Volume 187, number 1,2

PHYSICS LETTERS B

CERN
SERVICE D'INFORMATION
SCIENTIFIQUE

19 March 1987

EFFECTIVE ACTION FOR DYNAMICAL SUPERSYMMETRY BREAKING

K. KONISHI and G. VENEZIANO
CERN, CH-1211 Geneva 23, Switzerland

Received 15 December 1986

We propose an effective action describing the low-energy limit of a chiral gauge theory in which instantons are believed to break
dynamically supersymmetry. The model is well behaved, provided real superfields, containing the goldstino and giving rise to
massive vector exchanges, are coupled to the usual chiral superfields.

Vector-like supersymmetric gauge theories, such as
SYM and SQCD, have been analyzed in the last few
years by several nonperturbative methods: Witten
techniques [1], effective lagrangians [2], Ward-
Takahashi (WT) identities [3,4] and, finally,
dynamical instanton calculations [5] of correlation
functions. A consistent, general picture has emerged
for the vacuum structure of these models, confirm-
ing that in such theories supersymmetry is unbroken,
though, occasionally, the ground state is pathological.

For theories with chiral fermions, the first two
techniques mentioned above have so far proved inef-
fective. However, instanton calculations, coupled to
WT identities, have led to the conclusion [6] that in
a number of cases supersymmetry should be dynam-
ically broken. (For a somewhat different apparoach,
seeref. [7].)

In this note, we shall partially fill the above-men-
tioned gap by constructing effective actions which
explicitly exhibit spontaneous supersymmetry
breaking. As for the case of vector-like theories, these
effective lagrangians describe the low-energy physics
in terms of a set of gauge-invariant composite fields.
We find, however, that chiral as well as real super-
fields are needed in order to recover the absence of
flat directions (which is a property of the underlying
theory) as well as supersymmetry breaking. We recall
that for SQCD chiral superfields were enough.

The effective lagrangian neatly summarizes the
various dynamical properties that we believe the the-
ory to possess: spontaneous breaking of supersym-
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metry with an accompanying goldstino; absence of
supersymmetry in the light spectrum; spontaneous
breaking of global bosonic symmetries with the
accompanying Goldstone bosons; massless fermions
needed by ‘t Hooft consistency arguments because of
the conservation of certain chiral symmetries. Our
discussion will concentrate on the example of the one-
family supersymmetric Georgi-Glashow model.
Extension to other cases looks straightforward.

We shall start by recalling the model and the pre-
viously given argument for supersymmetry breaking.
We shall then construct the effective lagrangian.

The fundamental action of the model is

S= stz (D" D+ Xte"X)

+ gauge, gauge-fixing and ghost terms , (1)

where @ and X, = — Xj belong to the fundamen-
tal (5) and antisymmetric (10) representations of
SU(5). The classical scalar potential has no flat
directions. Furthermore, no superpotential can be
added toeq. (1).

The global, nonanomalous symmetry of the model
consists (apart from supersymmetry itself) of two
U(1) symmetries. The first, U;(1), commutes with
supersymmetry and has charges g, =3, gy= — 1. The
second, U, (1), is an R symmetry with the transfor-
mation law,

D exp(—12ia) D(x,0e%59) |

X—exp(l4ia) X(x, 6e*) |
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W-exp(—5ia) W(x, 6e5@) .

The anomalous [U(1)-related] identities read
simply [4]

{Qa» WO B} >12/2= ( (g2/1672) A0 ,
A Qa» 251} >12/2=3( (g¥/1672)A0) , (2)

showing that a nonvanishing gauge-fermion conden-
sate signals spontaneous breaking of supersymmetry.

On the other hand, the nonvanishing instanton
result [6]

CIT S(x)S(x2) Y(x3) |0) =const. X A3 £0 ,

S=(g*/16n%)A%,  Y=W>pnme, (3)

implies via clustering (S) 2 (Y =const. x A!3#0.
A supersymmetric vacuum would require (¥ =co
[cf. eq. (2)], probably an unacceptable result in view
of the absence of flat directions in the classical
potential. Thus supersymmetry is dynamically
broken.

If this is indeed the way this theory is realized, it
should be possible, by integrating out the heavy
degrees of freedom, to write down a low-energy
effective theory exhibiting dynamical sypersymme-
try breaking induced by A4 condensation. So far this
has proved to be a difficult task to accomplish; in
particular, the elimination of supersymmetric vacua
at infinity has never been successful if only chiral
superfields are employed. This leads one to wonder
if the absence of flat directions in the underlying the-
ory does indeed imply, as one would guess, the same
for the composite fields of the effective theory.

The resolution of this puzzle seems to lie in the
correct choice of the low-energy degrees of freedom.
Let us start with the goldstino. Eq. (2) leads to

K&l w*B10) = 1f<gs 175110
=2./2¢S> #0, (4)

where |g) is the Goldstone fermion, and fis the
strength  of supersymmetry breaking, fo2%=
(OI.S};’ |g«> (S5 is the supercurrent). It means that
the low-energy degrees of freedom must include the
real composite supermultiplets

R=dte"d, (Q=xtex, (5)
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whose components are associated with the massless
Goldstone fermion.

The composite fields R, O, as well as Y and S of eq.
(3) are all singlets of U,;(1). As no condensates
breaking this U(1) symmetry are suggested from
instanton calculations, one needs a composite super-
field associated with the massless ‘t Hooft-type fer-
mion to saturate the {U,(1)}* anomaly. A simple
candidate is ’

A= (g2/167%) (W), D*DF X, . (6)

The structure of the low-energy effective lagran-
gian containing R and Q is severely restricted by the
fact that these real superfields have in their vector
component the original current operators of the
(anomalous) Uy (1) and Ux(1) symmetries. The
requirement that the anomalous and nonanomalous
chiral U(1) identities be correctly reproduced by the
low-energy effective theory fixes the form of the
effective lagrangian to be almost one of a local gauge
theory, as is well known from the earlier studies in
conventional (nonsupersymmetric) theories [8]. The
supersymmetric generalization of such a construc-
tion has been considered in detail in ref. [9], to which
we refer for a more complete discussion.

The general structure of S, is given by

Se“=Jd82 {R+Q+¢, log R+, log Q

+/(S*, S; Y*, Y, 4*, 4; R; Q) }
+Jd62 {(1/8k YW} + (1/4k,) W

+Slog S?Y}+h.c., (7)

where (Wg),= — {D?R ~D,R and similarly for W,;
and ¢, &5, k, and k, are (in principle) calculable
constants. The dependence of fon Y, Y* R and Qis
such that fis invariant under the local Ug(1) and
Ux(1) transformations, namely a function

A*R-1Q-%Y) (8)

of the above invariant combination. This follows
from the requirement that the Uy (1) and Uy(1)
current divergence equations [10,4]

iD’R+5=0, 4iD2Q+3S=0 9)

[egs. (2) may be regarded as the lowest component
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of these ] be consequences of the equations of motion
of R, Qand Y,

1D {R+ (8f/dR)R} =0, (10a)
iD*{Q+(3f10Q)Q}=0, (10b)
L\D2(f1Y)Y+5=0. (10c)

As for the dependence of fon 4 and A4*, which does
not appear in the F term, any single term of the form

f~(4*RPQe4)" (11)

would do, since its contribution to eq. (10a) [or eq.
(10b)] is proportional to the equation of motion of
the A field and hence vanishes. (This observation
complements the basic results of ref. [9].)
Symmetry considerations alone do not further
specify the form of the functions and f, on which
the vacuum properties severely depend. Since the
potential in the original theory is rising at large ¢ or
nin any direction in the field space (true to all orders
of perturbation), let us require the same property to
hold for the potential following from eq. (7). Also,
since there are no constant Green’s functions that
might suggest nonvanishing condensates for the A
field, we require (4> =0 to follow from eq. (7).
These requirements have a simple solution (with
possible variants leading to identical physics)

Seﬁzjdsz {(R+Q+&, log R+, log O

+(Y*R-'Q3Y) ' +S*S+4*RQA}

+Jd6z ((1/4k,) W+ (1/4ky) W

+Slog S?Y} +h.c., (12)
with
20, &2>0. (13)

Let us now analyze this effective theory.
First we make a simple field reparametrization

R=Mte"*M (V%=0,n>3),

Q=NTe"°N (V%=0,n>3), (14a)
and introduce the new variables
Z=N3MY~!, B=AMN . (14b)
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This transformation diagonalizes at once all the
kinetic terms, and, simultaneously, simplifies the
elimination of auxiliary fields. S, now reads

Sefr = stz {MTe"*"M+NTe"eN+& Ve +&,V,

+Z*e""+3Ve Z + B¥eV* Vo B+ S*S}
+jd6z {(1/8k,) Wi+ (1/4k,) W}

+Slog (S2MN3/Z)}+h.c. (15)

The appearance of the “effective gauge symmetry”
structure of S. is an example of the phenomenon
discussed in ref. [9]. Such a structure is crucial for
the analysis of S, as will be seen below. One might
object that this gauge symmetry is anomalous due to
effective theory loops. Such an anomaly would make
parametrization (14a) illegitimate by increasing the
number of degrees of freedom in going from R(Q) to
M, Vi (N, V). This is, however, not a true anomaly,
being equal to the variation of a local (Wess—Zumino-
type) counterterm such as W% log M. Addition of
such anomaly-cancelling counterterms would not
modify our discussion.

The scalar potential which follows from eq. (15) is

Vie=Fup|*+|Fn|*+|Fz|*+|Fs|?
+D3/2k, +D32ks, (16)

where (denoting the lowest component of the chiral
superfields M, N, Z, S, and B by the corresponding
small letters),

FMZ—S*/m*, FN:—3S*/n*,

Fy=4s%z*  Fs=— (log (s*mn’/z))*,

Dr=—3ki(&i+1m|?+z|2+1b]?),

Do=—3k (& +In|?+3|z|2+b|?) . (17)
It is easy to see that the minimum of V. occurs at
(&,,2>0)
b=0 (a=0),

O<|m|, |nl|,|z|, |s|<oco, (18)

1.e., no vanishing (except for a) or infinite conden-
sates occur.
At the minimum
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Vie>0, (19)

and hence supersymmetry is spontaneously broken.

The spectrum can be studied in a straightforward
manner. First, the vector boson mass terms are given
by

M%’/R=kl(|m|2+ |Z|2)>0’
M=k (In|?+9]2|%) >0, (20)

i.e., there are no composite massless vector bosons.
The complex scalar boson b (the lowest component
of B) gets mass from the D term,

mp=(Dx+D%)>0. (21)

The moduli of the other scalars m, », z and s also get
masses from the D terms, while their phases describe
potentially massless particles. Note that their phases
enter V. only through the | Fg|2 term, thus the three
combinations orthogonal to

Im(2s/{s)+3n/{ny+mi{m)—z/{z))

are massless. Not all of them, however, describe true
massless particles because the two combinations
Im({(m)m+<{zyz) and Im(<{ndn+3{z>z) are
absorbed by the vectors V' and V), as in the usual
Higgs mechanism. There remains one massless real
scalar particle

Im(z/{z) —m/{m) (22)
—=3n/{n) +cs/{s))

[e=4{s>2(9/<n) 2+ 1/¢(mD>2+1/{z>?)]. It is the
Goldstone boson of the spontaneously broken U,(1)
symmetry.

Next consider the fermions. The fermion compo-
nent of B is massless because ¢ ) =0: no mixing with
the “gauge” fermions Az o (of Vy ) occurs and B
has no superpotential. It is the ‘t Hooft-type fermion
and saturates the {U,(1)}® anomaly of the unbroken
U, (1) symmetry. [Its contribution 53=125 matches
3*-5+(~)*10 of the fundamental fermions. |

The massless Goldstone fermion of broken super-
symmetry is expected to be

vee ¥ Zﬁ (Fow,

i=M.N, S,

+i Y (DgdAa, (23)
Q

a=R,
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because of the supersymmetry transformation laws

{0% wip)=\/2 F:6§ (i=M,N,S,Z),

{Q%, Agp}=1iD,55.

v of eq. (23) is the combination that transforms
inhomogeneously under the supersymmetry. This can
be explicitly checked by looking at the 6x6 fer-
mionic mass matrix and using the minimization con-
ditions on the potential as well as the “effective
gauge” invariance of the superpotential S log
(S?MN?3/Z).

In conclusion, the model we have presented seems
to be well behaved and to exhibit all the features we
believe the underlying theory to possess at low energy.

We can ask ourselves why the introduction of real
(vector) fields was necessary, since, after all, the
vector fields become massive at the end. The fact is
that, because of supersymmetry breaking, not all the
components of the real supermultiplet can become
massive, since the goldstino itself partially lies in R
and Q. Thus the full vector supermultiplet cannot be
integrated out, while integrating out its massive
components would correspond to a nonsupersym-
metric approximation to the theory.
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