq. (2.1) and Jz%; are the sources of the composite fields
Dtiexp [V] D, (*). Let us define B by

(2.22) 3Z[3JF ;= R}
and introduce the following generating functional I'(R) by
(2.23) I(R) = 2(J ) — [a% Tr (RT3).
It follows from eq. (2.23) that
(2.24) STI3R, = — (J,): .
We wish to know how I'(R) transforms under the local 8 U, transformations
(2.25) R — exp [— i4°tt5] R exp [¢49t9] .

As usual in supersymmetric theories, we consider the variations with respect
to A¢ and At independently. Under A¢ transformations, I" transforms as

(2.26) S = f d% (ST|SR)- (Rid* 1) ,
hence
(2.27) 8I'(R exp [i4°t4])[i 34| ,_, = (1/4) D*(J ,Rie),

where relation (2.24) has been used.

Information on the right-hand side comes from the definitions, eqs. (2.21)
and (2.22). Consider Z(exp [— i4°t#] J;). On the right-hand side of eq. (2.21),
the variation of the source term is compensated by a change of (functional)
variables

(2.28) @, = (D' exp [id°te]}, (=1,..,I),

which has the form of a local SU, transformation. All the terms are invariant
in the exponent of eq. (2.21) except for the first term of 8, which becomes

(2.29) @t exp [V] D, = &t oxp [V] @,’c{exp [eA% 3% .
Thus
(2.30) exp [Z(exp [—id*t] J,)| = {1+ f do2i(A01) 85T F, + } exp [Z(],)] =

— oxp [Z(J5)] {1 + f d%ide Tr (5R) + } .

(*) Notice that (J R)j are not external fields, often introduced to gauge the «flavour »
group 8U,. Our J, are the sources of physical composite particles o't exp [V] @;.
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Comparing the both sides, we get the Ward-Takahashi identity

(2.31) D2 Tr (teJzR) = — D* Tr (*R) .
Inserting this into eq. (2.27) we finally obtain

(2.32a) 3I'(R exp [i4%t4])[i 34|, = — (1/4) D Tr (1*R) .

An analogous result for the variation with Ast

(2.32b) 3I'(exp [— iAstt] R)[i SA%t| 4_, = (1/4) D2 Tr (t*R)

can be easily found.
Equations (2.32) show how I" transforms under the local § U,: it must have
the form

(2.33) I'(R)— j % Tr (R) +

+ (terms invariant under R —» exp [— i4t5] R exp [i42t4]) .

Now, for slowly varying functions (of #) B, I'(R) may be identified as 8 ().

If we keep the lowest-dimensional, ordinary kinetic terms only, we get precisely

eqs. (2.4) and (2.8), obtained in subsect. 2'1 (note that the second term of
eq. (2.8) is invariant under the local 8T,).

The above discussion can be generalized to the cases in which other €compos-

ite (chiral) superfields are also present, in a straightforward manner. We intro-
duce the composite chiral fields,7;,(®), and their chiral sources, J !, and consider

(2.34)  exp [Z(J,, J,, TH)] =

- f 20901 ... exp [i {S T f A% Y exp [V] &,(7,)} +d%T (D) T, + h.c.}] :
Define
(2.35) SZ|ST's=Ri, 38Z|8JY=T,, 8Z|sJ% =T}

and introduce the new generating functional

(2.36) I'R; T, T = Z — f % Tr (RJ z) — f d% T, J% — h.c.

(*) Note that for on-shell momenta (of the composition particles), I" constructed as
above gives the correct S-matrix elements. The same comment applies for I introduced
below, eq. (2.36) and eq. (2.50).
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The dual of eqs. (2.35) are:
(2.37) 3I'[3R; = — J&;, )3T, = — J%, ete.

The chiral WT identities of the unbroken SU, can be obtained, as before,
by considering the wvariation

J g = exp [— i4%t] J  exp [EAT 1]

Jp — exp [— i4°%t3) Jp, ete.,
where 7 are the SU, generators appropriate for 7 (®), in eq. (2.34). We find
(2.38) — (1/4)D2 Tr (ted x R) + T,(t2Jr)' = (1/4) D* Tr (*R),

which generalizes eq. (2.31).

The way I" transforms under the local SU,, as a functional of R, T and T,
is found now by using the WT identities eq. (2.38) and the definition eq. (2.36).
We get finally

(2.39) 3I'(Rexp [i4°t7]); T exp [id*te]; Tt)[i 34°|,_, = — (1/4) D* Tr (i°R)

and its Hermitian conjugate following from the consideration of variations
with Aet.

Equation (2.39) (and its Hermitian conjugate) are the main results of this
subsection. If we identify I" as S, for slowly varying functions B, 7' and 77,
they provide the constraints how §,,, should transform under the local ST,
transformation eq. (2.20). Xeeping the simplest kinetic terms for the vector
component, we get precisely eq. (2.19), obtained earlier.

2'3. U, anomaly, symmetries broken by superpotentials and WT identities. —
In the previous subsections we studied the constraints on §,,, following from the
presence of an exact global symmetry. Further constraints on 8, come from the
U, and related anomalies (°). In view of the recent developments in this field,
in particular due to an improved understanding of nonperturbative effects
in supersymmetric gauge theories (14), it seems to us of crucial importance
to take them into account in the construction of effective Lagrangians.

Also, because of the nonrenormalization theorem, the pattern of explicit
breaking of symmetries by superpotentials persist to all orders of perturbation.
This puts another constraint on the possible form of the low-energy effective
Lagrangians.

In order to generalize the discussion of subsect. 2°2 to include these con-
straints, we need to introduce further sources. First consider the superpo-
tential Z(®P). Under the full chiral group G, of global transformation of matter
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fields,
(2.40) D — @ exp [iast?],
(t* = the generators and «® real constant parameters of G), Z(®) may transform

in a nontrivial way. However Z(®), being a polynomial of the fundamental
fields {@}, can always be written, by using constant vectors and tensors, as

P(P) =WZ(D), h'PyP), ete.,

or a8 a sum of such terms. #,, #,,, ete., transform as irreducible tensors of Gy
and &%, b, ... are coupling constants. Let us then write

(2.41) P(D)=HWZP (D),

where Z,(®) is a (in general, reducible) tensor of G,. P(D) then transforms
under eq. (2.40) as

(2.42) P =P, W P,(exp [ia*82])? ,

if #3’s are the generators of @, appropriate for Z,.

‘We shall introduce a (chiral) source J4 for each of &,

Next consider another composite chiral superfield, (g%/3272) Wi W, and
introduce its (chiral) source Jg, where W¢ is the spinor chiral field describing
the elementary strong gauge bosons and gauginos (*).

The system may contain of course chiral composite fields other than Z,’s

and Wg, as low-energy degrees of freedom. Let us denote them by Z;(®) and
their sources by J}, as before, and assume that 7 s transform under (2.40) as

(2.43) TUD) > T, (®)(exp [ioe3])7,
where t;, are the generators of G, in the (in general, reducible) representation
appropriate for I (D).
We study then the following generating functional:
(2.44)  exp [Z(J; Ir; Jr; Is3 I1; IL; TH] =
= f@@ 20t ... exp [z {S —]—fd% (@Y exp [V] D) (T R)i+
+ [@TiTh+ he. + [ae 2.t + e +

+ fd"z (95/32n*) Ws Wsd s + h-c-}] ’

where the action § is given in eq. (2.1).

(*) Not to be confused with W* (eq. (2.5)) which describes the composite vector super-
fields. g, is the gauge coupling constant.
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In order to derive the WT identities associated with &, consider now the
local G -transformation of the sources (with arbitrary chiral superfields A+’s)
l J ' — (eXP [—i4° f'a])lchRkl ’
(2.45) Jb - (exp [— iA°t3]). I,
‘ Ji — (exp [— 4°¢2])5J %
(JI , J;C, Jg and J;T are kept invariant) in eq. (2.44). On the right-hand side,

the variations of the sources terms are compensated if we make a change of
funectional variables

(2.486) D — D exp [i4%t], Ot > Dt
The total change on the r.h.s. of eq. (2.44) is then given by the variation of the

action (which can be obtained from eqs. (2.1) and (2.42)) and by the U, anomaly.
Thus

(2.47) exp [Z(exp [— ©4°t] I g; exp [— i4%13] J 55 exp [— i4°13] J,;
Jg; Ihs J1; Jf,)] = f@@ 9" ...exp i [(source terms) 4
—|—fd°z o' exp [V] ®,(exp [i4°1°])! + fd"z b4 P (exp [iA4°83])5 +
+ f d% (g2/320%) W, W ,id® Tr (#20,) + O(AZ)] .
The last explicit term in the exponent is the U; anomaly term (5). Co is the

quadratic Casimir operator (*) of the strong gauge group. It is a diagonal matrix
in the flavour space @, with elements (Cso)y;=> (T%)*. In the functional-

integral derivation & la FuJxawa (%), the anomaly term arises from the
Jacobian of the transformation, eq. (2.46) (8).

By comparing the terms of first order in /A2 on both sides of eq. (2.47), we
find the chiral WT identities (**)

(2.48) (D?*4) Tr (##J ,R) — T, (12 ,)' — P, (12 ) =
= — (D%/4) Tr (#*R) + h4(Pt2), + Tr (C,t*) 8,

(*) Normalized to that in the fundamental representation.

() K. Fusigawa: Phys. Rev. Lett., 42, 1195 (1979); Phys. Rev. D, 21, 2848 (1980).
(18) K. KowisaI and K. SHI1ZUYA: Nuove Cimento A, 90, 111 (1985); K. Konisui: Pro-
ceedings of the XIX Renconire de Moriond (1984).

(**) This is the most general form of the chiral WT identities containing the effects
of explicit symmetry breaking and of the U, anomaly. By taking arbitrary number
of derivatives with respect to the sources and by setting them to zero, one finds variety
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where we have introduced the definitions *),

(249) Ri= 3Z[8J)},, T,= 3Z[8J;,, P,= 3Z[8J5, S= 3Z[3J .
Another set of WT identities

(2.48b)  (D*[4) Tr (RJ,1*) — TH(THte) — PhItoye —
=— (D*/4) Tr (**B) + W*(sz P"), + Tr (10,) 87,

which are the Hermitian conjugates of eq. (2.48a), follow from the consideration
of variations with respect to Aets.

Let us introduce now the generating functional I" by the Legendre trans-
formation

(2.50)  I'(R; T'; P; 8; Tt; Pt; 8t) = Z(J 4; I o) —fdaz Tr (RJ 5) —
— f d% (T,J%) — h.c. — f A% P,J4 — h.c. — f d°%28J, — h.c.
From this definition it follows that

SI[SR, =—J,,, SI|ST,=—J.,

(2.51)
ST[SP, =—J4,  3IUSS=—J,.

By using the (by now familiar) procedure, we find the transformation property
of I'" from eqgs. (2.50), (2.51) and (2.484):

(2.52a) SI'(Rexp [4A4°4°]; T exp [iA°15]; P exp [iA® t158; TT; Pt; 81)}i 4
= — (D*/4) Tr (#*R) + h(Pt3), + Tr (C,t%) 8 .

'A-o =

Equation (2.524) and its Hermitian conjugate,
(2.520) 8I'(exp [— iA°tt] R; T; P; §; exp [— id4T g2yt
exp [— At g] Pt; 81) /i 34t 4, =
= (D*/4) Tr (#R) — w*(t5 PY), — Tr (*0,) S,

of relations involving n-point functions. In simplest cases, they reduce to the ones
considered in ref. (4519) ete.

(%) G. VENEZIANO: Phys. Lett. B, 128, 199 (1983); G. SHORE: Nucl. Phys. B, 231, 139
(1984).

(*) There should not be any confusion in using the letter S here, which was used earlier
to denote the action.
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together with the WT identities eqs. (2.48), are the main formulae of this sub-
section. If we take B, T, P, 8, ... to be slowly varying funetions of the space-
time and make a re-interpretation, I'~ 8, eqgs. (2.52) specify how 8, must
transform under the local G, transformations.

The first term on the right-hand sides of eqs. (2.52) is the same as that
obtained in subsect. 2'1 and 2'2. The second term reflects the breaking of Gy
by the superpotential; the last the U, (and related) anomaly.

Tt should be stressed that eqs. (2.52) themselves are exact formulae, whether
or not the vector supermultiplets @t exp [V] @, are regarded as low-energy
effective degrees of freedom. However, it is only when we introduce them as
such, that the theory defined by 8., satisfies exactly (formally at least) the
required transformation properties, eq. (2.52).

On the contrary, if S,,, would be constructed without E fields, B in eqs. (2.52)
should be re-expressed as a complicated unknown function of the fields, T,
Tt,.... Thus in such an effective theory (*) the constraints eqs. (2.52) may or
(most likely) may not be satisfied. This is in fact one of the reasons why we
think that S, involving composite vector superfields provides a better ap-
proximation to the low-energy dynamies than the simple effective actions
containing chiral composite fields only.

Important results follow from eqs. (2.52). First, any subgroup of G, broken
either by the superpotential or by the strong anomaly is broken in the effective
action by and only by the so-called F-terms, i.e. terms that can be written as

(2.53) jdsz [..]+he.,
but not as
(2.54) f as[...] .

In other words, only the superpotential terms in S,, reflect the breaking of the
global symmetry (**). Vice versa, any unbroken, nonanomalous symmetry of
the original action is a symmetry of 8,,, also.

Secondly, no D-terms (i.e. terms of the form of eq. (2.54)) other than
(2.55) dez Tr (R)
(that gives the first term in eq. (2.52)) can break the local G, symmetry. There-

fore, any kinetic terms of composite chiral fields T, P and S must be invariant
under the local @, transformations.

(*) Most of effective Lagrangians considered so far ("), involving only chiral composite
fields as low-energy degrees of freedom, are of this type.

(**) The first term of egs. (2.52) reflects the breaking of local Gy symmetry by the kinetic
term @' exp [V] ®|,: it does not correspond to the breaking of the global Gy.
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These put quite strong constraints on the possible forms of 8,
the consequences of WT identities eqs. (2.48) (*).

These results show that the form of §,, found in subsect. 2'1 and 22
(eq. (2.19)) is essentially unchanged by the consideration of the full chiral
group @,. Namely, S . has the form

eff

«; they are

(2.56) 8., =fdsz [Tr R + £ Trlog R 4 G(R; T, Tt; P, Pt; 8, 8Y)] +
—}—fd“zH(T; P; 8) + h.c. + (1/4k)fdez Tr (W*W.,) + h.e.,

where W* = — (1/4)D*R-1D=R and where:

i) Trlog B, G(R; T, Tt; ...), and Tr (W*W,) terms are invariant under
the local G transformations (notice that Tr WW term can be written in the
form of eq. (2.52) as well).

ii) Tr B term is invariant under the global @, transformation; it trans-
forms under the local G, as in the first terms of egs. (2.52).

iii) The superpotential H(7, P, S) transforms under the local G, as in
the second and third terms of eqs. (2.52). It transforms also under the global G,.
It is invariant under any global (and local) symmetry group (c G) of the original
action.

iv) & (dimensional) and % (dimensionless) are (in principle) calculable
constants.

We conclude this section with the following remark. The discussion and
results of this section neither imply nor require that a local effective Lagrangian
always exists, whose space-time integral has the form of eq. (2.56). In par-
ticular, the « superpotential » H(T'; P; 8) may be a functional, rather than a
function, of the fields 7, P and 8. The possible importance of models of this
type will be mentioned later, at the end of sect. 4.

3. — Effective gauge symmetry.

In this section we shall demonstrate that the effective action eq. (2.56)
found in the last section is equivalent to one that possesses an exact local Gy

(*) In fact, we are assuming that the WT identities eqs. (2.48) hold for renormalized
composite operators, which are really relevant in S,;,. This assumption seems reasonable,
since the superpotential is itself invariant under renormalization (this is the content
of the nonrenormalization theorem). It is crucial that we deal with supersymmetric
theories; in nonsupersymmetric models, WT identities associated with broken symmetries
would be of little use, unless the breaking is soft.
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invariance. Recall that G, is the full chiral flavour group of the original action
that would be the global symmetry group if the superpotentials and the U,
anomaly were both neglected.

Let us introduce the definition

(3.1) R = u? exp [Vg]

in eq. (2.54), where V5 is the composite vector supermultiplet of a box-diagonal
(form (a K x K matrix if ¢, = U,), and u is an arbitrary constant with the

dimension of mass (*). §,, becomes

(3:2) 8= [a%[u* Tr (exp [V4l) + & Tr Vo + G{u* exp [Vl T5 T )] +
+ f A2 H(T; P; 8) + h.c. + (1/4k)fd«z Tr (W*W.) + h.e.
where
(3.3) W*=— (1/4)D? exp [— V] D* exp[V4].
Although we begin to see a resemblance to a gauge theory, the local
G, invariance is broken in eq. (3.2) by Trexp [Vx] term. (See i)-iii) after

eq. (2.56).) (The superpotential H may also break part or whole of the local Gy).
However, let us now make the following reparametrization:

(3.4a) R=u*exp [Vi] = Mtexp [V M,
(3.4b) T =Ty M),
(3.40) P = Pg (M)

(8, which is a G singlet, is left unchanged) and
(3.5) Pr=0 for n>3.

(This restriction will be removed in a moment.) Note that this is precisely the
transformation needed to diagonalize all the kinetic terms.

In eqs. (3.4), M is a chiral superfield of a box-diagonal matrix form (a K X K
matrix if G, = U,), and gz(M), go(M) are defined by

(3.6) 97, (M) = exp [i4°8; ]

(*) uis unrelated to the renormalization-group invariant mass scale of the strong gauge
theory. In fact, it can always be set to unity by a redefinition of the scalar component
of Vg.
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if
(8.7) M = exp [iA%19]

for some set of chiral superfields A°, t*, 17, and t; are appropriate @, gen-
erators.

What we have done in eqs. (3.4) is to separate the « Wess-Zumino gauge »
part of ¥ as ¥y, and then to call the rest of the degrees of freedom of exp [V 5]
as M. M represents physical degrees of freedom because 8,,, of eq. (3.2) has
no local @, invariance.

Since eqs. (3.4) have the form of a local @, transformation and because
Tr Ve, G(u*exp [Vz], T,...) and Tr WW terms are invariant under local @
transformations, we get

F

3.8) 8., =fd8z [Tr Mtexp [Pa] M+ &Tr Vp+
+ @(exp [Pal; 75 745 P; P; 85 8)] + [a% H(Dgo( 3); Pyo(M); 8) + hec. +
1 (1/4F) f d% Tr (W* W,) + h.c. .

At this point, we may drop the constraint eq. (3.5), and allow for some
arbitrariness in the reparametrization, eqs. (3.4).

But, then, 8., of eq. (3.8) has an exact local G, invariance, i.e. invariance
under the local transformations

exp [Vz] — exp [— i4°tte] exp [V ] exp [idete]
(3.9) M —exp[—idet’) M, T —T exp[id*tg],
p —>Pexp[i/1“t; , S —=8,

where A%’s are arbitrary chiral fields and % ty, and 13 are G, generators.

Note that, if the simplest possible form is assumed for @, eq. (3.8) has the
standard form of a gauge theory with «matter» chiral superfields M, T, P
and §; the superpotential H may of course contain nonrenormalizable terms.
The constant & plays the role of the (effective) gauge coupling constant squared.

Observe that the Fayet-Iliopoulos~type term (£ term) is in general expected
to be present.

The origin of this effective gauge symmetry lies essentially in the arbitrariness
of the reparametrization, eqs. (3.4); however, it is the particular form of the
effective action (the Tr (R) term and the local G, invariance of G(R; T,...) in
eq. (2.56)) that allows 8., to be rewritten in the standard form of a gauge theory.
The equivalence between the nongauge model eq. (3.2) and the gauge model
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eq. (3.8) is a generalization of an analogous one first noticed by FAYET (1)
in this study of the U, Higgs model.

As in the U, Higgs model, this equivalence hinges upon the characteristic
structure of supersymmetry multiplets. The original vector V, contains (for
each of the flavour degrees of freedom) one real scalar (1), two two-component
spinors (4) and one nongauge vector (3): eight degrees of freedom in all. On
the right-hand side of eq. (3.4a), with ¥, constrained by eq. (3.5), the scalar
(or chiral) supermultiplet M has one complex scalar (2) and one two-component
spinor (2); Vx consists of a gauge vector (2) and of its fermion partner (2).
Again there are eight physical degrees of freedom.

Of course, one can drop the constraint eq. (3.5); in that case M and V7,
together will superficially contain twelve degrees of freedom. But just because
of the (effective) gauge invariance, the four extra degrees of freedom are gauge
freedom; they do not represent physical particles.

In the U, Higgs model discussed by FAYET (11),

(3.10a) 8= f d% (u? exp [V] + &V) -+ (1/4) f A% WW + h.e.,

(3.100) 8= f ds% (It exp [P1 % + E7) + (1/4) f Az WW -+ h.c.

(an obvious notation has been used; u and £ are the parameters of the model),
the equivalence of the two versions of the model (a and b) can be also seen as
follows. We choose a particular (« supersymmetric ») gauge in the gauge model
of eq. (3.10b), in which the matter chiral field % is a constant

(3.11) h — exp [iA] h = const = u.

In this gauge, the theory reduces to the nongauge model of eq. (3.10a).

Can one understand the equivalence between eq. (3.8) and (3.2) in a similar
way? We notice that, since A2 are chiral (complex), M as defined in eq. (3.7)
is an element of [] GL(n;, 0), not of H U(n;), even if s are the generators of

i i
the group G, = H U(n;). Hence it is always possible to choose gauge in
which :

(3.12) M=um.

In this gauge, S,, of eq. (3.8) reduces to the original effective action eq. (3.2).

Let us now turn our attention to a few general feature which accompanies
the emergence of the effective gauge symmetry. The first is the appearance of
a generationlike structure among the « matter » multiplets. Take, for instance,
G = Ug. The chiral superfield M behaves, under the local U, transforma-
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tions eq. (3.9), as K multiplets ¥,, ¢ =1, ..., K,
(3.13) M= ((P)(F) ... (Px)),

each of which transforms as in the fundamental representation *)-
Tr (Mt exp [V ] M) can be written as

(3.14) Tr (Mt exp [V M) = % Ptiexp [Ve] V.

For a more general case with G, = [T U(n:), M has the box-diagonal form
i

() 0

(3.15) =1\, - ary |

where M, transforms as n,; fundamental multiplets of U, (and as a singlet of
other U, ’s), like in eq. (3.13).

Natural appearance of such a generationlike structure of (at least part of)
the matter fields is very interesting in view of an eventual application of these
ideas in the context of a composite model of the quarks, leptons, Higgs scalars
and standard gauge bosons.

Tt should be stressed that the invariance of 8, under the effective gauge
transformation does not require the invariance of the original action under the
global G,. Indeed, the transformation eq. (3.9) acts on the fields differently
from the original global group G,. In the effective action eq. (3.8), the origina)l
global @, transformation can be taken to be

(3.16) M — M exp [iast?]

(all other fields remaining invariant).

In other words, the group of the effective gauge transformations
(G)otrective gange (84 (3.9)), and that of the global transformations (G') crobar
(eq. (3.16)) form a direct product

(3'17) (GF)eﬂectlva gauge X (GF‘)llobaI

acting on the set of fields M, ?R, T,P and 8. In general, because of the super-
potential and strong anomaly, only a subgroup of (Gp)eronary if any, forms a sym-
metry group of the model.

This means, among others, that in general there is no symmetry under

(*) The fact that M is not a unitary matrix but is an element of GLg , (recall the com-
ment made before eq. (3.12)) means that ¥, ¥%,, ..., Yy are all linearly independent
chiral fields.
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the exchange of two generations
YI‘ <> Tf .

Absence of unnecessary symmetry under the exchange of « generations» is
perhaps welcome, if this sort of composite fields should eventually describe
the quarks and leptons (*).

The fact that the effective gauge group (Gy).yective gauge 40€S NOL constitute
any subgroup of (Gy),,..,» might also be of importance in an eventual realistic
model based on the effective gauge symmetry for the following reason. In
usual composite models of quarks and leptons, the gauge group SU; x SU, x U,
of the standard strong and electroweak interactions is necessarily a subgroup
of the global symmetry group of the original meta-(hyper-, ete.) colour theory.
This aspect makes the construction of a realistic model rather difficult, for
instance because of the stringent 't Hooft anomaly conditions (%).

In contrast, if all or part of the standard SU; xSU, X U, gauge symmetry
is to arise as effective gauge symmetries, then there would be fewer constraints
because therc are no 't Hooft conditions associated with the effective gauge
group. Only the unbroken part of the original global &, if any, is relevant for
the anomaly matching equations in our case.

A crucial question related to the effective gauge symmetry is whether or
not it is spontaneously broken. At first sight it might appear that the first
term of eq. (3.2) implies the vector fields to have necessarily a nonzero mass u.
This is, however, false, since exp [(g], where O, is the scalar component of
Vg, could get any v.e.v., including zero.

A simple illustration of this point is provided by the U, Higgs model,
eq. (3.10). In spite of the apparent mass term u2V?/2 involved in eq. (3.10a),
the U, gauge symmetry is manifest (and the photon massless) for & > 0. Super-
symmetry is broken in this case. The opposite is true (unbroken supersymmetry
and broken U, gauge symmetry) for £ < 0. This example suggests that, in a
general supersymmetric confining model, it is a dynamical question whether or
not the effective gauge symmetry is spontaneously broken. The presence of
the scalar component in V' as a physical degree of freedom clearly distinguishes
supersymmetric models from nonsupersymmetric ones discussed by LEE and
ZuMINo (1), in spite of the analogies mentioned in subsect. 2 i).

(*) In contrast, in usual approaches in which the generation structure is put in by
hand, one tends to have too large symmetries, gauged or not. It is difficult to break
these symmetries without encountering some unpleasant features. In conventional GUT
schemes, for instance, the intergeneration symmetry is broken by hand in the Yukawa
interaction terms. But then the mass relations involving different generations are not
computable.

(2) G. ’r Hoorr: Cargese Lectures, 1979, edited by G. 't HooFT et al. (Plenum Press,
New York, N. Y., London, 1969).
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In several models including those studied in sect. 4 and S5, we find that the
effective gauge symmetry is spontaneously broken. As will be discussed after
eq. (4.19), these models are characterized by the existence of a local effective
Lagrangian with correct anomalous U, transformation properties.

On the other hand, there are models (e.g., massless SQCD with M (Havours)>
> N(colours)) in which no local effective Lagrangian can be found that satisfies
all the requirements of sect. 2. Whether manifest effective gauge symmetry
is a dynamical possibility in such a model is an open question.

A possibly important point in this regard is the fact that (Bstootive gauge
and (G, form a direct product acting on the same set of the fields M, Ve,
T, P and 8. This fact is crucial in avoiding the Weinberg-Witten theorem (21)
on the existence of massless states of spin 1. Indeed, the effective gauge bosons
are neutral (eq. (3.16)) with respect to any unbroken subgroup of (
hence the theorem of ref. (21) does not apply here.

Of course, this argument requires that the global chiral transformation be
defined as in eq. (3.16), and not as any other combination of (Gp)ettoctive gange
and (Gp)y,.,- Such different choices are equivalent at tree level of S Ly UL
are inequivalent in general when loops are taken into account. In fact, the
't Hooft anomaly matching conditions severely restrict the possible definition
Of (Gg)yona ON the transformed fields M, V,, T' and P.

In fact, let us denote by A, .. and A, ... ;e the anomaly content of a
given field with respect to unbroken subgroup of (G,),,,,., and the corresponding

subgroup of (Gp).eciive qange- We find from the transformation laws eq. (3.9)
and (3.16) the relations

GF)llobM )

Aeﬂectlve gauge(M) = ‘Aglobn.l(M) ’
(318) Aetfectlve zauze(T) = A(lobnl(T) ’
'Aeﬁectlva ga.uxe(P) = 'Auoba.l(P) ‘

Furthermore, it is easy to see that the original vector fields V never con-
tributes to the anomaly of (G)

global ?

(3.19) A

clobal(VR) =0.

The 't Hooft condition then reads in the original fields

(3.20) E Aglobu = Z Aelobal =4.

TP fundamental

(*) 8. WenBEre and E. Wirten: Phys. Lett. B, 96, 59 (1980).
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Using egs. (3.18) and (3.9), this is seen to be equivalent to

effective gauge effective gauge 2 Aeﬂectlve gauge
M

T.P.M.Vp

3.21) A4=34 = A
2,7

= z Ae!tectlve gauge + Z Azlobal *
M

all

Now, the possibility of defining the global transformation as in eq. (3.16) means
that

(3'22) ‘A = z Allobal’
M
hence that
(323) z Aeuectlve gauge = 0 *

all

Thus the ’t Hooft condition and the Weinberg-Witten theorem, taken
together, lead to the conclusion that only an anomaly-free subgroup of
(@p)attoctive ganges 1L €VET, can be realized manifestly by massless vector bosons.

This conclusion in itself is not surprising since a nonvanishing anomaly,

> A rective gauge 7= 0y Would in any case break the exact local symmetry. None-
all

theless, the above argument reveals an intriguing interconnection between an -
unbroken global chiral symmetry (massless fermions) and a possible manifest
Wless vector bosons).

An interesting, related question is how the composite fields M, ¥, T and P
can be expressed in terms of the fundamental fields @, @t and V. One finds
that there is no unique way of doing this. It is possible only upon introducing
a set of redundant fields: for instance, M|,_;_, can be written as

(3.24) M|, _5-o = (Pt exp [V] D)E_5_,-exp [i(w)],

where a(z) is an arbitrary complex function on which the physics does not
depend. «(x) in fact accounts for two of the four extra degrees of freedom
(ignoring the flavour) related to the effective gauge symmetry.

Such a nonuniqueness in che way the field variables are expressed, is pre-
cisely what happens in any theory with a local gauge symmetry. What is new
here, however, is that this arbitrariness (i.e. the effective gauge symmetry),
which was not present in the fundamental Lagrangian, appears automatically
in the effective Lagrangian describing the composite particles.

This concludes the general discussions on the effective gauge symmetry.
In the next two sections the aspects discussed in this section will be illustrated
in explicit examples.
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4. ~ A SU; model and spontaneous breakdown of the effective gauge sym-
metry.

As the first explicit example, let us consider a 8U, gauge theory with the
matter chiral superfields

(4.1) o7, Xap™ — Xpo (¢, p=1,...,6; a=1,2),

namely, two 6’s and one antisymmetric 15*. The action is given by

42) 8 =fd8z (Z Pt exp [V] D, + gt exp [7] x) +
a=1
+ f a%(PDy) + h.c. + gfd"z(xxx) +he + 8.,

where §,, . contains the usual gauge kinetic terms and the gauge-fixing and
ghost terms. The most general 8Uy-invariant superpotentials

(4‘3) h¢¢x = heab di: @g xaﬂ a’nd gxxx = geal---t’tl thxz xas:x( xasou

are both assumed to be present, with coupling constants » and g, respectively.

The model has a global SU, symmetry associated with the @ fields. Two
Uy’s of the phase rotations of @ and y, and the Ug;, are all broken by the super-
potentials (for g % 0, h = 0) and by the anomaly.

Before constructing the low-energy effective action, let us make a few
general observations on this model, following the method of analysis of ref. (»4).
The simplest Green’s function that can get a nonzero contribution from the
one-instanton configuration is of the form (*)

(4.4) G = <O|T ] A4(w:) popm(aa) () [0 .

i=1

Such a Green’s function, involving only the lowest components of chiral super-
fields, must be a constant (independent of #,’s) in a supersymmetric vacuum (B2).

We have computed & in the one-instanton approximation, which is pre-
sumably reliable at short distances. In fact, perturbative contributions to @
vanish to all orders of the strong coupling constant due to the nonzero chirality

(*) We use the following notation for the component fields:
OF = ((p—l—«/ﬁﬂlp-]—...)?‘, Aap= (77+\/§6x—|—...)“ﬁ,
W§= —iA* + (i/2)(c*0")* F,,, 05 + ...

Equation (4.4) is a particular case of such Green’s functions discussed by MEURICE
and VENEZIANO (%).
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change required, and furthermore all the integrations over the collective co-
ordinates prove to be finite. The calculation is quite lengthy, but is in principle
straightforward, once we use the techniques developed by AMATI, ROSSI and
VENEZIANO (2). We have found indeed a nonvanishing and constant result

(4.5) G = const A3 .

But, then, because of the cluster property of general Green’s functions,
eq. (4.5) implies the vacuum dominance at large distances,

(4.6) CAAY* Lppm {mpm) = const Ag; .

On the other hand, the simplest of the chiral WT identities, eq. (2.48),
reads in our case

hlppn) — (95/32n*)<A2y =0,
hlopgn) + 3g<mm> — 4(g5/327*)<AAy = 0

(4.7)

(where gs is the strong SU, coupling constant). By combining eq. (4.7) with
eq. (4.6), we find for the condensates

A%y~ (gh)*" A3

80 ?
(4.8) (<P¢17> ~ glls h—l/s Agv' ,
<’7?777> ~ hl/s 9—4/5 Ag”. ,

if supersymmetry is not dynamically broken. Note that one of the condensates
moves to infinity if we let one of g and & to zero. In order to have a well-defined
vacuum, we shall keep ¢ = 0 and h 7= 0 in the following.

Let us now write an effective Lagrangian for this model, taking account
of all the considerations made in sect. 2 and 3. The natural choice of the com-
posite chiral superfields are

T =e"0; D} Xap )

77

(4.9) X=c¢ Korog Xovsora Xoegors 3
8 = (g2/320%) Ws Ws.

As the composite vector superfields we take

Ry =@ exp [V] @, = p(exp [V,]) (@, 0=1,2),

(4.10)
Q =yt exp [V] y = u2 exp [Vq]

(p is an arbitrary constant with the dimension of mass).
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By assuming the simplest possible form of the function G of eq. (2.56),
and by taking into account the constraints discussed at the end of subsect. 2'3,
we get ()

(4.11) 8, =Jd°z [p2 Tr exp [Vz] + p? exp [Vol + a8T8 4 & Tr Vi +
+ EVo+ Byt THT exp[— Vo— Tr Vi) + yu* Xt X exp [— 3Vl +
4+ f s [8 log (85X T'|A%) + BT -+ gX] + h.c. +
+fd°z [(1/4k,) Tr W2 + (1/4k,) W2] + h.c. ,
where a(oc A~%), B(oc A?), y(oc A?), Eggqloc A%) and k(o A°) are constants, and
W% = — (1/4) D* exp [— V] D* exp [Vz].

As a result of the simplest possible choice made for G of eq. (2.56), dimen-
sional parameters which break the scale invariance appear in eq. (4.11). Ques-
tions related to this point will be discussed in sect. 5.

Following the discussions of sect. 3, we introduce the reparametrization
R = u?exp [Vz] = Mtexp (Ve M,

Q = u?exp [Vo] = NTexp [Va] N,

(4.12)
T = (det M)NT,
X=NX.

(M and ¥V, are 2 X2 matrices). In terms of these new fields, S,,, reads

413) 8,,= f % [Tr (Mt exp [Ps] M) + Nt exp [Pe] N + aSt8 + £ Tr Va4
4 EVo+pTtT exp[— Tr Va— Vol +pXtX exp [— 3V +
+ f d%2 [ 8 log {S* Ne(det M)T'X/A} + h(det M)NT + gN*X] + h.c. +

+ f A% [(1/4k,) Tr W2 + (1/4k,) W2 + h.c.

As discussed in a general fashion in sect. 3, this model possesses an exact

(*) In subsect. 2°3, only those symmetries (anomalous or not) which commute with
gsupersymmetry have been considered. In determining the precise form of the anomaly
term (the logarithmic term) in eq. (4.11), we have also taken account of the anomalous
Up, (B-symmetry) transformation property of the action as well.
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local U, symmetry, under which M, ¥, and 7' transform as

M - exp[— id ] M,

Mt — Mt exp [idstee],
(4.14)
exp [V 5] — exp [— iAette] exp [V ] exp [idete],

T — exp [4(Tr A2)t] T,
and an exact local U, invariance under

N —>exp[— 4] N,

exp [Vo] — exp [— 241 exp [70] exp [i4],
(4.15)
T —exp s T,

X sexp[3id] X.

If we write the 2 X2 matrix M as
(4.16) M = ((P1)(P),

the chiral superfields ¥, and ¥, both transform like doublets of the local SU,.

8., possesses also a global SU, symmetry under which M transforms as
(with real «?)

(4.17) M — M exp [iect®], Mt —exp[— iacts] MT,

while all other fields remain invariant.

It is straightforward to find the minima of the scalar potential which is
obtained by eliminating all the auxiliary fields in eq. (4.13). We find that the
ground states are supersymmetric, and that the scalars (denoting the lowest
components of M, N, T = (det M)NT, X = N3 X, and 8 by Ay, Ay, Az(= pon),
Az(=nmm) and Ag(= (gs/327%) A1), acquire the v.e.v.’s

(4.18) CAs) = (gh) 8 A3,  (Ar) = {4k, <{(Ax) = {Aslg
and

(4.19) {Ayy =const A(£ 0), <4y = const A-1(z~ 0).

The results eq. (4.18) agree with eq. (4.8), obtained from the explicit
instanton calculation combined with the chiral WT identities.
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Equations (4.19) show that the local U,x U, is broken spontaneously;
on the other hand, a global 8U, symmetry (the diagonal combination of
eq. (4.17) and the global 8U, included in eq. (4.14)) remains manifest. Indeed,
by inserting eq. (4.19) into eq. (4.13), we get for the isotriplet vector masses

(4.20) m, = my=mgoc A.

Natural occurrence of an unbroken global SU, symmetry together with a
spontaneously broken local SU, symmetry in our model, is quite reminiscent
of what happens in the standard electroweak model.

We observe that the spontaneous breakdown of the effective local U, X U,
symmetry is inevitable in this model, if the vacuum is to be well defined. This
can be seen from the argument of the logarithm (the U, anomaly term in
eqs. (4.11) and (4.13)), and from the finiteness of the scalar potential. Alter-
natively, this can be seen as a result of the existence of a nonzero Green’s
function, eq. (4.4).

A similar argument can be used to show the spontancous breakdown of
the effective gauge symmetry in models in which a nonzero Green’s function
analogous to eq. (4.4) exists, and in which a local anomaly term can be written.

At the same time, the above observation suggests that the spontaneous
breakdown of the effective gauge symmetry is not inevitable in all supersym-
metric confining models. The effective gauge symmetry might well remain
unbroken in models in which no nonzero Green’s functions of the type (*) of
eq. (4.4) exist. This could open the way to a composite model of the gluons
and the photon. Importance of improving our understanding on these questions
could hardly be overestimated.

5. — SQCD.

Supersymmetric version of quantum chromodynamics (SQCD) has been
studied by many authors (»®%782!). In particular, recent studies of non-
perturbative cffects (»22) strengthened certain conclusions on the low-energy
properties of the theory (such as egs. (5.11) and (5.12) below) obtained earlier
in an effective Lagrangian approach (7).

In spite of these existing studies, we feel that the presentation of our results
is justified for two reasons at least. First, our result shows that the introduction
of composite vector supermultiplets is perfectly compatible with the knowledge

(*) Namely, a n-point function involving only the lowest component of composite
chiral superfields that satisfies all the selection rules of one instanton contribution.
(22) M. G. ScEmipT: Phys. Lett. B, 141, 236 (1984).
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we already have: all the most reliable results in SQCD are reproduced by our
effective Lagrangian.

Secondly, our 8, gives information on other bilinear condensates (squark-
antisquark; quark-antiquark) on which little is known (23).

We shall limit ourselves to the case in which the number of flavours M
is less than N, the number of colours.

SQCD is a SU,, gauge theory with two sets of chiral matter fields,

o, x (x=1,..,DN; t,j=1,..., M; M < N)
trasforming as N and N*, respectively. The matter part of the action is given by
(B1) Sy =0 (B exp [V] B + 5* exp [— V1 1) + [d% (y'miD) + hec.,
where the mass matrix m can be taken to be diagonal
(5.2) m; = dim,

without losing the generality.
As the composite chiral superfields we consider (*)

(5.3) Ti= . &5
and
(5.4) 8 = (g2/327%) W, W,

We also introduce the composite vector superfields

" (B)]= 0" exp [V] &, = p*(exp [V ])],
.b) .
(By)i= g’ exp [— V] y = p*(exp [V,])}

(1 is an arbitrary parameter with dimension of mass).
The effective action involving 7', 8, R,, and R, can be constructed by fol-
lowing the general discussion of sect. 2. Assuming the simplest possible form

(%3) See, however, S. NarisoN: Phys. Lett. B, 142, 168 (1984).
(*) Wy is the usual chiral superfield describing the SU, gauge bosons and gauginos.
For component fields, we shall use the notation

OF= (p+V20p +..)7, xh=m+VZ0x+..),
Wg= —i2* + (i/2)(c*5") P F,, 05 + ....
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for the function G of eq. (2.56), we get

(5.6) 8,,= f d% [Tr By + Tr R, + & Tr log (B, Ra/A%) +
+ 88 4 B Tr (R TR7TH] +- f %2 [S log (87~ det T)] + h.c. +

+ f % Tr (mT) + h.c. + (1/4k)fd“z [Tr W 4+ Tr W*| + h.e.,

where W¢ = — (1/4)D*R*D*R, (i = 1,2) and a(cc A), f(occ A2) and F(oc A
are constants.

Before analysing 8, of eq. (5.6), let us make a digression to discuss possible
modifications of 8,,. In eq. (5.6) we took the simplest possible form of S,,,
that is compatible with the constraints eqs. (2.52) following from the chiral
WT identities, and with the anomalous global U, transformation property.
On the other hand, we disregarded the anomalous WT identities involving the
U,,,; superconformal and dilatation currents (*). In fact, our S, contains
dimensional parameters «, f and & They are somewhat analogous to F, ap-
pearing in the sigma model.

As in ref. (%7), one might prefer to make 8§, free of A . ’s (except in the
argument of the logarithm): this could be done, e.g., by making the modi-
fication

8T8 — (8t8)vs,
(5.7) Tr (R;*TR*T") — Tr (R TR TH)(818)12,
E—0,

in eq. (5.6) while all other terms are kept unchanged.

We wish to point out that such a modified S, (or 8, of ref. () for that
matter) nonetheless does not satisfy correct WT identities associated with the
dilation current, because of the anomalous dimensions of the T, § and R fields.

In the pure Yang-Mills model, this problem appears to be avoided (%)
by choosing the renormalization-group-invariant composite field, (8(g)/3g) Ws Ws,
as the low-energy degree of freedom (%) (*). Generalization of such a simple
recipe to the case of gauge theories with matter is not known at the moment.

(%) 8. FERRARA and B. Zvmino: Nucl. Phys. B, 87, 207 (1975); W. Lane: Nucl. Phys. B,
150, 201 (1979); O. Picuer and K. StBorp: Nucl. Phys. B, 197, 257, 272 (1982). An
explicit calculation of this anomaly in the pure n = 2 supersymmetric Yang-Mills
theory has been done in P. D1 Veccuia, R. MusTo, R. NicopeMI and R. PETTORINO:
CERN preprint, CERN-TH-3905 (1984).

(2®) G. VENEZIANO: private communication.

(*) See, however, ref. (36) for further problems.

(%6) V.A. Novigov, M. A. SurFman, A.I. VainsateEin and V.I. Zaxuarov: ITEP
preprint, ITEP-85 (1984).
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In any event, we have checked that the modification eq. (5.7) does not
change any of the qualitative results obtained from S,,, of eq. (5.6) (see after
eq. (5.15)).

It may be worthwhile to notice that the modified 8,,, can also be cast into
the standard form (of kinetic terms), by the change of variables

(5.8) Sis=g8", T8Br=1T",
Coming back to the effective action eq. (5.6), we make the reparametrization
Ry = p* exp [Vi] = M exp [P,] M,,

(5.9) By = p* exp [V,] = M exp [V,] M],
T =MTM, Tt=MITt M},

following the general discussion of sect. 3. 8,,, takes now an equivalent form
(M, M,, V,, V, and T are M x M matrices)

(5.10) 8, —[d%[Tr (M] exp [P,] M,) + Tr (M, exp [V,] MT) +
+ ETr (Py+ Vo) + a8t + B Tr (exp [— V] T exp [— V] T1)] +
+ f d% 8 log {8~ det (M P M,)} +- h.c. + f d% Tr (mM,T'M,) + h.c. +
+ (1/4k) f d% (Tr W2 + Tr W?) + h.c.
The scalar potential can be readily obtained by eliminating all auxiliary

fields. A straightforward minimization of the scalar potential gives N super-
symmetric minima, at which (for each 4, §)

(5.11) 1o = (g3/320)AT> = const ] mi ASSHY

(5.12) D> =0 (3 % j)
and

(5.13) Yoy = Oty = 8, {[<n'edl)

where f(@) is the solution of f2 — xf-t 4 £f = 0.

Equations (5.11) and (5.12) agree with the earlier (*), and more recent and
model-independent results (%22).

Equation (5.13) is new, and by combining it with

(5.14) Ky =— mgtp)y — miy'nt)
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(which states that the F-component of y® has a vanishing v.e.v. in a super-
symmetric vacuum), we find that

i) oD, <ptpd, <n;rni>, {x'w.> are all diagonal (in the basis where the
mass matrix is chosen diagonal); two matrix elements of each type are equal
if the corresponding flavours have equal masses

and
ii) for m; - 0, {pitp,> diverges but slowly enough that
(5.15) 'y =20

(When the modified form of §,,, eq. (5.7), is used, eq. (5.13) is changed; but
all other results, eqs. (5.11) and (5.12), and i) and ii) above, remain unchanged.)

Equation (5.15) excludes the possible scenario for dynamical supersymmetry
breaking discussed by PESKIN and others (8).

Thus our results on SQCD confirm the earlier ones and complement them.
The result i) above shows that the vacuum property is dictated by the masses,
however small they may be. Such a dramatic difference between the vacuum
properties of ordinary and supersymmetric QCD has already been noticed in
the earliest study (7).

The effective gauge symmetry group of 8,,, of eq. (5.10) is Uy X Uy, under
which fields transform as

M, —exp [—id,] M,
M, — M, exp [id,] ,

(5.16) T —exp[—id,] T exp [id,],
exp [Vl] —exp[— ";AI] exp [V,] exp [i4,],

exp [V,] — exp [—44,] exp [V,] exp [i4]],

where A,, are arbitrary chiral superfields of M X M matrix form. It is com-
pletely broken by the condensates eqs. (5.11), (5.13).

6. — Summary and outlook.

‘We have shown in this paper that in supersymmetric confining theories a
gauge symmetry structure appears naturally and quite universally in the low-
energy effective action. Such an effective gauge symmetry structure can be
regarded as a consequence of the «field-current identity », analogous to that
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discussed by LEE and ZuMiNo (). However, in supersymmetric theories, there
is a natural reparametrization, similar to the one found by FAYET (*!), which
brings 8, into the form with an exact local invariance. Existence of such a
reparametrization and the possibility that the effective gauge symmetry could
be manifest, both arise due to the presence of scalar components as physical
degrees of freedom in the vector supermultiplets, a situation new compared to
the nonsupersymmetric cases investigated earlier (1°).

We have studied a few general features accompanying the emergence of
the effective gauge symmetry. Among others, natural appearance of a gen-
erationlike structure in part of the composite matter multiplets, seems to be
the most interesting one.

The general aspects discussed here suggest an exciting possibility that
all of the SU, x ST, x U, gauge symmetries in the standard model appear as
effective gauge symmetries, and at the same time all of the presently known
¢ elementary » particles (including the gauge bosons) be composite states,
bound by the same meta-(hyper-, etc.) colour forces. Before one can decide
that such a possibility really exists, however, several important questions must
be answered.

The first concerns the question of the possible realization of the effective
gauge symmetry. In several models we have studied, the effective gauge sym-
metry was found to be spontaneously broken. The other possibility, unbroken
manifest effective gauge symmetry, has not been explored in this paper, although
this is cruecial in the application of our ideas to the known exact gauge sym-
metries, QCD and the electromagnetism.

Secondly, as in any other attempts to construct a realistic model based on
supersymmetric theories, a mechanism of supersymmetry breaking must be
incorporated. Although we have not discussed here, there has been some
progress recently, both concerning dynamical (4) and explicit supersymmetry
breaking (*7).

Thirdly in a realistic model the pattern of chiral symmetry realization and
the ensuing structure of light composite particles, as required by the Goldstone
theorem and/or by the anomaly-matching conditions, must fit the observed
world of quarks and leptons.

These and other problems, related to the possibility of finding a realistic
composite model of the elementary particles within the general scheme discussed
above, are presently under study.

EE
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in particular G. VENEzIANO, which helped clarifying many issues. One of

(2) A. Masiero and G. Veneziano: CERN preprint, TH-3950 (1984).




434 E. GUADAGNINI and K. KONISHI

us (KK) thanks the seminar audience at the Max Planck Institute in Munich
for critical and fruitful discussions, and for the warm hospitality at MPI where
part of this work was done.

Note added in proofs.

The original idea of the field-current identity and the appearance of a gauge-
symmetry structure is found in V. I. Ocreverskiy and I. V. POLUBARINOV: Ann. Phys.
(N. X.), 25, 358 (1963). Our approach is closer to this work than to those cited in
ref. (). Furthermore, OGIEVETSK1J and POLUBARINOV discuss explicitly the cases with
massless vector bosons as well. We thank L. E. Prcasso for bringing this paper to
our attention.

® RIASSUNTO

Si studia in dettaglio il ruolo che i supermultipletti vettoriali composti hanno nel-
Pambito delle teorie supersimmetriche confinanti. Usando le identitd chirali di WT,
si determina la struttura della lagrangiana effettiva a bassa energia, che contiene questi
supermultipletti vettoriali. Il fatto che generalmente appare una struttura di sim-
metria di gauge effettiva & uno dei risultati pit interessanti. Un altro & che tra i campi
composti di materia, che sono multipletti della simmetria di gauge effettiva, emerge
una struttura tipo generazioni.

dddexTnBRas KAIMOPOBOURAS CHMMETDHA B CYNEPCHMMETPHUHLIX YACPKMBAIIEX TEeODPHSX.

Pesiome (*). — B pamMxax o6IIux CymepcuMMETPHYIHEIX yIEPXKHBAIONINX TEOPHit TOIPOGHO
HCCTIENYEeTCS POJIb COCTABHBIX BEKTOPHBIX CYNEPMYJIBTHIUIETOB. VICMONb3ys KHpa/lbHEIE
WT-ToxnecTBa, ONpeneNnseTcss CTPYKTYpa HH3KO3HEPTETHUECKOTO MNeHCTBHS, KOTOPOE
BK/IIO9a€T 3TH BEKTOPHBIC CYNEPMyYJNbTHINIETHL. OnuH M3 HanboJiee HHTEPECHBIX PE3YJib-
TaTOB — 3TO YHHBEPCAJIbHOE HOsBICHUE 3(DHeKTUBHON XamOGpOBOYHO-CHUMMETPUYHOM
CTPYKTYpBL. JIpYroi pe3synbTaT — 3TO BO3HHKHOBEHHE CTPYKTYPhI THIIA Pa3MHOXECHHS
MEXIY COCTAaBHBIME MYJIbTHIUIETAMH « BEINECTBA », IPH YCIOBHH 3DOEXTHBHOM Kaymbpo-
BOYHOI cHMMeTpHH.

(*) IIepegederno pedaryueii.
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